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A Note on Alternating Multi-Counter Automata with
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This paper introduces space-bounded alternating multi-counter automata, and shows some
fundamental properties of these automata. We first investigate relationships (1) between
strong and weak space-bounds, (2) between one-way and two-way, and (3) among determin-
ism, nondeterminism, and full alternation. Let weak-2ACA(k, L(n)) (weak-1ACA(k, L(n)))
denote the class of sets accepted by weakly L(n) space-bounded two-way (one-way) alternat-
ing k-counter automata. We show, for example, that weak-2ACA(1,logn) — weak-1ACA
(k, L{n)) # ¢ for any k > 1 and any L(n) such that lim, o [log L(n)/logn] = 0. We then
investigate a relationship between the accepting powers of multi-counter and multi-head finite
automata. Let 2AFA(k) denote the class of sets accepted by two-way alternating k-head finite
automata. We show, for example, that weak-2ACA(k,n) = 2AFA(k + 1) for each k > 1. We
finally investigate hierarchical properties based on the number of counters. Let weak-1UCA
(k, L(n), real) denote the class of sets accepted by weakly L(n) space-bounded one-way alter-
nating k-counter automata with only universal states which operate in realtime. We show,
for example, that weak-1UCA(k + 1,logn, real) — weak-1ACA(k,logn) # ¢ for each k > 1.
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1. Introduction

Alternating Turing machines were introduced
in Ref.1) as a mechanism to model parallel
computation, and in related papers2)~12), in-
vestigations of alternation have continued. Re-
cently, several properties-of alternating Turing
machines with small space bounds were given
in Refs. 5), 6), 10)~12). It is well known that
without time or space limitations, counter au-
tomata have the same power as Turing ma-
chines; however, when time restrictions are ap-
plied, a different situation emerges. For ex-
ample, hierarchical properties in the accept-
ing powers of one-way alternating multi-counter
automata operating in realtime are investigated
in Refs. 7), 8), 18). On the other hand, proper-
ties of alternating multi-counter automata with
small space (especially, with sublinear space)
are little investigated as far as we know.

In this paper, we are interested in obtain-
ing some fundamental properties of alternating
multi-counter automata with small space. We
mainly investigate the effects (i) of the amount
of space and (ii) of the number of counters
used in computations on the accepting pow-
ers of alternating multi-counter automata with

1 Department of Information and Electronics Engi-
neering, Tokuyama College of Technology

11 Department of Computer Science and Systems
Engineering, Faculty of Engineering, Yamaguchi
University

2741

sublinear space, and investigate the differences
(in the accepting powers of these automata)
(i) between weakly and strongly space-bounded
computations, (ii) between one-way and two-
way computations and (iii) among determinis-
tic, nondeterministic and alternating computa-
tions. Section 2 gives the definitions and no-
tations necessary for this paper. Section 3 in-
vestigates a relationship between the accepting
powers of alternating multi-counter automata
with strong and weak space-bounds. Let
strong-2ACA(k, L(n)) (weak-2DCA(k, L(n)))
denote the class of sets accepted by strongly
(weakly) L(n) space-bounded two-way alternat-
ing (deterministic) k-counter automata, and let
strong-2ATM(L(n)) (weak-2DTM(L(n))) de-
note the class of sets accepted by strongly
(weakly) L(n) space-bounded two-way alternat-
ing (deterministic) Turing machines. From the
results in Refs. 10), 14), it follows that weak-
2DTM(loglogn) — strong-2ATM(L(n)) # ¢
for any L(n) such that lim,_,.[L(n)/logn]
= 0. We show, for example, that weak-
2DCA(4,logn) — strong-2ACA(k,L(n)) # ¢
for any £ > 1, and any L(n) such that lim,_, .
[log L(n)/ logn] 0. Section 4 investi-
gates a relationship between one-way and two-
way. Let weak-1ACA(k,L(n)) (weak-2ACA
(k, L(n))) denote the class of sets accepted by
weakly L(n) space-bounded one-way (two-way)
alternating k-counter automata, and weak-
1ATM(L(n)) (weak-2ATM(L(n))) denote the
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Table 1
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Strong versus weak space-bounds.

(1)  weak-2DTM(loglogn) — strong-2ATM(L(n)) # ¢
weak-2DCA(4,logn) — strong-2ACA(k, L(n)) # ¢

(2)  weak-1NTM(loglogn) — strong-2ATM(L(n)) # ¢
weak-1NCA(3,logn) — strong-2ACA(k, L(n)) # ¢

(3) weak-1UTM(loglogn) — strong-1ATM(L(n)) # ¢
weak-1UCA(1, log n, real) — strong-1ACA(k, L(n)) # ¢

(Refs. 10), 14))
(Theorem 3.2)

(Refs. 10), 13))
(Theorem 3.2)

(Refs. 5), 11))
(Theorem 3.2)

class of sets accepted by weakly L(n) space-
bounded one-way (two-way) alternating Turing
machines. It is shown in Ref.6) that weak-
2ATM(loglogn) — weak-1ATM(L(n)) # ¢ for
any L(n) such that lim, ,o{L(n)/logn] =
0, and in Ref.2) that weak-1ATM(L(n)) =
weak-2ATM(L(n)) for any L(n) > logn.
We show, for example, that weak-2ACA
(1,logn) — weak-1ACA(k, L(n)) # ¢ for any
k > 1, and any L{n) such that lim, .
log L(n)/logn] = 0, and that weak-2ACA
(k,L(n)) C weak-1ACA(k + 1, L(n)) for each
k > 1 and each L(n) > n. Section 5 investigates
a relationship among determinism, nondeter-
minism, and full alternation. Let weak-1ACA
(k,L(n),real) (weak-1UCA(k, L(n),real)) de-
note the class of sets accepted by weakly L(n)
space-bounded one-way alternating k-counter
automata (alternating k-counter automata with
only universal states) operating in realtime. It
is shown in Ref.6) that weak-1ATM (loglogn)
— weak-2DTM(L(n)) # ¢ for any L(n) such
that lim,,, o [L(n)/log n] = 0. We show, for ex-
ample, that weak-1ACA(1,logn,real) — weak-
2DCA(k,L(n)) # ¢ forany k > 1, and any L(n)
such that limy,,e[log L(n)/logn] = 0. Sec-
tion 6 investigates a relationship between the
accepting powers of alternating multi-counter
and multi-head automata. Let 2AFA(k) denote
the class of sets accepted by two-way alternat-
ing k-head finite automata. In this section, we
show that weak-2ACA(k,n) = 2AFA(k+1) for
each & > 1. Section 7 investigates hierarchi-
cal properties based on the number of coun-
ters. In Ref. 8), it is shown that for each k > 1,
there is a set accepted by a one-way alternating
(k + 1)-counter automata with only universal
states operating in realtime, but not accepted
by any one-way alternating k-counter automata
operating in realtime. We show that for each
k > 1, weak-1UCA(k + 1,logn,real) — weak-
1ACA(k,logn) # ¢. Section 8 concludes this
paper by giving several open problems.

