IN-6 R F S

70 [MleEkRE

Four-stage Pipelining for Two Messages in MD5 Implementation with
Data Forwarding
Hoang Anh Tuan', Katsuhiro Yamazaki " and Shigeru Oyanagi '

Abstract Hash algorithms or message digest algorithms such as SHA and MD5 are used to generate a unique
message digest for an arbitrary message. They contain many internal loops that can be used for pipelining
implementation. This paper describes an improvement of 3-stage pipeline implementation of MDS algorithm. Data
forwarding together with alternately message digests computation are used to remove data dependency among steps
in the main loop, helps to break the main computation of the MDS5 algorithm into 4-stage pipeline for
implementation on FPGA. The implementation achieves a throughput of 1.04 Gbps with 1064 hardware slices and 1

BRAM on Xilinx Vertex-IT XC2V4000-6 FPGA.

1. Introduction

Hash algorithms are used to generate a unique
message digest for an arbitrary message. It contains
many internal loops in the main computation module.
Several step/round-based pipelining MD35
implementations were given [2]. Besides, the internal
loop of the main computation was also utilized for 3
stage pipeline MDS5 implementations with data
forwarding technique [3-4]. However, the unbalance
in computation time among stages, which reduces the
general speed and so throughput of the system,
requires an improvement to 4-stage pipelining
implementation with alternately message digests
computation in combination with data forwarding
methodology.

2. Main computation and data movements in one
message MDS5S

The main module of the MD35 algorithm is used to
solve the equation

A =B + ((A+T[i]+X[k]+Func(B,C,D))<<<s) [1]

A<D;B<—A;C<B;D<C
in which A, B, C, D are variables that contain digest
results, initiated by constants. Func is a combination
of other four functions (F, G, H, I), which are used in
four rounds respectively. X is the input message,
which is considered as 16 32-bit keys. T is a constant
table which contains 64 values, and <<< represents a
circle shift left operation.

A B C D Figure 1 shows
[alblcld] %:E:’;t data movements
of the message
[dlsi]b]c] O';'eft::ep digest data
through 4 steps.
[cT1rz]na] b] Twosters Assume that

after

Three
[b [s3]n2[nt]steps after

current values of
the operands A, B,
C,and D are a, b,
¢, and d, the
values of the
variable A will be
a d, ¢, and b
depend on the

F t
[t [na 03] nz | OL:fthps

n: newly generated value

Figure 1. Trace of A within
4 steps

T Ritsumeikan University, Graduate School of
Science and Engineering

step number. This means that those values can be
forwarded to A for advanced use.

3. Data dependency, data forwarding, and pipeline
stages

Equation [1] can be re-written into equation [2] for
4-stage pipelining model.

tempB =B [2a]

AT = A+TY[i] [2b] AT stage

ATX = AT + X[k] [2¢] ATX stage

S = (AT+Func(B,C,D))<<<s [2d] Shift stage [2]

B=B+S [2€] Final stage

A<—D;C—tempB; D—C [2f]

Equation [2b] and [2c] have very light data
dependency on the previous values of the operands A,
B, C, and D because we can forward values of D, C,
and B into A for advanced use as can be recognized in
Figure 1. However, equations [2d] and [2e], which are
used to compute new value of operand B, are tightly
dependent on the previous value of B. In other words,
[2d] has data dependency on [2e] and vice versa.
Therefore, no pre-computation can be done for these
two equations.

Figure 2 shows data dependency among the
operands and the equations. It clearly shows that AT
and ATX can be pre-computed any time but S and B
([2d] and [2e]) must be computed one after the other.

From Figures 1, 2 and equation [2], the 4 stages of
pipeline for one message is given in Figure 3. The
data dependency of S into B ([2d] depends on [2e])
requires one more clock to complete, so, generates a
spare time of all stages in every 2 clocks. Hence, this
spare time can be used to calculate the message dlgest
of the other message.

Figure 4 shows
the 4 stages

computation with 2 . ~
messages. The 2 29, @
messages are
computed \
alternatively for
each step, in which, & ® \ © ,
numbers X.y show Forward to remove.~

data dependency

the message number
(x) and the step
number).

