Vol. 37 No. 5

Transactions of Information Processing Society of Japan

Regular Paper

Group Communication for Upgrading Distributed Programs

HIROAKI HIGAKI' and YUTAKA HIRAKAWA'!

Large-scale distributed systems are not always stable, because the environments and the
user requirements are changeable. The authors previously discussed a “receptive platform”
that makes distributed systems flexible and reliable. To realize such a platform, it is essential
to consider how to upgrade distributed programs. Conventional upgrading methods require
that multiple processes be suspended simultaneously. Thus, the availability of the system
becomes low. The authors also proposed a new method called “dynamic upgrading” whose
key ideas are that multiple versions of processes are allowed to co-exist temporarily and that
the effects of protocol errors caused by the co-existence are concealed by rollback recovery.
An algorithm was designed for treating unspecified receptions. However, it cannot treat
communication deadlocks. This paper proposes an extended group communication algorithm

May 1996

that can detect and resolve communication deadlocks.

By using the algorithm, dynamic

upgrading can be applied to a wider range of distributed application programs.

1. Introduction

The development of computer and communi-
cation technology has recently led to the de-
velopment of large-scale distributed systems.
These systems are normally used continuously
for a long period after their construction. How-
ever, these are not always stable, because the
environments and the user requirements are
changeable. We previously proposed a receptive
platform that can support stable services in the
presence of various kinds of changes!). To real-
ize a receptive platform, it is important to pro-
vide procedure for upgrading distributed pro-
grams. One typical method for upgrading the
system is to replace processes with new ones.

Even if the modified application programs are
sufficiently verified and tested, the upgrading
procedure should be carefully designed, because
it may cause serious error execution. For pro-
tocol errors such as unspecified receptions and
communication deadlocks, it is obviously safe to
suspend the whole system temporarily, because
conflicts between multiple versions of processes
can be avoided. However, suspending the whole
system reduces its availability, because a large
number of processes have to be suspended si-
multaneously. Moreover, some critical applica-
tions require responsiveness and cannot accept
such suspension. Therefore, a new method for
upgrading the system is needed.

The rest of this paper is organized as fol-
lows: Section 2 describes related work. Sec-

t NTT Software Laboratories

874

tion 3 gives an overview of dynamic upgrading.
In Section 4, a novel group communication al-
gorithm is proposed and its properties are dis-
cussed.

2. Related Work

A distributed system is upgraded by replac-
ing its processes. An upgrading process is one
that executes the upgrading procedure. The
effects of the procedure can be classified into
two types. One is a direct type that affects
only the upgrading processes. An upgrading
process is suspended temporarily during the
process replacement. The other is an indirect
type, in which the effects spread to other pro-
cesses. This is a problem peculiar to distributed
systems. Unspecified receptions and communi-
cation deadlocks are typical indirect effects of
changes in protocol specifications. An unspeci-
fied reception occurs when a process receives a
message that is not acceptable. Suppose that a
process p waits for a message included in a set
of messages M = {a,b,c}. If p receives a mes-
sage r ¢ M, an unspecified reception occurs.
On the other hand, a communication deadlock
occurs when a set of processes wait for messages
from one another. Suppose a process p waits for
a message from a process q. If q also waits for
a message from p, a communication deadlock
occurs.

Several methods have been proposed for
completely avoiding unspecified receptions and
communication deadlocks?)3). A certain set of
processes are suspended simultaneously when
the following conditions are satisfied:

Vol. 37 No. 5

e The processes are free from processing re-

quests from other processes.

e The communication channels between the

processes are empty.

However, these methods can only be applied

to applications in which the set of processes to

be suspended is determined and is sufficiently
small. Applications based on remote procedure
call and client-server model are examples.

On the other hand, recent distributed appli-
cations executed in such systems as computer
networks, multimedia communication systems,
distributed control systems and multi-agent
systems are classified as partner-type applica-
tions4). Each process computes and commu-
nicates autonomously, and is related to others
in a complicated way because of the following
properties:

e A process is simultaneously related to mul-

tiple processes.

o The relationships change dynamically.

e The related processes are on an equal foot-

ing.

Thus, it is difficult to obtain a stable state by
suspending multiple processes simultaneously.
This is because it is difficult to determine a set
of processes to be suspended; even if the set is
determined, it usually contains a large number
of processes. Therefore, it is intrinsically diffi-
cult to apply conventional methods to partner-
type applications®).

We previously proposed a novel upgrading
method called dynamic upgrading®. The ba-
sic concept is that it is sufficient to detect and
resolve indirect effects. Thus, since multiple
processes are not required to be suspended si-
multaneously, the availability of the system is
kept high. We also designed the first version of
a group communication algorithm in order to
implement dynamic upgrading 7). By using the
algorithm, it is possible to detect and resolve
unspecified receptions. However, it is required
that the application programs satisfy the fol-
lowing restriction:

Restriction. An old-version process p and a
new-version process p’ execute sequences of
events {eo,er1,e2,...} and {eg, e}, €e,...},
respectively. If e; # €, and e; = €} (j =
0,...,i—1), one of the following should be
satisfied:

e Both e; and €, are message-sending
events.

e Both e; and e, are message-receiving
events.