Tables 1 through 5 give a summary of our re-
sults. We summerize, in Tables 1, 2 and 3, the
results of Turing machines shown in Refs.2),
5), 6), 10), 11), 13), 14) and our correspond-
ing results of multi-counter automata. In all
the entries in the tables, k denotes any posi-
tive integer, ¢ (> 0) denotes any constant, and
L(n) denotes the function such that lim,_,
[L(n)/logn] = 0 for Turing machines and
lim,, o [log L(n)/logn] = 0 for multi-counter
automata except for (4) of Table 2, in which
L(n) > logn for Turing machines and L(n) > n
for multi-counter automata.

2. Preliminaries

A multi-counter automaton is a multi-
pushdown automaton whose pushdown stores
operate as counters, i.e., each storage tape is a
pushdown tape of the form Z¢ (Z fixed). (See
Refs. 17), 18) for formal definitions of multi-
counter automata.)

A two-way alternating multi-counter automa-
ton (2amca) M is the generalization of a two-
way nondeterministic multi-counter automaton
in the same sense as in Refs.1)~3). That is,
the state set of M is divided into two disjoint
sets, the set of universal states and the set of
ezistential states. Of course, M has a specified
set of accepting states.

We assume that 2amca’s have the left end-
marker “¢” and the right endmarker “$” on the
input tape, read the input tape right or left, and
can enter an accepting state only when falling
off the right endmarker §. We also assume that
in one step 2amca’s can increment or decrement
the contents (i.e., the length) of each counter
by at most one. For each k& > 1, we denote
a two-way alternating k-counter automaton by
2aca(k).

An instantaneous description (ID) of 2aca(k)
M is an element of

5 x (NU{0}) x Su,
where ¥ (¢,$ ¢ %) is the input alphabet of M,
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Table 2 One-way versus two-way.

(1) weak-2UTM(loglogn) — weak-1UTM(L(n)) # ¢
strong-2DCA(1,logn) — weak-1UCA(k, L(n)) # ¢

(2)  weak-2ATM(loglogn) — weak-1ATM(L(n)) # ¢
strong-2ACA(1,logn) — weak-1ACA(k, L(n)) # ¢

(3)  weak-2DTM(log logn) — weak-1INTM(L(n)) # ¢
strong-2DCA(1,logn) — weak-1NCA(k, L(n)) # ¢
strong-2DCA(1,logn) — strong-1ACA(k, L(n)) # ¢

(4) m-2ATM(L(n)) = m-1ATM(L(n))
m-2ACA(k, L(n)) C m-1ACA(k + 1, L(n))

for each m € {weak, strong}

(Ref. 5))
(Theorem 4.1)

(Ref. 6))
(Theorem 4.1)

(Ref. 6))
(Theorem 4.1)
(Theorem 4.1)

(Ref. 2))
(Theorem 4.2)

Table 3 Relationship among determinism, nondeterminism and alternation.

weak-1ATM(loglog n) — weak-2YTM(L(n)) # ¢

weak-1ACA(1,log n, real) — weak-2YCA(k, L(n)) # ¢
strong-2ACA(1,logn) — weak-2YCA(k, L(n)) # ¢

for each Ye{U,N,D}

(Ref. 6))

(Theorem 5.1)
(Theorem 5.1)

Table 4 Relationship between multi-head and multi-counter.

weak-2ACA(k,n) = 2AFA(k + 1)

(Theorem 6.1)

Table 5 Hierarchy results based on the number of counters.

weak-1UCA(k + 1,logn, real) — weak-1ACA(k,logn) # ¢
weak-2ACA(k, cn) ¢ weak-2ACA(k + 1, cn)
weak-1ACA(k, cn) ¢ weak-1ACA(k + 2, cn)

(Theorem 7.1)
(Corollary 7.2)
(Corollary 7.3)

N denotes the set of all positive integers, and
Sy = Q x ({Z}*)*, where Q is the set of states
of the finite control of M, and Z is the storage
symbol of M. The first and second components,
w and ¢, of an ID T = (w,4,(q, (a1,...,az)))
represent the input string and the input head
position, respectively.* The third component
(g, (0, -..,ax)) of I represents the state of the
finite control and the contents of the k coun-
ters. An element of Sys is called a storage state
of M. If ¢ is the state associated with an ID
I, then I is said to be a universal (existential,
accepting) ID if ¢ is a universal (existential, ac-
cepting) state. The initial ID of M on w € T*

* We note that 0 < ¢ < |w| + 2, where for any string
v, |v| denotes the length of v. “0”, “1”, “lw| + 1”
and “lw|+2” represent the positions of the left end-
marker ¢, the leftmost symbol of w, the right end-
marker $, and the immediate right to $, respectively.

is IM(w) = (?.U, 07 (q()a ()" s >A)))7 where Qo is
the initial state of M and A denotes the empty
string.

We write I b I' and say I’ is a successor of
I if an ID I’ follows from an ID I in one step,
according to the transition function of M.

A computation path of M on input w is a se-
quence Io Far It Fpg ... Far I (n > 0), where
Iy = Iny(w). A computation tree of M is a fi-
nite, nonempty labeled tree with the following

properties:
1. each node 7 of the tree is labeled with an
ID, 4(x),

2. if 7 is an internal node (a non-leaf) of
the tree, £(7) is universal and {I|4(7) b,
I} = {I,I,...,I.}, then 7 has exactly
r children p1, pa, ..., pr such that £(p;) =
I;, and

3. if 7 is an internal node of the tree and
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£(7) is existential, then 7 has exactly one

child p such that £(x) Far £(p).
A computation tree of M on input wis a com-
putation tree of M whose root is labeled with
Ins{w). An accepting computation tree of M
on w is a computation tree of M on w whose
leaves are all labeled with accepting ID’s. We
say that M accepts w if there is an accepting
computation tree of M on w. We denote the
set of input words accepted by M by T(M).

A one-way alternating multi-counter automa-
ton (lamca) is a 2amca which reads the input
tape from left to right only.

For each k > 1, let laca(k) denote a one-
way alternating k-counter automaton. We de-
note by 2uca(k) (luca(k)) a 2aca(k) (laca(k))
with only universal states, i.e., with no existen-
tial state. A two-way (one-way) nondetermin-
istic k-counter automaton, denoted by 2nca(k)
(Inca(k)), is a 2aca(k) (laca(k)) which has no
universal state. Further, let 2dca(k) (1dca(k))
denote a two-way (one-way) deterministic k-
counter automaton which is a 2uca(k) (luca(k))
whose ID’s each have at most one successor.

