1A-2

BMLET-25 70 BeER=

A Compiler Framework for Feedback-Directed Parallelizing Programs on CMP

Yuanming Zhang, Kanemitsu Qotsu, Takashi Yokota, Takanobu Baba

Department of Information Science, Faculty of Engineering, Utsunomiya University

1 INTRODUCTION

Recently, with the increasing difficulties in achieving
higher performance by growing clock frequencies on uniproc-
essor, the microprocessor industry has paid much attention to
Chip Multiprocessor (CMP), which represents an evolutionary
change in high performance computing [1]. CMP can boost the
performance of multi-programmed or multi-threaded programs,
while it cannot directly boost the performance of a large num-
ber of existing sequential programs.

To improve the performance of sequential programs on
CMP, some techniques have been put forward. Prefetching is
one of the techniques, which uses the user-level thread (helper
thread) running on one idle core to prefetch the data before it is
needed by the main thread [2]. This technique can improve the
performance of sequential programs by reducing the large
cache latency. However, this technique only focuses on cache
miss and has limited increment. Decouple software pipelining
(DSWP) is another technique, which extracts non-speculative
threads from sequential programs [3]. This technique is valid
for sequential programs, while it needs an additional hardware,
a synchronization array, to support the inter-thread communi-
cation. In commercial CMP, this synchronization array is un-
available.

The objective of our research is to parallelize sequential
programs automatically on commercial CMP architecture
without additional hardware support. By this method, the per-
formance of most sequential programs can be improved. The
remainder of this paper is organized as follows: In next section,
we will analyze the challenges of parallelizing sequential pro-
grams on commercial CMP and our approaches to eliminate
them. Section 3 describes our feedback-directed compiler
framework. Section 4 provides our conclusion.

2 CHALLENGES OF PARALLELIZING ON CMP

2.1 Communication Latency

Almost all general purpose processor chips are moving to
Chip multiprocessor, including the Panther chip from Sun,
Power 4/5 chips from IBM, Opteron chip from AMD, Wood-
crest and Montecito chips from Intel. One important character
of these CMPs is whether they have shared cache.

For the CMP that has no shared cache, although the sepa-
ration of the cache make it possible to have dedicated access
paths to the caches and eliminates contention and capacity
pressure at the cache and this can offer up performance in-
crease for multiple applications, it has no benefit to mul-
ti-threaded programs. The inter-thread communication latency
will be much long on this kind of CMP, as the communication
takes place in the main memory. For the CMP that has shared
cache, the shared cache can increase the efficiency of cache to
processor data transfer and core to core communication. With
the shared cache, the data can be stored in one place that each
core can access [1].

For above reasons, to reduce the inter-thread communica-
tion latency and boost the performance of multi-threaded pro-
grams, we assume the CMP has a shared cache. Our research is
based on this kind of CMP.

1-3

2.2 Non-Speculative Multithreading

Speculative multithreading has been proved to be a prom-
ising method to extract parallelism from sequential programs.
The efficiency of this execution model strongly depends on the
performance of the control and data speculation techniques.
Several multithreaded architectures, which provide support for
thread-level speculation, have been proposed, such as the Mul-
tiscalar architecture, the SPSM architecture, and the Super-
threaded architecture. These microarchitectures provide muiti-
ple contexts and appropriate mechanisms to forward values
produced by on thread and consumed by another, and also pro-
vide hardware support to handle recovery in the case of mis-
speculation.

On commercial CMP, there is no special hardware to pro-
vide support for speculation. All the thread states and for-
warded data have to be stored in the shared cache. For this
reason, we consider to use the non-speculative multithreading
parallelism. This parallelism mechanism does not need addi-
tional hardware support, and also provide an orthogonal me-
thod to parallelize sequential programs.

These non-speculative threads extracted from sequential
programs run concurrently and do different parts of computa-
tion. If necessary, they communicate on some points. The
communication points are the inter-thread data dependent
points. In essence, these threads are cooperated threads.

The count of communication points is the count of data
dependences between threads. A large count of communication
points will add the communication cost, and is no benefit to the
performance. To reduce the communication cost, the extracted
threads are composed of strongly connected basic blocks
(SCCs) [3]. The SCCs have the smaller dependences with other
basic blocks, and this can lower the communication cost.

2.3 Thread Region Selection

Now, our research mainly focuses on loops, because 1).
Loops consume most of programs execution time, and 2).
Loops are the potential area for multithreading. In general, any
loop can be parallelized. However, when sequential programs
are partitioned into multithreaded programs, some cost is nec-
essary, such as cost of creating threads, managing threads and
cost of inter-thread communication and synchronization. To
amortize the multithreading cost, the loops partitioned must be
long running time.

Our aim is to extract non-speculative threads from loops.
Moreover, these threads have fewer data dependences between
each other. To achieve this aim, we think two kinds of loops are
suitable for candidates. One is the nesting loop. In nesting loop,
the boundary of the inner loop is clear to the boundary of the
outer loop, and they maybe have fewer communication points.
Another is the loop that contains procedure calls. The proce-
dure is well strongly connected and is also long running time.
On the other hand, if the procedure is too big, it can be parti-
tioned into more threads further.