Group Communication for Upgrading Distributed Programs 875

Because of the restriction, communication
deadlocks are never caused by the co-existence
of multiple versions of processes. However, only
a few application programs satisfy the restric-
tion when the existing functions are modified
or when synchronous messages are added or re-
moved. We would like to design the algorithm
so that it can be applied to more general appli-
cations.

3. Dynamic Upgrading

3.1 Overview

The key idea of dynamic upgrading is that
a system is allowed temporarily to consist of
multiple versions of processes. If an unspeci-
fied reception or a communication deadlock is
detected, the system restarts old-version pro-
cesses from the checkpoints taken in the exe-
cution. The upgrading procedure is restarted
later. Figure 1 gives an overview.

o (Initial state — Transient state) Initially,
each process group contains only an old-
version process. For upgrading, a new-
version process is invoked in the same pro-
cess group. Each new-version process is
invoked independently of the others. The
old-version process continues as a backup
process. Therefore, the system is in a tran-
sient state. There are two kinds of process
groups: upgrading process groups, each
of which contains multiple versions of pro-
cesses, and stable process groups, each of
which contains only one process.

e (Transient state) Messages are transmitted
between process groups. In an upgrading
process group, a new-version process trans-
mits and receives signals containing a mes-
sage. An old-version process observes these
transmissions and receptions and takes a
checkpoint for rollback recovery.

o (Transient state — Upgraded state) If all
new-version processes are invoked with-
out unspecified receptions or communica-

‘ Asynchronous
‘0 o
B i
e

Concurrent execution of
mubtiple versions

Fig.1 Overview of dynamic upgrading.

876 Transactions of Information Processing Society of Japan

tion deadlocks, the old-version processes
are stopped and deleted. The upgrading
procedure is finished*.

o (Transient state — Recovered state) If an
unspecified reception or a communication
deadlock is detected, the upgrading pro-
cedure quits upgrading the system. The
new-version processes are stopped and the
old-version processes are restarted from the
checkpoints taken in the execution. After
some interval, the upgrading procedure is
restarted.

3.2 System Model

This subsection describes the system model

and some assumptions. A process consists of

three layers. The top one is the application
layer: this executes an application program
that contains communication events. The bot-
tom layer is the process communication layer,
which supports point-to-point transmissions of
signals between processes. Each signal is as-
signed one of the following type attributes: in-
tergroup, eventinform, detection, and rollback.

The middle layer is the group communica-

tion layer, in which a process executes the

group communication algorithm. It consists
of tasks invoked by requirements for process-
ing communication events from the application
layer or by requirements for processing signals
from the process communication layer. These
tasks transform requirements for transmissions
or receptions of messages into transmissions
or receptions of signals, and vice versa. The
following two primitive interfaces are defined
for the application layer: a message-sending

event send(S), where S = U;(p;,m;), and a

message-receiving event receive(R), where R =

Ui(pi, m;). The meaning is that a message m;

is transmitted to a process p; and m; from p; is

acceptable, respectively.

We made the following assumptions:

Al. Functions in the process communication
layer offer fully connected, reliable (no
omission, no duplication, and no contam-
ination), and FIFO (first-in first-out) com-
munication channels.

A2. Process behavior in the application layer
is modeled to be a deterministic finite state
machine. State transitions are caused only
by communication events that do not de-
pend on timing.

¥ Higaki and Hirakawa®) discuss the conditions for
finishing the upgrading procedure.

May 1996

p L’" it p’ does not exist
UNSPECIFIED
RECEPTION

N‘\v Version (a)

p @ @
Nm Version (b)

Fig.2 Unspecified reception and communication
deadlock.

if 9' does not exist
DEADLOCK

Old Version

A3. Neither unspecified receptions nor com-
munication deadlocks occur in a system
consisting of a single version of processes.

A4. At most two versions of processes co-
exist.

4. Group Communication

4.1 Requirements
The algorithm should satisfy the following
three requirements:

R1. While multiple versions of processes are
executing the application programs concur-
rently within a process group, the processes
execute the same events in the same order.

R2. Every unspecified reception or communi-
cation deadlock is detected in finite time.

For example, Fig.2 shows specifications of a

two-process system. In the old-version specifi-

cation, a process p transmits a message m to a

process ¢. In the new-version specification (a),

p transmits a message m’ to q. Suppose that

a new-version process ¢' of g is invoked. An

unspecified reception should be detected when

q' receives m from p. In the new-version spec-

ification (b), ¢ transmits m’ to p**. Suppose

that a new-version process p’ of p is invoked. A

communication deadlock should be detected in

finite time.

R3. A global state denoted by a set of check-
points is consistent 9.

To ensure correct execution after rollback re-

covery, there should be no inconsistent message

that a process transmits after taking a check-
point and another process receives before taking

a checkpoint.

4.2 Algorithm

This subsection explains the group communi-
cation algorithm. In order to reduce the over-
head for rollback recovery, checkpoints should
be taken as late as possible. The strategy is to
take a checkpoint immediately before the first

% This is out of the restriction in Section 2.