Let L : N — R be a function, where R de-
notes the set of all non-negative real numbers.
For each x€{1,2}, each ye{a,u,n,d} and each
k > 1, an xyca(k) M is weakly (strongly) L(n)
space-bounded if for any n > 1 and any input w
of length n accepted by M, there is an accept-
ing computation tree t of M on w such that
for each node 7 of ¢, the length of each counter
in ¢(7) is bounded by L(n) (if for any n > 1
and any input w of length n (accepted or not),
and each node 7 of any computation tree of
M on w, the length of each counter in £(x) is
bounded by L(n)). A weakly (strongly) L(n)
space-bounded xyca(k) is denoted by weak-
xyca(k, L(n)) (strong-xyca(k, L(n))).

Let T : N — N be a function. For each
me{weak, strong}, each x€{1,2}, each ye{a,u,
n,d}, each k > 1, and any function L : N — R,
we say that an m-xyca(k,L(n)) M operates in
time T'(n) if for each input w accepted by M,
there is an accepting computation tree ¢ of M
on w such that the length of each computation
path of ¢ is at most T'(|w]). An m-lyca(k, L(n))
M operates in realtime if T(n) = n+ 1. For op-
erating time, we are only interested in realtime
in this paper. For-each me{weak, strong} and
each x€{1,2}, we define

m-xACA(k, L(n)) ={L|L = T(M) for some
m-xaca(k, L(n)) M},
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m-xUCA(k, L(n)) ={L|L = T(M) for some
m-xuca(k, L(n)) M},
m-xNCA(k, L(n)) ={L|L = T(M) for some
m-xnca(k, L(n))M},
m-xDCA(k, L(n)) ={L|L = T(M) for some
m-xdca(k, L(n)) M},
weak-1ACA(k, L(n), real)
= {L|L = T(M) for some
weak-laca(k, L(n))
M operating in realtime}, and
weak-1UCA(k, L(n), real)
= {L|L = T (M) for some
weak-luca(k, L(n))
M operating in realtime}.

An alternating Turing machine (aTm) we
consider in this paper has a read-only in-
put tape with the left endmarker ¢ and the
right endmarker $, and a storage tape. The
reader is referred to Refs.5), 6) for the for-
mal definition of aTm’s. We denote an aTm
with only universal states by uTm, a nonde-
terministic Turing machine by nTm, and a
deterministic Turing machine by dTm. For
any L : N - R and any y€{a,u,n,d}, we de-
note a weakly (strongly) L(n) space-bounded
one-way yTm by weak-1yTm (L(n)) (strong-
1yTm(L(n))), and we denote a weakly
(strongly) L(n) space-bounded two-way yTm
by weak-2yTm(L(n)) (strong-2yTm (L(n))).
(See Refs.6), 11), 12), 15), 16) for the defini-
tion of weakly (strongly) L(n) space-bounded
aTm’s.) For each me{weak, strong} and each
x€{1,2}, we define

m-xATM(L(n)) = {L|L = T (M) for some
m-xaTm(L(n))M},
m-xUTM(L(n)) = {L|L = T'(M) for some
m-xuTm(L(n))M},
m-xNTM(L(n)) = {L|L = T(M) for some
m-xnTm(L(n))M},and
m-xDTM(L(n)) = {L|L = T (M) for some
m-xdTm(L(n))M}.

The following lemmas can be easily proved.
Lemma 2.1. For each mé&{weak,strong},
each x€{1,2}, each Ye{A,U,N,D}, each k > 1,
and any function L : N — R,

m-xYCA(k,L(n)) C m-xYTM(log L(n)).*
However, we do not know whether or not
Ui <k<com-xYCA(k, L(n)) G m-xYTM(log L(n)).

It is shown in Ref.12) that for any func-

* From now on, logarithms are base 2.



Vol. 36 No. 12

tion L : N — R such that lim,_

[L(n)/loglogn] = 0,
weak-2ATM(L(n)) is the class of regular
sets.

From this fact and Lemma 2.1, we can show

that for any £ > 1, and any function L : N -+ R

such that lim,, [log L(n)/loglogn] = 0,
weak-2ACA(k, L(n)) is the class of regular
sets.

However, we do not know whether or not for

any k > 1, and any function L : N — R such

that lim,_,[L(n)/logn] = 0,
weak-2ACA(k, L(n)) is the class of regular
sets.

Lemma 2.2. For any mée{weak, strong}, any

xe{1,2}, any Ye{A,UN,D}, any k > 1, any

function L : N — R, and any constant c,

m-xYCA(k, cL(n}) = m-xYCA(k, L(n)).

3. Strong versus Weak Space-Bounds

In this section, we investigate a relationship
between the accepting powers of strongly and
weakly space-bounded 2amca’s and lamca’s.
This investigation is based on the results of Tur-
ing machines. Throughout this section, let

Ly = {a™b"|m # n}, and

Ly = {B(L)}B(2)1...§B(n)In = 2},
where for each positive integer ¢ > 1, B(¢) de-
notes the string in {0,1}* that represents the
integer 7 in binary notation (with no leading
Zeros).
Lemma 3.1.
(1) Ly € weak-1INTM(loglogn),
(2) L1 € weak-2DTM(loglogn), and
(3) L; ¢ strong-2ATM(L(n)) for any function
L : N — R such that lim, o [L(n)/logn] = 0.
Proof. (1), (2), and (3) are shown in Refs. 13),
14), and 10), respectively. m]
Lemma 3.2.
(1) Lo € weak-1UTM(loglogn), and
(2) Ly ¢ strong-1ATM(L(n)) for any function
L : N = R such that lim,, o [L(n)/logn] = 0.
The proof of (1): By using the technique
in Ref.5), we can easily construct a weak-
1IuTm(loglogn) which accepts L.
The proof of (2): It is shown in Ref. 11) that
for any function L : N — R such that lim,,_,,
[L(n)/logn] = 0, any strong-laTm(L(n)) M
can only accept a reguler set. On the other
hand, Ly is not reguler. From these facts, (2)
follows.
From Lemmas 3.1 and 3.2, we have the follow-
ing:
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Theorem 3.1. For any function L : N — R
such that lim, .. [L(n)/logn] = 0,
(1) weak-2DTM(loglogn)
— strong-2ATM(L(n)) # ¢,
(2) weak-INTM(loglogn)

— strong-2ATM(L(n)) # ¢, and
(3) weak-1UTM(loglogn)

— strong-1ATM(L{n)) # ¢.

Corollary 3.1. Let L : N — R be a func-
tion such that L{n) > loglogn and lim,_,
[L(n)/logn] = 0. Then,

(1) strong-2YTM(L(n)) ¢ weak-2YTM(L(n))
for each Ye{A,UN,D}, and

(2) strong-1YTM(L(n)) ¢ weak-1YTM(L(n))
for each Ye{A,UN}.

