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An Improved Increase over the Minimum Execution Time

of a Parallel Program

DINGCHAO LI,t YuJ1 IWAHORI' and NAOHIRO ISHII'

In this paper we are concerned with lower bounds on the minimum time required to execute
a parallel program on a homogeneous multiprocessor. We present an increase analysis method
to tighten the existing lower bounds, using the results we have presented elsewhere. The new
method is based on the propagation analysis of time delays along the critical paths of a given
program. An illustrative example and theoretical analysis are provided to demonstrate the

effectiveness of the proposed technique.

1. Introduction

The goal of multiprocessor scheduling is to
spread the load to all processors as evenly as
possible in order to make processors work effi-
ciently, which will lead to shorter overall pro-
cessing time. Depending on when the schedul-
ing is donme, scheduling strategies can be di-
vided into two major classes: static and dy-
namic. Since the dynamic scheduling needs
the hardware to check for dependences among
instructions and build sophisticated heuristics
in the hardware to select independent instruc-
tions, some current machines are designed with
the requirement that instructions are sched-
uled at compile time using only static informa-
tion. The VLIW (Very Long Instruction Word)
architecture!) is one of the most successful ex-
amples.

However, although a static scheme is benefi-
cial, finding the best schedule at compiler time
is extremely complex and is known to be NP-
hard in the strong sense?). As a result, consid-
erable research in the area has to concentrate
on the development of efficient heuristic algo-
rithms. These heuristics yield good solutions
within polynomial time for restricted classes of
systems and applications®) =), but do not guar-
antee optimality. This naturally brings up the
problem of how to evaluate their performance.
To solve this problem, Adam et al. quantified
the differences in five different list scheduling al-
gorithms by running them on a large number of
sample problems®), and Khan et al. compared
the relative performance of several promising
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scheduling techniques in the same way*). How-
ever, it is in general very difficult for this ap-
proach to indicate the goodness of the schedules
in terms of how close they come to an opti-
mum solution. This is because the exhaustive
search for optimum solutions is usually imprac-
tical and prohibitively expensive®)11):14) espe-
cially when programs are large and complex.
An alternative theoretical approach for over-
coming the difficulty is to evaluate them using
lower bounds on the minimum time (the length
of optimal schedules) as absolute performance
measures 3)10)=15) Therefore, for this reason
the development of tight lower time bounds has
become an important research direction in mul-
tiprocessor scheduling theory.

Another very good reason for the develop-
ment is that the bounds are particularly use-
ful in the branch-and-bound algorithms, where
they are used by one of the elimination rules to
prune the search tree. For example, Kasahara
and Narita developed a depth first/implicit
heuristic search algorithm (DF/IHS) based on
the branch-and-bound method and the criti-
cal path method”), and Chen et al. proposed a
state-space search algorithm (A*) coupled with
a heuristic derived from the Fernandez and Bus-
sell bound to solve the multiprocessor schedul-
ing problem®. The efficiency of such algo-
rithms clearly depends on the “sharpness” of
the bounds incorporated in them, and hence
tight lower time bounds is essential in order to
effectively guide the search for a near-optimal
solution®.

This paper addresses the problem of find-
ing lower time bounds for homogeneous mul-
tiprocessor optimal schedules. The best
bound known today is due to Fernandez and
Bussell’®). Using the basic concepts described
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in this bound, Al-Mouhamed presented a lower
time bound for the case where communication
time between tasks is not negligible compared
to the task execution time!!), and Li et al. pre-
sented lower time bounds for precedence graphs
with different types of tasks on the assump-
tion that communication time between tasks is
negligible or not'?):13)_ In this paper, we at-
tempt to provide a new theoretical framework
for tightening the existing bounds. More specif-
ically, we will present improvements over the in-
crease computation method suggested by Fer-
nandez and Bussell, using some results of the
earlier studies!?)14). The key idea behind our
method is to analyze the propagation delays as-
sociated with tasks on the critical paths of a
given program. Delaying such tasks is equiva-
lent to lengthening the total program’s execu-
tion time. Therefore, the analysis result nat-
urally leads to an increase over the minimum
execution time of the program, which is always
sharper than the known value.