Figure 2. Data dependencies
among operands and equations

1-63

Spare time —> Data dependency

Figure 3. 4-stage pipelining for one message

ome{ 0 | 1 | 2 | 3 | 4 [5 [6 [7 |

Figure 4. 4-stage pipelining with 2 alternate messages

Therefore, 2 messages can be computed after 128
clocks (64 steps for each).

4. Four-stage pipelining design and implementation

Figure 5 shows the data movement in 4-stage
pipeline with 2 messages, message 0 and message 1.
Supporting for the 2 message digest, the message
digest operands A, B, C, and D are extended into 64
bits each. In general, the high 32 bits are used for
message digest of message 1 while the remaining low
bits are used for the message 0.

A AT ATX _S

Tt mre] mia) o 0 CS90trs
8[d; [do] [er [eo] [Dalbo] [ay]ma] [~ T~ EE

kool di | [dp) & cg‘blllbo ||| -
i e W

F~

ot B [

-
-~

-

-~

olkyoko-o d, _ C | Co| [by[bof]|a]a

Y A -
N
1k, ofkoq] (] di] [bo]ci] [mg] [do]ay] S11
—
\
2kyokod [] o] [02]00] [pafnos] [diTdo] [ates] [txia] [S0]
— - g
=
= '
[bel & [mou] By] [co]dy] Si
‘~

3kyofkod]

R

~—

Ty

oFels

oges udtjersusy)

& " G
41k, olkoq| | by [bo | [Rya[noy m

= Data movement for message O
= Data movement for message 1

’F\ Function of B, C,
= D computation

Figure 5. Data movement in 4-stage pipeline with 2
alternate messages :

" [4] Hoang Anh Tuan et al.:

Two stages are shown in Figure 5. The initial stage
is used to read the initial values of operands A, B, C,
and D into their locations. The generation stage is
used to create the message digest of the message.

The initiation stage will take around 9 clocks to
read data into its location as can be seen in step 2 (left
hand side) by shifting data from left to right.

After the initial stage, the generation stage start.
Supporting for the computation of equation [2¢] at the
first step of generation stage, the computation of [2b]
must start 3 steps before, at step 7 of initial stage by
adding ap (message digest A of message 0) with the
constant. Hence, Figure 5 shows from step 7 of the
initial stage. During this stage, the 2 data parts of one
operand are swapped during the computation to keep
the locations fixed to the computing modules (AT,
ATX, Shift, and Final). Then, the generation stage
will starts from 0, counts up and ends at 127 (128
clocks) before generating the final digest result.

The same operation with same input data for all
modules allows us to implement this design efficiently.
The keys (input message) are designed to locate in the
BRAM in order to save the valuable registers.

5. Implementation results and discussions

The 4-stage pipelining MDS5 design was
implemented on the Virtex-II XC2V4000-6 devices
and compiled by Xilinx ISE 8.1 version. The
throughput of the design achieves 1.04 Gbps, equals
to 137.6 MHz of frequency, and utilizes 1,064
hardware slices and 1 BRAM. The hardware size
increases 1.2 times while the throughput increases 1.4
times in comparison with the 3-stage pipeline
implementation [4]. The hardware size can be reduced
if the BRAM is utilized to implement the constant
table.

6. Conclusion and Future work

This paper described the implementation of the core
of MD5 algorithm into 4-stage pipeline. The results
show that this architecture achieves throughput of
1.04 Gbps while requiring 1,064 hardware slices and 1
BRAM on the XC2V4000 device, which shows a
good tradeoff between hardware and throughput. The
methodology should be applied into other hashing
algorithms implementations.

References

[1] RFC 1321 - The MD5 Message-Digest Algorithm
[2] KJarvinen et al.: Hardware Implementation
Analysis of the MD5 Hash Algorithm, Proc 38" IEEE
International Conference on System Sciences-2005.
[3] Hoang Anh Tuan et al.: Three stages pipelined
MDS5 implementation on FPGA, FIT2007, LC-008, pp.
61-64, 2007.

Pipeline MDS5
Implementations on FPGA with Data Forwarding,
IEICE Technical Report, RICONF2007-27, pp. 71-76,
2007.

1-64