It is unknown whether or not strong-
IDTM(L(n)) ¢ weak-1DTM(L(n)) for any
function L : N — R such that L(n) > loglogn
and lim,_, 5 [L(n)/logn] = 0.

In correspondence to Theorem 3.1 and Corol-
lary 3.1, we investigate a relationship between
strong and weak space-bounds of lamca’s and
2amca’s. To do so, we need the following
lemma, which is shown in Ref. 15).

Lemma 3.3. For any integers m and n, if m #
n, then there exists an integer r < c¢xlog(m+n)
such that m # n (mod r), where c is a constant.
We first give two key lemmas.

Lemma 3.4.

(1) Ly € weak-2DCA(4,logn),

(2) Ly € weak-1NCA(3,logn), and

(3) L1 ¢ strong-2ACA(k, L(n)) for any k >
1, and any function L : N — R such that
limy,, [log L(n)/logn] = 0.

The proof of (1): We consider a 2dca(4) M
which acts as follows. Suppose that an input
string w = ¢a™b"$ is presented to M. (Input
strings in a form different from the above can
easily be rejected by M.) Based on Lemma 3.3,
M tries one by one each natural number to look
for 7 (< ¢ x log(m + n)) such that m # n
(mod ), by using the following algorithm. Let
C1,C5,C3 and C4 be the counters of M. We
denote by “z mod y” the remainder of z dev-
ided by y for any positive integers  and y. In
order to check that m # n (mod 7), M stores
zm mod mip ¢ and Z™ ™04 T ip Oy, Cy is used
in order to store Z”, and Cjs is used in order to
restore the contents of other counters. M first
sets r to two as the initial value, and starts the
algorithm by storing Z"(= Z2) in Cy.

(i) M stores Z" in C; and C3 by using Cj,

and restores Z” in Cy by using C3. Then,
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by using C; and C3, M calculates m mod
r while reading a™ of w, and stores Z™™
in C1, where r,, = m mod r.

(ii) In the same way as in (i) above, M stores
Z™ in Cy after reading b" of w, where
7 =n mod 7.

(iii) M checks whether 7, = r,. If 1y # 75,
then this algorithm completes success-
fully. Otherwise, M adds Z further in
Cy (i-e., 7 is incremented by one), moves
the input head to the left endmarker ¢,
and iterates (i)—(iii) until

(a) M finds out that r,, # r,, in

which case M accepts w, or
(b) M finds out that r > m, in which
case M rejects w.

From Lemma 3.3, it will be obvious that M is a
weakly clogn space-bounded 2dca(4) accepting
L;. From this and Lemma 2.2, (1) follows.
The proof of (2): We consider a 1nca(3) M
which acts as follows. Let C, Cs and C3 be the
counters of M. For a presented input string
w = ¢a™b"$, M existentially guesses some r,
stores Z” in C; and Cs, checks whether m # n
(mod 7) by using the algorithm in the proof of
(1) (using C5 to restore the contents of other
counters), and accepts w if m # n (mod 7).
Again from Lemma 3.3, it will be obvious that
M is a weakly clogn space-bounded 1lnca(3)
accepting L;. From this and Lemma 2.2, (2)
follows.
The proof of (3): (3) follows from Lemma 2.1
and Lemma 3.1 (3). o
Lemma 3.5.
(1) Ly € weak-1UCA(1,logn, real), and
(2) Ly € strong-2DCA(1,logn),
and for any k£ > 1, and any function L: N —- R
such that lim, . [log L{n)/logn] = 0,
(3) Lo ¢ weak-1NCA(k, L(n)), and
(4) Lo ¢ strong-1ACA(k, L(n)).
The proof of (1): L, is accepted by a realtime
weak-luca(l,logn) M which acts as follows. M
essentially uses the algorithm in Ref.5). Sup-
pose that an input string w = yifyefl ... fy,,
where each y; (1 < 4 < n) is in {1}{0,1}*,
is presented to M. (Input strings in different
form from the above can easily be rejected by
M .) By using universal branches and only one
counter, M can check in a way described below
whether y; = B(i) foreach i (1 <i<n). M
compares y; with y;41, and verifies that y;4q
represents in binary notation (with no leading
zeros) an integer which is one more than the in-
teger represented by y; in binary notation (with
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no leading zeros). In doing so, M will compare
the j-th symbol of y; and y;11, for all appropri-
ate j. Observe that if y;;; is one more than y;,
then (i) yi+1 = z10™ and y; = z01™, where z
is a string (starting with 1) over {0,1} and m is
some non-negative integer, or (ii) ;41 = 10™
and y; = 1™, where m is some positive integer.

Let C be the counter of M. For each j (1 <

J < lyil), M stores the symbol y;(7)* in its finite
control and Z7 in C just after it has read the
symbol y;(j), and makes a universal branch.

(a) In one branch, it compares y;(j) with the
symbol y;11(j) using Z7 stored in C, and
checks whether both the symbols satisfy
(i) or (ii) above. (It determines whether
they should be the same or not by scan-
ning the remaining symbols of y;. If they
are all 1, then y;(j) and ;41(5) should
not be the same; otherwise, y;(j) and
¥i+1(7) should be the same.)

(b) In another branch, it reads the next sym-
bol y;(5+1), stores it in the finite control,
and adds Z to C in order to store Z7+!
in C.

In this way, M can check that y;+; is one more
than y; (1 < i < n). It will be obvious that
if the input string w = y1fly2ff. .. fy, is such a
string that y; = B(3) for each ¢ (1 < ¢ < n)
(i.e., w € Ly), then the length of C is bounded
by logn. Furthermore, it is clear that M oper-
ates in realtime. Thus, M is desired machine
accepting Lo.

The proof of (2): L, is accepted by a strong-
2dca(l,logn) M which acts as follows. Sup-
pose that an input string described in the proof
of (1) is presented to M. As in the proof of
(1), for all the successive two strings y; and
Yi+1 in the input, M compares y; and y;41
symbol by symbol, and verifies that y;;; rep-
resents in binary notation an integer which is
one more than that represented by y; in bi-
nary notation. By using a technique similar to
that in the poof of (1), M checks by scanning
back and forth instead of performing universal
branch that the above holds. It is clear that for
any input w, M accepts or rejects w in a way
described above without exceeding more than
log |w| space. Therefore, M is strongly logn
space-bounded.