The rest of this paper is organized as follows.
The next section starts with some preliminary
definitions and assumptions about the underly-
ing model. Section 3 briefly describes the exist-
ing increase analysis methods, and then shows
how to improve them to obtain a sharper in-
crease over the minimum execution time. Sec-
tion 4 analyzes the theoretical performance of
the method proposed in this paper. It also pro-
vides an example to illustrate how the method
is applied to compute the increase. And finally,
Section 5 contains our conclusions.

2. Definitions and Assumptions

The basis of our program model is the tradi-
tional task graph, as shown in Ref. 10). To es-
tablish a starting place for more realistic lower
bound computations, in this paper we neglect
message communication costs among tasks. A
task graph without communication costs is gen-
erally defined to be a finite directed acyclic
graph G(I', A,p) with a finite nonempty set
I' of vertices, a finite set 4 of directed arcs
and a time function u. The vertex set [ =
{Th,T,---,T,} consists of n tasks, each of
which is an indivisible unit of computation and
is executed on a machine P with m identical
processors. The arc (T;,T;) € A defines the de-
pendence constraint (partial ordering) between
tasks T; and Tj; i.e., it implies that the execu-
tion of T; must be completed before the execu-
tion of T; can be started. Associated with each

task T; is a nonnegative number u(T;) which
represents the required execution time of the
task on any of the m processors.

If there exists an arc (or a path) from T; to T}
in a graph G, we will say that T; is a predecessor
of T}, and Tj is a successor of T;. For conve-
nience, throughout this paper we use Pred(T;)
to represent the set of predecessors of T}, and
Sucec(T;) to represent the set of successors of 7.
Let an entry task be one with no predecessors,
and an exit task be one with no successors. We
assume without loss of generality that G has
exactly one entry task T) and exactly one exit
task T,,. Thus, a critical path in the graph can
be defined to be the longest path from 7} to
T’,. Denote by t., the length of a critical path,
which is just the sum of all the task execution
times along the path. Obviously, t., represents
the minimum time required for the execution of
the graph; i.e., the execution time below ¢, for
the graph is not possible, even with unlimited
numbers of processors.

A task graph as described above provides a
convenient abstraction of a parallel program.
To accommodate the deterministic scheduling
approach, we further consider like most previ-
ous work that it is a deterministic model; i.e.,
the task execution times and the dependence re-
lationships in G are known with certainty in ad-
vance and remain unchanged during execution.
In addition, we make the following common as-
sumptions concerning the execution behavior of
any single task in the graph: (1) a task requires
only one processor, and (2) once a task starts
its execution, it can run to completion without
interruption.

Based on the above definitions and assump-
tions, now we can proceed to show the general
form of the lower time bounds, which is defined
to be a function of the target machine architec-
ture and program characteristics.

Definition 1: Let A(P,G) represent an in-
crease over the minimum execution time of a
graph G when the number of processors in a
machine P is not enough to cope with the par-
allelism inherent in the graph. Then, a lower
bound, denoted as LBy;(P,G), on the mini-
mum time required to execute G on P is given
by

LBtinLe(P1 G) =tcp + A(P,G)

It is easy to see from the definition that the
problem we need to solve in this paper is how
to sharpen the increase A(P,G) such that the
bound LBy;me(P,G) is maximized. Next, we
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introduce two definitions which are used in the
increase computation.

Definition 2: Let 7.,(7;) be the earliest
starting time of 7;, which indicates the least
time in which T; can be started due to the de-
pendence constraints of G. Then, 7¢,(T1) is de-
fined to be 0, and 7.,(7;) for all the tasks T,

(i =2,3,---,n) is recursively defined as follows.
es(T;) = s(T; T)}.
Tes(T3) (TJIPT?‘i(E.A{Te ( ]) + p( ])}

Definition 3: Let 7,,(7;) be the latest
starting time of T}, which indicates how long
the starting of T; can be delayed without in-
creasing t.,. Then, 7,(Ty) is defined to be
tep — p(Ty), and 7i5(T;) for all the tasks T;
(i =n—1,mn—2--,1) is recursively defined
as follows.

71s(T;) = min

(Tth)eA{Tzs(Tj) - uw(T)}-

3. Increase Computation

This section discusses several techniques for
estimating the increase over the minimum ex-
ecution time of a given task graph. We start
with a brief review of basic concepts used to
calculate an increase A(P,G), and follow with
a discussion of the implementation variations
on the increase computation. The end goal is to
present an improvement over the existing meth-
ods so as to obtain an increase sharper than the
known value.

