47E-5

BHLEFRE 10 BeERE

A—H—[ZKSBEMNABEEIL T A—a R
DI=-HOEBTYF T

Pablo Garcia Trigo' Henry Johan?

FORET

1. Introduction

Traditional 2D animated cartoons are created by
drawing and coloring each frame manually. Compared
to other ways of making animations, it is a very
flexible means, but it is also a very time-consuming
process.

The traditional 2D animation pipeline consists of
several steps, being the generation of inbetweenings
and the coloring the most time-consuming ones
(approx. to 60% of the time of the whole process [1],
even when using commercial software like Retas or
Animo). Thus, previous research has concentrated on
automating them.

This paper proposes an interactive method for the
coloring step. The coloring is done gradually and the
user can fix coloring mistakes as soon as they appear.
In doing so, mistakes do not propagate to the rest of
the animation frames nor generate other mistakes, thus
reducing the total number of them and reducing the
total effort needed until having a correctly colored
cartoon.

2. Related work

There are several papers that attempt to automate
the coloring process using a matching algorithm: they
try to identify what regions in one frame correspond to
what regions in the other frames comparing its
features and then painting them with the same color.
Since matching can be a very difficult task due to the
possible lack of coherence between frames,
approaches like [2] and [3] increase the matching
accuracy by using graphs, building a hierarchy of
regions or inserting skeletons.

While the above approaches can color automatically
certain kinds of animations, they may fail almost
completely in more difficult ones, leaving the artist
with the task of correcting lots of wrongly colored
regions manually. This happens because a wrongly
matched region in a frame in the middle of the
animation usually keeps being wrongly matched in the
successive frames. Even worse, that wrong match is
used later as information for other matches, worsening
their accuracy.

[User-guided matching for animated cartoon coloring |

T Pablo Garcia Trigo, Takashi Imagire, Tomoyuki Nishita
The University of Tokyo

1 Henry Johan

Nanyang Technological University

SfaE BT WHE KR!

Nanyang Technological University?

In our method the user fixes the matching mistakes
as soon as they appear. Thus, the previous situation
does not happen and, on the whole, it takes less effort
for the animator to color the frames.

3. Proposed method

3.1. General overview
Our coloring algorithm goes as follows:

Scan the hand-drawn frames

Apply filters to reduce noise and holes

Segment each input frame into its closed regions
For each region extract the its features
User-guided matching

VAL Db =

Note that we work with raster images and we do not
vectorize the input frames.

3.2. Region features

For each region we extract the following features:
Area, Position, Neighbor Regions and Dominant
Points. Dominant Points are points in a boundary that
have a high curvature. They are also called Character
Points in related works.

3.3. The matching algorithm

We have implemented a forward matching
algorithm starting from the first frame. Inside each
frame, we try to match all regions, starting from the
biggest to the smallest. Given a region r in a frame f,
we compare » with all the non-matched regions in the
frame f+1 and pick up the most similar as the match.
When done with all regions in frame £, we advance to
frame f+1 and repeat the process until we reach the
last frame.

3.4. The comparison function

For comparing two regions we use a comparison
function comp that given two regions returns a score
indicating how similar they are. It does so by
comparing the region features one by one and
normalizing them into one final score.

3.5. Interactive matching

The user interface consists of a set of panels that
display the frames to be matched.

4-359



Figure I1: The user interface showing 5 frames

Initially, the user has only to click the “Interactive
matching” button (The button in the upper part of the
panels of figure 1). At each press, it picks up the first
non-matched region, matches it and shows the result
on screen. The matched regions appear colored with
the same color.

For fixing matching mistakes the toolbox (the upper
left dialog in the user interface) presents the following
options:

1. Connect two regions: Requires 2 clicks for
indicating the regions. They become matched and
get the same color. Matchings in successive
frames are recalculated.

2. Region disappears: Requires 1 click for
indicating the disappearing region. Any match in
successive frames becomes non-matched.

3. Region with new color: Requires 1 click for
indicating the region. Assigns a new random color
and looks for matches in successive frames.

4. Results and Discussion

Figure 2: Correctly matched regions with random colors

We implemented our system in Java. We ran the
tests on an Intel Core2 Quad CPU Q6700 @ 2.66
GHz, with 2 GB of RAM. After the segmentation and
the extraction of features, all the interaction is in real-
time. The animation consists of 5 frames, each of
507x446 pixels. Each frame has respectively: 15, 16,
17, 18 and 18 regions. In total, there are 84 regions.

Table 1: Results

Algorithm Number  of |Wrongly colored regions
clicks

100% 144 clicks |0

Manually

User—guided |38 clicks 0 (16 corrected by the

matching user, 10 by the

algorithm)
Non-— 0 clicks 43
interactive

We counted the number of mouse clicks on the
panels (for connecting regions) and on the toolbox
(choosing an option).

The 5 frames used as a test contain some difficult
parts: the pony tail, the ear and the collar. That is
because they change their shape, position and/or
disappear.

Our non-interactive algorithm colored incorrectly 43
regions. Fixing that with our software would require
86 clicks (option 1). On the other hand, with the
interactive matching, the user finished in just 38.

This shows how, for difficult cases, an approach that
involves the user can be more efficient that a non-
interactive approach.

5. Conclusions and Future Work

As seen in the results, fixing the coloring mistakes
as soon as they appear has allowed us to stop their
propagation and the generation other mistakes, thus
reducing the total number of them and reducing the
total effort needed until having a correctly colored
cartoon.

As for future work, right now our comparison
function's accuracy is low. We want to implement
better ways of comparing the dominant points and
neighbors. Regarding the user interface, sometimes
small colored regions are difficult to see. It would be
ideal to add visual indicators that help the user.

References

[117. Qiu, H. Seah, F. Tian, Z. Wy, and Q. Chen.

Feature- and region-based auto painting for 2D animation.
Visual Computer, 21:928-944, Oct 2005.

[2] J. Madeira, A. Stork, and M. Gross. An approach to
computer-supported cartooning. Visual Computer, 12:1-17,
1996.

[3] J. Qiw, H. S. Seah, F. Tian,Q. Chen, Z. Wu, and M.
Konstantin, Auto coloring with character registration.
Proceedings of the International Conference on Game Research
and Development (CyberGames ’06), vol. 223, pp. 25-32,
Perth, Australia, December 2006.

4-360