The proof of (3): It is shown in Ref. 11) that
L, is not in weak-1NTM(L(n)) for any function

* For each string w, w(i) denotes the i-th symbol
(from the left) of w.
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L : N — R such that lim,_,«[L(n)/logn] = 0.
(3) follows from this fact and Lemma 2.1.
The proof of (4): (4) follows from Lemma 3.2
(2) and Lemma 2.1. a
Theorem 3.2. For any £ > 1, and any
function L : N — R such that lim,_
llog L(n)/ log ] = 0,
(1) weak-2DCA(4,logn)
— strong-2ACA(k, L(n)) # ¢,
(2) weak-1NCA(3,logn)
— strong-2ACA(k, L(n)) # ¢, and
(3) weak-1UCA(1,logn, real)
— strong-1ACA(k, L(n)) # ¢.
Proof. (1) follows from Lemma 3.4 (1) and (3).
(2) follows from Lemma 3.4 (2) and (3). And,
(3) follows from Lemma 3.5 (1) and (4). O
Corollary 3.2. Let L : N — R be any
function such that L(n) > logn and lim,
[log L(n)/logn] = 0. Then,
(1) strong-2YCA(k, L(n))
G weak-2YCA(k, L(n)) for each YE{A,U,D}
and each k > 4,
(2) strong-1YCA(k, L(n))
G weak-1YCA(k, L(n)) for each Y€{A,U}
and each k > 1, and
(3) strong-XNCA(k, L(n))
G weak-XNCA(k, L(n)) for each X€{1,2}
and each k > 3.
It is unknown whether or not strong-
1DCA(k, L(n)) G weak-1DCA(k, L(n)) for each
k > 1, and any function L : N — R such that
L(n) > logn and lim,,, «[log L(n)/logn] = 0.

4. One-Way versus Two-Way

This section investigates a relationship be-
tween one-way and two-way alternating multi-
counter automata with small space. It is shown
in Refs. 5), 6) that for any function L : N - R
such that lim, . [L(n)/logn] = 0,

weak-2UTM(log logn)
—weak-1UTM(L(n)) # ¢
weak-2ATM (loglogn)
—weak-1ATM(L(n)) # ¢, and
weak-2DTM(loglog n)
~weak-1INTM(L(n)) # ¢.
In correspondence to this result, we can show
several results for multi-counter automata.
Lemma 4.1. Let Ly = {B(1)§B(2){...4B(n)
2wewicwse...cwn > 2 & v > 1 & w €
{0,1}Mos 71 &vi(1 < i < 7)[w; € {0,1}]&3
J(1 £ j < r){w=w,;]}. Then,
(1) L3 € strong-2ACA(1,logn), and
(2) Ly ¢ weak-1ACA(k,L(n)) for any k > 1,
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and any function L : N — R such that lim,,_,
[log L(n)/logn] = 0.
The proof of (1): One can construct a strong-
2aca(l,logn) M accepting L; which acts as fol-
lows. Suppose that an input string

z = ¢yifyall - . - fyn2wewscwqe. . . cw,$
(where n > 2, r > 1, and y;’s, w and wj’s are
all in {0,1}") is presented to M. (Input strings
in different form from the above can easily be
rejected by M.)

In the first phase, M checks that y; = B(7)
for each 7 (1 < ¢ < n). This can be done deter-
ministically as in the proof of Lemma 3.5 (2).

Note that just after M successfully completes
the above check, it has already stored Z[ognl
in its counter, where [logn] corresponds to the
length of y,, (= B(n)).

If M successfully completes the first phase,
then it checks in one universal branch (by using
781 stored in its counter) that |w| = [logn].
In another universal branch, M existentially
guesses some j (1 < j < 7), proceeds the in-
put head to the first symbol of w;, and checks
that w = w;. The check of “w = w;” can eas-
ily be done by first checking that |w;| = [logn]
and then universally checking that w; (%) = w(3)
for each 1 < ¢ < |w| = |w;| = [logn]. (For this
check, log n space is sufficient.)

The proof of (2): It is shown in Ref.6) that
L3 is not inweak-1ATM(L(n)) for any function
L: N — R such that lim,_,[L(n)/logn] = 0.
From this result and Lemma 2.1, (2) follows. O
Lemma 4.2. Let Ly = {B(l)ﬂB(Z)q .4B(n)
2wew'|n > 2 & (w,w' € {0,1}18"]) & w £

w'}. Then,

(1) L4 € strong-2DCA(1,logn), and

(2) Ly ¢ weak-1UCA(k,L(n)) for any k > 1,
and any function L : N — R such that lim,,_, o
[log L(n)/ logn] = 0.

The proof of (1): L, is accepted by a strong-
2dca(1,logn) M which acts as follows. Suppose
that an input string = ¢y1fiyal . . . fyn2wcw’'$
(where n > 2, and y;’s, w and w' are all in
{0,1}7) is presented to M. As in the proof of
Lemma 3.5 (2), M can check that y; = B(7)
for each i (1 < i < n), and store ZM°s"1 i
one counter. M then checks by using Z[og"l
in its counter that |w| = |w'| = [logn]. After
that, to check that w # w’, M compares the
corresponding symbols in w and:w’ by moving
its input head back and forth.

The proof of (2): It is shown in Ref.5) that
L, ¢ weak-1UTM(L(n)) for any function L :
N — R such that lim,_,.[L(n)/logn] =
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From this result and Lemma 2.1, (2) follows. O
Theorem 4.1. For any £k > 1, and any
function L : N -+ R such that lim,_
[log L(n)/logn} = 0,
(1) strong-2ACA(1,logn)

— weak-1ACA(k, L(n)) # ¢,
(2) strong-2DCA(1,logn)

- weak-1UCA(k, L(n)) # ¢,
(3) strong-2DCA(1,logn)

— weak-1NCA(k, L(n)) # ¢, and
(4) strong-2DCA(1,logn)

— strong-1ACA(k,L(n)) # ¢.
Proof. (1) follows from Lemma 4.1. (2) follows
from Lemma 4.2. (3) follows from Lemma 3.5
(2) and (3). (4) follows from Lemma 3.5 (2)

and (4). mi
From this theorem, we have the following corol-
lary.

Corollary 4.1. Let L : N — R be a function
such that L(n) > logn and lim,_,[log L(n)/
logn] = 0. For each me&{strong, weak}, each
Ye{A,UND}, and each k > 1,
m-1YCA(k, L(n))G m-2YCA(k, L(n)).
It is essentially shown in Ref. 2) that for any

function L : N — R such that L(n) > logn,

strong-2ATM(L(n))

= strong-1ATM(L(n)), and

weak-2ATM(L(n)) = weak-1ATM(L(n)).

By using the same idea as in the proof of this

result, we can prove the following theorem.

Theorem 4.2. For each k > 1, and each func-

tion L : N = R such that L(n) > n,

(1) strong-2ACA(k, L(n)) C strong-1ACA(k +

1,L{n)), and

(2) weak-2ACA(k,L(n)) C weak-1ACA(k +

1, L(n)).

Proof. Let M be any strong-2aca(k,L(n))

(resp., weak-2aca(k, L(n))) for any k > 1, and

any function L : N — R such that L(n) > n.