3.1 Fundamental Approach

Assume that task T; (€ I') starts for its exe-
cution at time 7(7T}) and ends at time 7(T3) +
p(T;). The activity of T; along time, according
to the constraints imposed by G, can be defined
as

_ [ 1 te[r(T),(Ti) + (T
H(Tit) = { 0 otherwise.

Thus the total activity of G at time t is simply
the sum of all the task activities of I" at this
time, and it will be represented as a load density
function:

F(t)= Y f(Ti,1).

T;el’

Now let us move tasks without making the ex-
ecution time of G exceed t.,, so that they have a
minimum possible overlap within a given inter-
val [0;,602) C [0,¢cp). Alsolet F(6;,62,t) denote
the load density function of the tasks or parts
of tasks remaining within this interval after all
the tasks have been shifted. The minimum load
of the graph within [6;,6-] is then the function
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which is defined as

02
@(91,92) = / F(91,92,t)dt
01

Consider the minimum load and the effective
activity m(f2 — 6;) that can be executed with
m processors. Obviously, their difference, di-
vided by m, indicates an increase in time over
t.p. Denote by 8(61,0,) the increase. Mathe-
matically,

6(01,02) = [-2(6:,62) — (62 = 60)] (1)
where [ ] represents the minimum integer
greater than the value of this expression. By
evaluating the increase for every interval in
[0,t.p], we can thus have the following equation.

A(P,G) = Osolné%fgtc,, 0(61,62). (2)

3.2 Bag Intersections

Fernandez and Bussell gave a method to eval-
uate the minimum load ®(6,,6:), based on the
theory of “bags”. A bag is defined to be a set
where repeated elements are accepted, and it is
constructed in such a way that it contains as
its elements the names of tasks in [6;,6:], re-
peated as many times as there are time units of
the respective tasks in this interval.

Let F be the bag of the earliest task activities
that contains all the tasks (or parts of tasks)
executed at their earliest starting times, and
T be the bag of the latest task activities that
contains all the tasks (or parts of tasks) exe-
cuted at their latest starting times. The bag
intersection F N F of F and F is then defined
as the bag of those elements common to the
two operand bags. Since F N F shows the task
portions that cannot be processed earlier than
the interval [f;,6;] or later than this interval,
the number |E N F| of the task names in the
bag intersection, including the repeated ones,
is equivalent to the minimum load ®(6,,6>) if
we assume integer intervals. This leads to

8(6,0,) = |ENF|.

Consequently,

6(01,02) = [ \ENF| - 62 = 6). (3)

To demonstrate how a bag intersection can
be obtained, let us now consider the task graph
of Fig. 1, where the task name T; is shown in
the upper portion of each vertex, the execution
time p(T;) (time units) is shown in the lower
portion of the vertex, and the earliest start-
ing time 7.5(7;) and the latest starting time
715(T;) are shown between the square bracket
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Fig. 1

Example of a task graph.

near to the vertex. Based on the earliest and
latest times of every task in the graph, we first
describe the bags of the earliest task activi-
ties and the bags of the latest task activities
as shown in Fig. 2. Then by applying the the-
ory of “bags” to an integer time segment, for
example, the interval [5, 8], we can obtain the
bag _.Z = {T7, T7, Tg, Tg, Tg, Tg, T10} and the bag
F = {Ts, T;, 17,15, Ty, Ty, Tg,Tlg} within this
interval. Thus, we have the bag intersection
Z N ? = {T7,T7,T8,T9,T9,T9,T10} and then
the number |F N F| = 7. Assume that only
m = 2 identical processors are provided for the
execution of the graph. By Eq. (3), the increase
in the interval is then 6(5,8) = 1 (time unit).

3.3 Interval Overlaps

The computation described in the preceding
section provides insight into the shortcomings
of the Fernandez-Bussell method. First, the
method is time-consuming because set theoretic
operations are used, especially in the case when
the mean execution time of tasks is larger. Sec-
ond, it is inconvenient to deal with task graphs
with real task execution times because it has
to assume that [6;,6,] is an integer interval. In
this section, we show a very simple formulation
for the increase computation, which improves
the computation efficiency without sacrificing
the quality of the increases, and needs not as-
sume integer intervals.