3 COMPILER FRAMEWORK

3.1 Overview

The layout of the compiler framework is shown in Fig.1.
Our research is based on GCC open source compiler. The se-
quential program is first converted into static single assignment
(SSA) form by GCC front-end and Gimpiler. The SSA form is a
new intermediate representation (IR) in GCC, which is both
language and target independent and allows high level analyses
and transformations. The GCC analyzer is the available func-
tions in GCC, such as the alias analysis.

In this framework, there are two important components:
profiler and thread generator. The profiler collects profiling
data, such as size of the loop, data dependence information and
control dependence information. These profiling data, as feed-
back data, will be used by thread generator to partition sequen-
tial program.

GCC
Analyzer ;

SSA Profiling Info

SSA
=

GCC
Front-end

Multithreaded

A
GCC
Back-end

Sequential Multithreaded
Program Program

Fig.1 Compiler Framework for Feedback-Directed Paralielizing

The thread generator partitions the sequential program one
procedure at a time. Firstly, the procedure is analyzed and all
loops within the procedure are built into an internal form,
which holds the CFG information. The CFG information in-
cludes the statements, basic blocks and edges of the loop. Sec-
ondly, the data dependences and control dependences between
basic blocks are analyzed, and a dependence graph is built,
which is the foundation for extracting threads.

Thirdly, by analyzing the dependence graph, the thread
generator heuristically searches and selects SCCs from the
graph. Once the SCCs are selected, they will be moved outside
of the loop as the computation contents of a new thread. If
possible, other more SCCS can be selected and moved outside
of the loop as the computation contents of other new threads.
The remainder of basic blocks forms the computation contents
of the main thread. In this process, some instructions are in-
serted for data communication between threads.

The output of the thread generator is multithreaded SSA.
The multithreaded SSA can be optimized by various optimiza-
tion passes available in GCC, such as dead code elimination,
and loop invariant motion. At last, the multithreaded SSA is
compiled into multithreaded executable program by the
back-end of GCC.

3.2 Thread Spawning Mechanism

In our system we use the POSIX thread as the new created
thread. At the beginning of the program, we may create some
POSIX threads in advance for later use. When the threads are
created, they sleep before assigned task. If one thread is needed
to do computation, the compiler forwards the starting address
and necessary dependent data to it, and then activates it. These
threads run in parallel and communicate on one data buffer.
The data buffer will be introduced in detail later.

If there is no available thread, the compiler can create new
threads. This depends on how many parts the loop are parti-
tioned. These threads compute different parts of the loop, and
cooperate with each other.

1-4

3.3 Thread Communication Model

In our compiler framework, a special communication
cache, queued data buffer, is designed. It implements queued
semantics, and provides uniformed operation semantics. All the
dependent data between threads are written and read from the
data buffer.

The queued data buffer structure is shown in Fig.2. The
row indicates the available buffers. The dependent data is writ-
ten and read from these buffers. The column indicates the
available elements for each buffer. For each buffer, there are
two pointers. One pointer points to next empty elements, called
writing pointer (WP) which is used by producer thread. An-
other pointer points to current unused data, called reading
pointer (RP) which is used by consumer thread. For example,
in the first buffer, the WP points to the last empty element, and
the RP points to the second element that contains the current
unused data.

Number Element! Element2 ElementN

Bufferl 4 A4 v WP
Buffer2 v 4 4 RP
BufferN I | V4 J [J

Fig.2 Queued Data Buffer Structure

With this queued data buffer, the threads can implement
pipelining execution model by writing (reading) dependent data
into (from) the buffer. The producer thread writes data into the
buffer and the consumer thread reads data from the buffer. A
thread only stalls when the queued data buffer is either full or
empty. In the last buffer, as there is no empty element, the pro-
ducer thread will stall for empty elements.

4 CONCLUSION

This paper presents a compiler framework for paralleliz-
ing sequential programs on commercial CMP. We analyzed the
main challenges of doing that and gave our approaches to ad-
dress them. Based on the feedback profiling data, the compiler
extracts non-speculative threads from loop. These extracted
threads cooperate together, run concurrently and communicate
on a queued data buffer. Based on the buffer, the threads can
execute in pipelining execution model.

ACKNOWLEDGMENTS

This research was supported in part by Grant-in-Aid for
Scientific Research ((B)18300014, (C)19500037) and Young
Scientists ((B)17700047) of Japan Society for the Promotion of
Science (JSPS), and by Eminent Research Selected at Utsuno-
miya University.

REFERENCES

[1] Pawe Gepner, Micha F. Kowalik. Multi-Core Processors: New Way
to Achieve High System Performance. Proceedings of the Interna-
tional Symposium on Parallel Computing in Electrical Engineering,
2006.

[2] Jiwei Lu, Abhinav Das, Wei-Chung Hsu, Khoa Nguyen. Dynamic
Helper Threaded Prefetching on the Sun UltraSPARCR CMP Proc-
essor. Proceedings of the 38th Annual IEEE/ACM International
Symposium on Microarchitecture, 2005,

[3] Guilherme Ottoni, Ram Rangan. Automatic Thread Extraction with
Decoupled Software Pipelining. Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, 2005.