We can construct a strong-laca(k + 1,L(n))

(resp., weak-laca(k + 1, L(n))) M’ which sim-

ulates M step by step as follows. In order to

simulate the reading of an input symbol, M’

maintains a count of the input head position of

M on its extra counter. When M reads an in-

put symbol, M’ guesses the symbol using an ex-

istential state and then enters a 'universal state
to choose one of two further actions:

(i)  one action is to continue the simulation
of M. During the simulation, if M en-
ters an accepting state, then M’ enters
an accepting state.

(i)  the other action is to check that the sym-
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bol guessed is actually in the input posi-
tion indicated by the count. This action
is the only time the input head of M’
moves and it can do so one-way. ]
Unfortunately it is not known whether or not

strong-2ACA(k, L(n))

= strong-1ACA(k, L(n)),
weak-2ACA(k, L(n))

= weak-1ACA(k, L(n)),
strong-2ACA(k, L(n))

G strong-1ACA(k + 1, L(n)), and
weak-2ACA(k, L(n))

G weak-1ACA(k + 1, L(n))

for each k > 1, and each function L : N - R
such that L(n) > n.

5. A Relationship among Determin-
ism, Nondeterminism, and Full Al-
ternation

This section investigates a relationship
among the accepting powers of lamca’s and
2amca’s with only universal states, with only
existential states and with full alternation.

It is shown in Ref.6) that for each Ye
{U,N,D}, and any function L : N — R such
that lim,_,[L(n)/logn] = 0,

weak-1ATM(loglogn)
~weak-2YTM(L(n)) # ¢.

The following theorem corresponds to this re-
sult.

Theorem 5.1. For each Ye{U,ND}, each
k > 1, and any function L : N — R such that
lim,_, o [log L(n)/logn] = 0,

(1) weak-1ACA(1,logn, real)

— weak-2YCA(k, L(n)) # ¢, and
(2) strong-2ACA(1,logn)

— weak-2YCA(k,L(n)) # ¢.

Proof. Let Ls = {B(1){B(2)t...4B(n)

cwicwac...cw2wn > 2 & 1 > 1 & w €

{0,1}Mloen]l & Vi1 < i < 7w €

{0,1} g1} & 3j(1 < j < r)w = w,]}. To

prove this theorem, we show that

(i)  Ls € weak-1ACA(1,logn, real),

(ii) Ls € strong-2ACA(1,logn), and

(iii) Ls ¢ weak-2YCA(k,L(n)) for each
Ye{U\N,D}, each k£ > 1, and any func-
tion L : N — R such that lim,_, o
[log L(n)/logn] = 0.

(1): A weak-laca(l,logn) M which operates

in realtime can accept Ls as follows. Suppose

that an input ¢y iyt - . . fyncwicwse. .. cw,2w$
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(where n > 2, r > 1, and ¥;’s, w and w;’s are
allin {0,1}%) is presented to M. M first makes
a universal branch. In one branch, M existen-
tially guesses some 7 (1 < j < 7), and univer-
sally checks that w; = w. This check is easily
done with the length of the counter bounded
by |w;|. In another branch, M checks by using
the same idea as in the proof of Lemma 3.5 (1)
whether y; = B(d) foreach i (1 <i<n). f M
successfully completes this check, then it can
store Z[1°€71 in its counter. After this success-
ful check, M universally checks by using Z 0871
in its counter that |wy| = lws| = ... = |w,| =
|w| = [logn]. It will be obvious that M accepts
Ls.
(ii): The proof is similar to that of (1) of Lemma
4.1 in this paper, and so it is omitted here.
(iii): Tt is shown in Ref.6) that Ls is
not in weak-2YTM(L(n)) for each Ye{UN,
D}, and any function L : N — R such that
lim,—oo|L(n)/logn] = 0. It follows from
this and Lemma 2.1 that Ls is not in weak-
2YCA(k,L(n)) for each Ye{U,N,D}, each k >
1, and any function L : N — R such that
lim,, 00 [log L(n)/ log n] = 0. a
Corollary 5.1. For each me{weak, strong},
YE{UND} each k& > 1, and any function
L : N — R such that L(n) > logn and
lim,,, os[log L(n)/ logn] = 0,
(1) weak-1YCA(k, L(n))
weak-1ACA{k, L(n)), and

(2) m-2YCA(k, L(n)) G m-2ACA(k, L(n)).
From Lemma 3.5 (1) and (3), we have the fol-
lowing results.
Theorem 5.2.
function L. : N — R such that lim,_,
[log L(n)/logn] = 0,

weak-1UCA(1,log n, real)

—weak-1NCA(k, L(n)) # ¢.

Corollary 5.2. For each k£ > 1, and any func-
tion L : N — R such that L(n) > logn and
lim,—y o0 [log L(n)/ log n] = 0,

weak-1UCA(k, L(n))

—weak-1INCA(k, L(n)) # ¢.

For each k& > 1, and any

6. A Relationship between Multi-
Counter and Multi-Head

In this section, we investigate a relationship
between two-way alternating multi-counter and
multi-head finite automata. For formal defini-
tions of multi-head finite automata, the reader
is referred to Refs.19), 20). For each k > 1,
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a two-way alternating k-head finite automaton
(2afa(k)) is defined as usual.® For each k > 1,
a two-way alternating simple k-head finite au-
tomaton (2asfa(k)) is a 2afa(k) with the restric-
tion that one head (called the “reading head”)
can sense input symbols and move in two direc-
tions while the other (k — 1) heads (called the
“counting heads”) can only detect the left end-
marker “¢” and the right endmarker “$” and
move in two directions. Let 2AFA(k) (resp.,
2ASFA(k)) denote the class of sets accepted by
2afa(k)’s (resp., 2asfa(k)’s). The following is
shown in Ref. 4).
Lemma 6.1. For each &k > 1,

2AFA (k)=2ASFA (k). ‘
It is shown in Ref. 3) that the following lemma,
holds.
Lemma 6.2. For each k > 1,

2AFA(k) C 2AFA(k +1).

We now show the main result in this section.
Theorem 6.1. For each k > 1,
weak-2ACA(k,n) = 2AFA(k + 1).
Proof. From Lemma 6.1, it is sufficient to show
that
weak-2ACA(k,n) C 2ASFA(k + 1)
C weak-2ACA(k,n).

We first show that weak-2ACA(k,n) C
2ASFA(k + 1) for each £k > 1. For any
weak-2aca(k,n) M;, we can construct a
2asfa(k + 1) M, simulating M; as follows. Let
C1,Cs,...,Cy be the counters of M; and H be
the input head of M;. Let Hy, Hs,...,H be
the counting heads of M, and Hj, be the read-
ing head of My. In order for Ms to simulate My,
M has only to use Hy1 to simulate H, and use
the distance of H; from the left endmarker ¢ to
store the contents of C; for each ¢ (1 <7 < k).
During the simulation, if one of the counting
heads of M, reaches the right endmarker $, then
M, is forced. to enter a rejecting state. Noting
that M; is weakly n space-bounded, it will be
obvious that M, accepts T'(My).