We first denote by t(6;,62,T;) the minimum
execution time of task 7T; within [6;,6;] (C
[0,tp]), which represents the time by which T;
(the part of T;) must be executed in this in-
terval. Then, the minimum load ®(6,,6,) can
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Fig. 2 Bags within the critical path length. (a)The
bags of the earliest task activities. (b)The bags
of the latest task activities.

be defined as the sum of all the minimum ex-
ecution times of the tasks executed in [6;,6,];
mathematically, it is given by

®(61,6,) = Y_ £(61,6,T).
T.er

Next, we consider how to calculate t(6;, 65,
T;). In an earlier paper!?), we presented a uni-
fied formulation for the computation, based on
the evaluation of the minimum overlap between
the interval [0, 6,] and the interval [7, 7+ u(T}))
(Tes(T3) < 7 < 14(Ty)) in which T; is executed.
By rewriting it to be consistent with our consid-
erations, we can obtain £(6,,0,,T;) as follows.

t(015923T1) =
min[7e(T;) — 61,02 — 115(T3),
6y — 91,M(Ti)] (4)

6, < Tec(Ti) and 6, > T[s(Ti)
0 otherwise.

where 7..(T;) is defined as 7.5(T;) + u(T;), rep-
resenting the earliest completion time of 7. Al-
though the equation was originally proposed for
task graphs suitable for heterogeneous multi-
processors, it is directly applicable to programs
composed of identical tasks because the latter is
a special case of the former. We will not prove it
here, due to the limitation of space. The details
can be found in Ref. 12).

Based on the equations described above, we
finally derive the following increase.

6(91762) = ’7# ZT,e[‘ t(01a02aTi) (5)
—(62 = 61)]

which is equivalent to Eq. (3) when we assume
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Table 1 The increase over the critical path length within every interval.
[01,02] ) [01,92] ) [01,02] 4 [01,02] )] [91,92] [)
0,1 0 0,2 1 0,3 0 0,4 0 0,5 0
1,2 0 1,3 0 1,4 0 1,5 0 1,6 0
2,3 0 2,4 0 2,5 0 2,6 0 2,7 0
3,4 0 3,5 0 3,6 0 3,7 0 3,8 0
4,5 0 4,6 0 4,7 0 4,8 0
5,6 0 5,7 0 5,8 1 0,6 0
6,7 0 6,8 0 0,7 0 1,7 0
7,8 0 0,8 0 1,8 0 2,8 0

integer intervals.

The new formulation is obviously more prac-
tical and convenient in the sense that it makes
the increase computation faster and easier. Us-
ing it, in the following we demonstrate the de-
tail of computing the increase A(P,G), which
will serve to motivate our improvement on its
sharpness. Consider the task graph shown
in Fig.1 once again as an illustrative exam-
ple, and assume that 2 identical processors are
available. Table 1 shows the evaluation of
the increase 8(6;,02) for every integer inter-
val [8,,62] (C [0,8]). From the table, we have
5(0,2) = 6(5,8) = 1 (time unit). Then by
Eq. (2), the maximum increase over every inter-
val is that A(P,G) = max{4(0,2),4(5,8)} =1
(time unit).

Now we proceed to make an interesting ob-
servation about the two increases 6(0,2) and
6(5,8). First, it is not hard to see from Fig.2
that within the intervals [0,2] and [5,8], the
task sets {T%,T3,T4} and {T7,Ts,To,Tho} re-
quire more processors than the machine pro-
vides and consequently, they cause the increases
5(0,2) and 4(5,8), respectively. Furthermore,
by referring to Fig.1 we know that Ts is de-
layed by 6(0,2) and Ty, is delayed by 6(5,8) so
as to preserve the dependence structure of the
graph. The two postponements must propagate
down to the critical paths {Ty,T»,Ts,To, T11}
and {Ti,T3,Ts,T,T11}, since tasks on crit-
ical paths have to be executed in sequence.
As a result, the increase over the mini-
mum execution time of this graph is at least
5(0,2) + 6(5,8) = 2 (time units), rather than
max{6(0,2),(5,8)} = 1 (time unit). The ques-
tion arises: can we find an effective scheme
that obtains an increase sharper than A(P,G)?
Obviously, some improvement to the existing
methods is possible.