We then show that 2ASFA(k + 1) C weak-
2ACA(k,n) for each k& > 1. For any 2asfa(k +
1) M3, we can construct a weak-2aca(k,n) My
simulating M3 as follows. Let Hy, Hs,..., Hy
be the counting heads of M3 and Hy.; be the
reading head of M3. Let C;,Cs,...,Cy be the
counters of M, and H be the input head of
My. My uses H to simulate Hp.q, and uses
C; to simulate H; for each ¢ (1 <7 < k). Of
cource, when H; is at the left endmarker ¢, C;
is empty. Whenever M3 moves H; (1 <i < k)
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to the right, M, enters an existential state to
choose one of the following two actions.

(i) One action is to increment C; by one and
then simulate the action of M3 when H;
is not at the right endmarker $.

(ii) Another action is to enter a universal
state to choose one of the following two
actions.

{a) One action is to unchange the con-
tents of C; and then simulate the
action of M3 when H, is at $.

(b) Another action is to check that C;
now stores the length of the input
(i.e., to check that H; will reach $
by moving one cell to right).

It will be obvious that M} is a weakly n space-
bounded machine accepting T'(M3). This com-
pletes the proof of the theorem. m]

7. Hierarchy Results Based on the
Number of Counters

It is shown in Ref.8) that for each k¥ > 1,
there is a set accepted by a 1luca(k+1) operating
in realtime, but not accepted by any laca(k)
operating in realtime. The main purpose of this
section is to show that for each k > 1,

weak-1UCA(k + 1,logn, real)
—weak-1ACA(k,logn) # ¢.
To prove the result, we first give some necessary
definitions. Let M be a weak-laca(k,logn),
k > 1, and X be the input alphabet of M. For
each storage state s of M and for each w € £F,
let an s-computation tree of M on w is a compu-
tation tree of M whose root is labeled with the
ID (w,1,s).: (That is, an s-computation tree of
M on w is a computation tree which represents
a computation of M on w$ starting with the in-
put head on the leftmost position of w and with
the storage state s.) An s-accepting computa-
tion tree of M on w is an s-computation tree
of M on w whose leaves are all labeled with
accepting ID’s.

For each n > 2 and for integers ay,as,...,a;
such that 0 < a; < Jlogn] (1 < i <
k), let f.lag,ax—1,...,a1) denote the inte-
ger represented by ([logn] + 1)-ary number
Ar0g_1 ... aza;. That is,

fn(ak7a’k~17‘ .. Ja‘l)
= ay, x ([logn] + 1)1 + ap_; x ([logn]
+1)72 + ..+ ay x ([logn] +1)°.

The following lemma leads to our main re-
sults.
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Lemma 7.1. For each k£ > 1, let

L(k) = {B(L§B(2} ... tB(n)fa" fa"s4 .. par

h(logn, m1)h(logn, ma)f . .. fh(logn, m.)|n

2& 7 > 1 &Vi(l < i < K0 < s

[logn]] & Vj(1 < j < r)jm; > 1 & m;

fn([logn] — sg,[logn] — sg_1,..., [logn]

s1)]}, where h(logn,m) = (Oy°8"1)™  Then,

for each k > 1,

(1) L(k) € weak-1UCA(k,logn, real),

and for each k& > 2,

(2) L(k) ¢ weak-1ACA(k — 1,logn).

The proof of (1): L(k) is accepted by a weak-

luca(k,logn) M (operating in realtime) which

acts as follows. Let Cy,Cs,...,C; be the coun-
ters of M and H be the input head of M. Sup-
pose that an input string
w = yityel . .. fynlia® e’y . . . fa° jOh™110
b2 . OpT i 072102 L L Qe me
... 4op"0p"2 ... 0p"rmr §

(where n > 2, r > 1, y; € {0,1}*", ny; > 1,

m; > 1) is presented to M. (Input strings in a

form different from the above can easily be re-

jected by M.) M universally branches to check
the follwing three points:

(i)  whether y; = B(i) for each i (1 < i < n),

(il  whether n;; = [logn] for every segment
h™, and ‘

(ili) whether 0 < s; < [logn] for each i
(1 < i< k), and my # fo([logn] —
sk, [logn] — sp—1,...,[logn] — s;) for
eachj (1<j<r).

(i) above can be checked as in the proof of

Lemma 3.5 (1), by using one counter and uni-

versally branches. (ii) above can be checked as

follows. Assuming that (1? above is successfully
checked, M can store Z/°¢71 in one counter.

By using Z 9871 stored in one counter, M can

universally check whether n;; = [logn] for all

i,J. Assuming that (i) and (ii) above is suc-

cessfully checked, (iii) above can be checked by

using the following algorithm.

(a) While reading the initial segment
yillyat .. . fyn, M stores ZM°871 in each of k
counters Cy,Csy,...,Ck. After that, for each
i (1 <@ < k), while reading the segment a*,
M erases Z% in C,;. (During this action, M
can check whether 0 < s; < [logn] for each
i, 1 <1 < k.) Thus, after reading the segment
yifyal - . - funfa®i a2t . . fa*y, o = Zlosnl—si
for each 1 < 7 < k, where a; denotes the con-
tents of C;, and so fr(|ag|, |ek-1],...,|o1]) =
fa([logn] ~ s, Mlogn] —si._1,..., [logn] — s1).

(b) Assuming that (i) and (ii) above are
successfully checked (i.e., y; = B(I) for all I,

I NV
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and n;; = [logn] for all 4, j), after reading
the segment y;fjyef - . . fy.fa* fa®2f.. fa’*f, M
universally branches to check whether m; #
fal —1lsy-.vy|oa]) foreach 5 (1 < j < 7).
To check whether m; # fo(log|,log-1],...,
laa]), M decrements fr(lok|, |ar-1],...,a1])
by one each time A meets the symbol “0” in the
substring 0f?10f™2 ... 0" ™ (é u;). In order
to do so, M decrements a; by one each time
H meets the symbol 0. In this case, for exam-
ple, if |a;] = O when H meets the g-th 0 from
the left in u;, then M decrements a,, (where
m is the smallest integer such that |a,,| # 0)
by one instead of decrementing a; by one, and
M sets a1 = ap = ... = @y = Z8"1 by
using the (assumed) length [logn] of §™!’s in
u; (note that we assume that n;; = [logn]
for each 1 < ! < m;). M enters an accept-
ing state only if H meets the last “0” in u;
with |a;| # 0 for some 1 < ¢ < k (i.e., fo(Joxl,
|ag—1],---,]ea]) # 0) or H meets 0 in u; after
lar] = |az| = ... = |ag| = 0). It will be obvious
that M accepts L(k).
The proof of (2): Suppose that there exists a
weak-laca(k — 1,logn) M which accepts L(k).
For each n > 2, let
Vin) = {B()i...4B(n)fa"}... fa**fh(log
si < [logn]] &Yi(1 < j < g(m)[0 < m,
g)] & VI(1 <1 < q(n)))[mz # fa(flogn]
sk, [logn] — sg-1,...,[logn] — s1)]} C L(k
where
g(n) = ([logn] +1)* — 1, and let
W (n) = {h(log n, my)h(log n,ms)i ... th(log n,
my)IVi(1 < i < g(n)[1 < mi < g(n)]}.
Note that for each
x = B()f...1B(n)fa®}f. ..
§...th(logn, mg(n))
in V(n),
() lof < cnflogn] (2
stant ¢, and
(ii) there exists an accepting computation
tree t of M on x such that for each node
m of t, the length of each counter in £(7)
is bounded by log r(n).
For each storage state s of M and for each y
in W(n), let
My(s)
=1 if there exists an s-accepting computation
tree ¢ of M on y such that for each node 7
of ¢, the length of each counter in £(r) is
bounded by logr(n),
=0 otherwise.