3.4 Propagation Delays

A study of the example in the preceding sec-
tion yields an obvious idea about how to tighten
the increase A(P,G) further. More specifically,

it tells us that one way of trying to find a better
increase is to analyze the propagation of the de-
lays incurred due to non-zero increases 4(6, 0,),
based on the dependence structure of a graph
G. In this section, we describe in detail an effi-
cient strategy that helps to implement the idea
at the expense of a slight increase in the com-
putational complexity.

Before discussing the strategy, we need to in-
troduce a few more terms. For convenience,
throughout the rest of this paper a task that
lies on critical paths will be called a critical
task; a task with a delay at that point will be
termed infected. We refer to a delay as an infec-
tion, and use these two terms interchangeably.
We also refer to the set of tasks generating an
infection as an infection source. For example,
consider the task graph shown in Fig.1. We
say that tasks T1, Tz, T3, T5, To and 171, in the
graph are critical tasks. In addition, if m = 2
in the target machine, we say that tasks Ts, Tg
are infected by the infection source {T, T3, T},
and task T}, is infected by the infection source
{T7,Ts, To, Th0}-

A task may be directly or indirectly infected
by an infection source. The important point
to note here is that the propagation of a delay
occurs only when at least one critical task is
infected either directly or indirectly. For exam-
ple, as can be seen from Fig. 1, the delay from
the infection source {T%, T3, T4} (if it exists) is
transmitted to the task set {T7,Ts,Ty,T10} be-
cause the critical task Ts is directly infected,
and it is then transmitted to task 77, because
the critical task Ty is indirectly infected. In
practice, once a critical task in a task graph is
directly infected by an infection source, the de-
lay incurred due to the source must propagate
down to critical paths and then lengthen the
total execution time of the graph. Therefore,
for our purpose here, we need only focus our
attention on the delays associated with critical
tasks. In the following, we first show how to
determine an infection source and then discuss
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how to analyze the propagation of the delay in-
curred due to the source along a critical path.

The determination of an infection source can
be done very simply, based on whether or not
the minimum execution time of every task is
zero during the intervals within which the in-
creases occur. Mathematically speaking, if
0(61,62) > 0, then an infection source is the
set {T;,}9_,, where T, satisfies the condition
t(01,92,TZ¢-J) # 0. Let m; denote the source
and d(=w;) (= 6(61,62)) denote the delay from
7;. Also, assume without loss of generality that
all the infection sources are sorted in the non-
increasing order of the increases associated with
them. We then obtain a sequence of infection
sources, Il = (my,mq, -+, @), where h is the
number of the sources and the following condi-
tion holds d(my) > d(m2) > - -+ > d(m}).

Once all the infection sources have been man-
ifested as above, what we need to do next
is to find out the critical tasks that are di-
rectly infected by these sources. Consider an
infection source m; = {7y }J_,. Our approach
for doing this has two conceptual steps. The
first step is to obtain the common successors
of tasks in the source, by taking the intersec-
tion (_, Suce(T;,). The second step is to de-
termine the critical tasks infected directly via
7; according to dependence constrains among
these tasks. Assume that T, is such a task. We

. . d
introduce here a binary operator — to repre-
sent the relationship between w; and Tj; i.e.,

T 4 T, means that 7; directly postpones the
execution of T);. Furthermore, let d(7T,) denote
a direct-delay of T, which indicates how long
the execution of T is postponed because of the
direct infection from an infection source. We
then have d(T}) = d(m;) if m; 5 T,.

In a similar way, we can also obtain a criti-
cal task that directly postpones the execution
of all the tasks in n;. By making use of the

same operator 4 to represent the relationship

between them, we formally have that if T, N i
then the critical task Ty € _, Pred(T;;) and
there is no critical task T, € Succ(T.) with
T, € ﬂgzl Pred(T;,).

Now, it remains to show how to analyze the
propagation of the delays incurred due to in-
fection sources. Let us consider a critical path
pr = (Te,, -, Tx,, -+, Ty,), where T, = Ty,
T,, = T, and T,, € T such that for all ¢
(1 <i <), (T, Tx,,,) € A Assume that
two tasks T, and T, (i < j) on the path
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Example of a propagation analysis. (a) A task
graph. (b) Execution timing diagram of tasks.

(c) A optimal schedule with 2 identical proces-
sors.

are directly infected by m; and 7;, respectively;
ie, m 4 T., and 7; 4 T.,. Clearly, it
is not always able to accumulate d(Ty,) and
d(Ts,) simply. This is because d(T,) may be
not independent of d(7T,,). Figure 3 shows
such an example, where {T%, T3, T4} 4 Ts and

{T5,T5,T7} 4 Ts when m = 2 in the tar-
get machine. As can be seen from this fig-
ure, the delay of Ts lengthens the longest path
from Ty to Tg by d(Ts) and consequently, the
delay incurred due to {T5,Ts,T7} is zero be-
cause Ts € {T5,Ts,T7}. This shows that the
sum, d(Ts) +d(Tg), is incorrect in this case (see
Fig.3(c)). Therefore, to avoid the problem, we
must place some restrictions on the propagation
analysis. Here, instead of estimating all the
direct-delays associated with critical tasks on
Pr, we start with d(T;) = Oforalli (1 <: <)
and proceed as follows.

(1) Select an infection source m; with the

minimum subscript i from II,

(2) Determine tasks T, and T, on p, such

that T, S 5 —d> Ty, If they exist, then
let d(T,) = d(w;) and subdivide p, into
three subpaths using them as dividing-
points,

(3) Repeat the computation until no more
infection sources or no more subpaths re-
main unanalyzed.

All the three parts mentioned above make the

direct-delays of critical tasks of p, independent.

Therefore, the sum of these delays represents

the shortest possible execution delay for p,.

Then by taking the maximum over the sum for

every critical path, we derive an increase in the

execution time over t., as follows.
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A'(P,G) =max Y d(T,,) (6)

Tx,€px

where p. denotes the xth critical path in G.

A proof of correctness of the increase outlined
above is straightforward, and is given in the
following lemma.

Lemma 1: The execution of a graph G
with a machine P must be delayed by a time
no less than A'(P,G).

Proof: The execution time of G is no smaller
than the completion time of any its tasks. The
minimum completion time of exit task T}, is
therefore the minimum execution time neces-
sary to run G on P. Thus, to prove this lemma,
we need only show that the execution of T}, is
delayed at least by A'(P,G).

Assume without loss of generality that
A'(P,G) = d(Ty,) + d(T,), where Ty, and T,
lie on a crmcal path px. Also assume that
T,, € Succ(Ty,), LN T, and 7; LN T,,. Then
by the method described above we know that
n; C Succ(Ty,) because there must exist a task

Tx.,t <k < j,such that T}, N 7;. This shows
that 7, has to transmit the delay d(;) to all the
tasks in 7; through T, and then indirectly in-
fect T,;,. T, is therefore postponed at least by
d(Tx, )+d(T ). This delay propagates down to
Pr and then arrives at T}, because critical tasks
have to be executed in sequence. Consequently,
T, is also postponed at least by d(T,)+d(T%,).
This completes this proof. 0O

4. Discussion

This section evaluates the quality of the
proposed propagation analysis method against
that of Fernandez and Bussell. Our emphasis is
mainly on the theoretical proof, without much
concern for the experimental evaluation.

Lemma 2: For any task graph model
G(T', A, ) to be scheduled on a machine P, the
increase A'(P,G) always satisfies A'(P,G) >
A(P,G).

Proof: If A(P,G) = 0, then the statement is
obvious since A’(P,G) = 0. Let us assume here
that A(P,G) = 6(61,62) > 0. By Eq.(2), we
know that 6(6,,62) is the maximum over every
interval within [0,¢.p]. Thus, 6(6,,62) = d(my)
since infection sources are sorted in the non-
increasing order of the increases associated with
them. As a result, we have A(P,G) = d(m;) in
this case.

On the other hand, it is true that every task
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is reachable from entry task T and reaches
exit task 7). Therefore, we can always find

two tasks T, and T, on a critical path p,
(= ( vy Ty, T)), such that T,
T 9 T,,. This shows that there must exist

at least one crltlcal task T, whose direct-delay
is equal to d(m); i.e., d(Tx,) = d(m). The fol-
lowing inequality then becomes obvious.

A'(P,G) > Y371 d(Tx,) + d(T,)

+ Eli:q+l d(T"-)
2 d(ﬂ'l).

This completes the proof. That is, we have
A'(P,G) > A(P,G). O

The above lemma shows that the increases
obtained by our method can never give lower
values than the Fernandez-Bussell increases.
So we can say that A’(P,G) is sharper than
A(P,G). Of course, there may be many cases
where A(P,G) is acceptable, but in complex
graphs the advantages of having a sharp in-
crease are clear if we think in the search for
a near-optimal schedule.