lo
[0

n,
<
<
)s

fas*fh(logn,m;)

r(n)) for some con-
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For any two strings y, z in W(n), we say that
y and z are M-equivalent if My(s) = M,(s)
for each storage state s = (q, (04, ...,a5-1)) of
M with 0 < |a;] € logr(n) 1 <i < k-1).
Clearly, M-equivalence is equivalence relation
on strings in W(n), and there are at most

e(n) = 2p(losr(n)*™"

M-equivalence classes, where p is a constant
depending only on M. We denote these M-
equivalence classes by Ci,Cs,...,Ce(n). For
each
Y= h(logna ml)ﬁh(logna mZ)
ﬁ .. ﬂh(log n, mg(n))

in W(n), let b(y) = {m|3i(1 <
m;]}. Furthermore, for each n
{b(y)ly € W(n)}. Then,

R(n )l—( g(n ))+(g(2n))
+...+(9(";):29<”)—1.

g(n

We can easily see that loge(n) = O([logn]*~1)
and log |R(n)| = O([logn]*).* Thus, we have
|R(n)| > e(n) for large n. For such n, there
must be some Q, @ (Q # Q') in R(n) and
some C; (1 <¢ < e(n)) such that the following
statement holds:

“There are two strings y, 2 € W(n) such that
(a) b(y) = Q@ # Q' = b(2), and (b) y, 2 € C;
(i.e., y and z are M-equivalent).”

Because of (a), we can, without loss of gener-
ality, assume that there is some positive integer
m such that 1 < m < g(n) and m € b(y) — b(2).
Clearly, there are some sy, $2,..., S such that
m = fp([logn] — s, ..., [logn] — s1), and for
such s; (1 <1< k), it follows that

i< (n))[m =
Z 2 =

dZU' =B(1)f...§B(n)fa" 4. .. fa** ty ¢ L(k),
an
2'=B(1)}...tB(n)fa’ .. . fa** §z € L(k).

But because of (b), 3’ is accepted by M iff 2’ is
accepted by M, which is a contradiction. This
completes the proof of (2). O
We are now ready to have our main result.
Theorem 7.1. For each k£ > 1,

weak-1UCA(k + 1, logn, real)

—weak-1ACA(k,logn) # ¢.

Corollary 7.1. For each k > 1 and each
Ye{A,U},

* For any set S, S| denotes the number of elements
of S.
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weak-1YCA(k,logn)

Gweak-1YCA(k + 1,logn).
Unfortunately, it is unknown whether or
not weak-1YCA(k + 1,logn,real) — weak-
1ACA(k,logn) # ¢ for each k > 1 and each
Ye{N,D}.

For linear space-bounds, we can show two re-
sults as follows.
Corollary 7.2. For each £ > 1, and any con-
stant ¢ > 0,
weak-2ACA(k, cn)

Gweak-2ACA(k +1,cn).

Proof. The corollary follows from Lemma, 6.2,
Theorem 6.1 and Lemma, 2.2. O
Corollary 7.3. For each k¥ > 1, and any con-
stant ¢ > 0,

weak-1ACA(k,cn)

Cweak-1ACA(k + 2, cn).

Proof. From Corollary 7.2, Theorem 4.2 and
Lemma 2.2, it follows that weak-1ACA(k,cn)
= weak-1ACA(k,n) C weak-2ACA(k,n) ¢
weak-2ACA(k + 1,n) C weak-1ACA(k + 2,n)
= weak-1ACA(k + 2,cn). O

8. Conclusion

In this paper, we presented several hierarchi-
cal results in the accepting powers of lamca’s
and 2amca’s with small space. We conclude
this paper by listing up some interesting open
problems.

(1) Let L : N — R be a function such that
L(n) > logn and lim,, «[log L(n)/logn] = 0.

o strong-1DCA(k, L(n)) G weak-1DCA(k, L
(n)) for each k > 17

o strong-xNCA(k, L(n)) G weak-xNCA(k, L
(n)) for each x€{1,2} and each k = 1,27

o strong-2YCA(k, L(n)) ¢ weak-2YCA(k,
L(n)) for each Ye{A,UD} and each k¥ (1 <
kE<3)?

o Is strong-2NCA(k,L(n)) (resp., weak-

2NCA(k,L(n))) incomparable with strong-

2UCA(k,L(n)) (resp., weak-2UCA(k,L(n)))
for each k > 17
o Is weak-1NCA(k, L(n)) incomparable with
weak-1UCA(k, L(n)) for each k > 17
(2) Let L : N — R be a function such
that lim, o [log L(n)/logn] = 0. For each
Ye{UN,D} and each k > 1,
strong-2YCA(1,logn) — weak-1ACA(k,L
(n)) # 67
(3) Let L : N — R be a function such that
L(n) > n. For each mé&{strong,weak} and
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each k > 1,

o m-2ACA(k, L(n)) = m-1ACA(k, L(n))?

e m-2ACA(k, L(n)) ¢ m-1ACA(k + 1, L(n))?
(4) Let L : N — R be a function such that
lim, 00 [L(n)/n] = 0.

Is strong-1ACA(k, L(n)) the class of regular
sets for each k > 17
(5) Let L : N — R be a function such that
limpeo[L(n)/logn] = 0.

Is weak-2ACA(k, L(n)) the class of regular
sets for each k > 17
(6) For each Ye{N,D} and each k > 1,

weak-1YCA(k + 1,log n, real) — weak-1ACA
(k,logn) # ¢7
(7) For each Ye€{A,UND}, each £ > 1,
and any function L : N — R such that
limp, oo [L(n)/n] = 0,

strong-1YCA(k+1,logn) —weak-1ACA(k, L
(n)) # ¢7, and
(8) For each me&{strong,weak}, each k > 1,
and any constant ¢ > 0,

m-1ACA(k,cn) ¢ m-1ACA(k + 1,¢n)?
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