As an illustrative example, let us come back
to the task graph shown in Fig.1 and assume
that 2 identical processors are available. In this
case, A(P,G) = 1 (time unit) and there exist
two infection sources: m; = {T2,T3,T4} with
d(ﬂl) =1 (time unit) and Mo = {T7,T3,T9,T10}
with d(m2) = 1 (time unit). In the following,
we demonstrate how the proposed method can
be applied to obtain A’(P,G). Consider the
first critical path p, = (T1,T»,Ts,Ty,T11) in
the graph. First, our method chooses the in-
fection source 7, to analyze the propagation of
the delay d(m,) along the path. Then, since
there exist tasks T} and Ts such that T) N
™ S T, it computes d(Ts) = 1 (time unit)
and partitions the path into the three subpaths
(Th, Th), (T1,T2,Ts) and (Ts,Ty,T11). Note
that (T1,T)) and (T1,T>,T5) need no propaga-
tion analysis further. Thus, it chooses another
infection source 7o for the analysis along the
path (T5,T9,T11). Since T5 E) ) —El-) T117 it
computes d(T1;) = 1 (time unit) and then par-
titions the path into (Ts,Ts), (Ts,To,711) and
(T11,T11). Now, no more infection sources re-
main unanalyzed and hence it finishes this pro-
cess. Thus, as the result of the analysis, we ob-
tain that the shortest possible execution delay
for the path is the sum of d(T5) and d(T11). In
the same way, the method analyzes the propa-
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gation of d(m,) and d(m3) along the second crit-
ical path p; = (T1,73,T5,7y,T1,), and obtains
d(Ts) = d(Ty;) = 1 (time unit), too. By Eq. (6),
we finally have A'(P,G) = d(T5) + d(T11) = 2
(time units), which is sharper than A(P,G) = 1
(time unit).

The theoretical analysis and example de-
scribed above have demonstrated that the pro-
posed method has superior performance over
the technique suggested by Fernandez and Bus-
sell. This performance is clearly attained at the
price of added complexity. However, it may be
not very expensive from the point of computa-
tion. We now proceed to analyze its computa-
tional complexity. Let n, p and h represent the
number of tasks, the number of critical paths
and the number of infection sources, respec-
tively. First, we consider the time needed to
calculate the increases d(6,,6,) for all the pos-
sible intervals [#;, 62] within [0, t.,]. It is easy to
see that the computation requires the process-
ing of t.,(tcp + 1)/2 intervals [0;,6,] and hence
the computational complexity is ()(n*tfp) asin
the Fernandez-Bussell method. Second, we es-
timate the time spent at the propagation anal-
ysis of the delays associated with critical tasks.
Our propagation analysis algorithm consists of
a main loop containing an inner loop. It is ob-
vious that the main loop repeats p times for
processing all the critical paths. The running
time depends mainly on the number of repeti-
tions of the inner loop. The inner loop consists
of three steps and repeats h times in the worst
case. The most time-consuming step is clearly
step 2, which takes at most O(n3) to determine
T, and T}, for m;. However, we can limit the
worst case computation time spent on the step
to O(n), by determining both the critical tasks
which directly postpone the execution of 7; and
the critical tasks whose executions are directly
postponed by m; before the propagation analy-
sis begins. Thus, the computational complexity
of the algorithm is O(p*h*n) in the worst case.
We feel that it is acceptable since the number
of intervals with non-zero increases, that is, h,
is much less than t.,(t.p, + 1)/2 in practice.

5. Concluding Remarks

This paper discussed a new technique to find
an increase over the minimum execution time
of a given task graph. Performance evaluation
showed that the increase obtained by it is of
higher quality than that of other known meth-
ods. Therefore, the technique can be used to
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provide better performance measures of static
scheduling heuristics and design more efficient
optimal branch-and-bound schemes of solving
a scheduling problem. In addition, although
the traditional task graph model was assumed
here, the technique can be directly incorporated
into the methods shown in Refs. 11), 12) and
13) to improve the sharpness of the existing
bounds, since the basic principles are similar
except that they consider inter-processor com-
munication costs and the processor heterogene-
ity. To evaluate the performance of the tech-
nique under different task graph model assump-
tions, experimental work is currently being car-
ried out by using a set of sample programs and
will be reported in the future.
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