Vol. 37 No. 5

P -—— ~ ’ ——
,/ P N intergroup / AN
/ N, (whth message)
{
]

1]
event-inform

event-inform

\ 1
\ : o~ I’
) /’ intergroup N

\ \
\\P- _ 7 (with checkpaint info.) \\~ i R4

s
DL bk P

Fig.3 Group communication algorithm.

event e that satisfies one of the following con-

ditions:

CPl. e=¢; #¢€,ande;=¢€,; (j=0,...,1—
1) where an old-version process p and a
new-version process p’ execute sequences of
events {eg,e1,e2,...} and {eg, €}, e,...},
respectively.

CP2. c, — e where ¢, is a checkpoint and ‘=’
represents the causal relationship among
events 0.

To take a checkpoint, an old-version process

suspends the execution of the application pro-

gram. On the other hand, a process in a stable
process group records the current state and con-
tinues the execution of the application program.

The algorithm for checking CP1 is CPAL1 and

Fig. 3*.

CPAL1. When a new-version process p'
of p executes an event send(S), where
S = {(g,m)}, p transmits a signal
signal(intergroup,p,m) to a new-version
process ¢’ of g. On receiving the sig-
nal, ¢’ enqueues it to the signal queue.
When ¢ executes an event receive(R),
where R = U;(pi,mi), ¢ dequeues
signal(intergroup, p,m) from the signal
queue in FIFO order. If (p,m) €
R, m is delivered to the application
layer. On executing an event send(e)
or receive(e), where e = (p,m), a
new-version process transmits a signal
signal(eventinform, p,m) to an old-version
process before the control returns to the ap-
plication layer. On receiving the signal, the
old-version process enqueues it in the signal
queue. When the old-version process exe-
cutes an event send(S) or receive(R), it de-
queues a signal signal(eventinform, p, m)
from the signal queue in FIFO order. If
(p,m) € S or (p,m) € R, the control re-

* For simplicity, we explain only the algorithm in an
upgrading process group and omit the one in a sta-
ble process group.

Group Communication for Upgrading Distributed Programs 877

unspecified reception

. -

receive(p,m’) N

Fig.4 Unspecified reception detection.

turns to the application layer after m is de-
livered to the application layer in the case
of receive(R). Otherwise, CP1 is satisfied.
The old-version process takes a checkpoint
immediately before this event.

Even if CPAL1 is executed, R3 may not
be satisfied. Thus, CP2 is required to be
checked”. When a message m is transmitted
from a process p that has already taken a check-
point to a process ¢, p informs g that m might
become an inconsistent message, and g has to
take a checkpoint.

CPAL2. A new-version process p’ of p trans-

mits an eventinform-type signal to p when
p’ executes an event send(S), where S =
{(g,m)}. On receiving the signal, p trans-
mits an intergroup-type signal that does
not contain any messages to g. By means
of the signal, p informs g of whether or not
p has taken a checkpoint.
When g executes a message-receiving event,
g checks whether or not p has taken a check-
point. If so, ¢ also takes one immediately
before the event.

Next, we would like to explain the method for
detecting an unspecified reception and a com-
munication deadlock. When one of the follow-
ing conditions is satisfied, the system can no
longer continue the upgrading procedure:
DT1. A new-version process in an upgrading

process group or a process in a stable pro-
cess group receives an unacceptable mes-
sage.

DT2. A process in a stable process group re-
ceives no message before the timer expires.

If DT1 is satisfied, the unspecified reception
occurs and the system should invoke rollback
recovery. DTALI, represented in Fig.4, de-
scribes this algorithm.

DTAL1 When a process p that is a new-
version process in an upgrading process
group or a process in a stable process
group executes an event receive(R), where
R = U(pi,m;), p dequeues a signal

878 Transactions of Information Processing Society of Japan

signal(intergroup,p,m) from the signal
queue in FIFO order. If (p,m) ¢ R, p
transmits a detection-type signal to a cor-
responding old-version process and stops.
Figure 5 shows the specifications of a three-
process system by means of time-space dia-
grams. Consider a case in which a new-version
process p’ of p is invoked and each process is
at the ® mark. Process p has already taken a
checkpoint. At this moment, p’ and ¢ wait for
messages from one another. Thus, the system
is involved in a communication deadlock. The
communication deadlock is detected by means
of the timeout mechanism. As described later,
at least one stable process group is involved in a
communication deadlock. Thus, it is sufficient
to use the timer when a process in a stable pro-
cess group executes a message-receiving event.
In the example, when the timer expires, ¢ de-
tects a communication deadlock. In order to
resolve a communication deadlock, q informs p
that p’ should be stopped and p should restart
from checkpoint ¢,. DTALZ2, represented in
Fig. 6, describes this algorithm.
DTAL2. When a process pin a stable process
group executes an event recetve(R), where
R = U;(pi, m;), p starts the timer. If p de-
queues an intergroup-type signal from the
signal queue, p resets the timer and pro-
cesses the signal. Otherwise, p transmits a
detection-type signal to an old-version pro-
cess in each p;.
By means of DTAL2, a process r in Fig. 5 also
transmits a detection-type signal to q. How-

new-version

old-version

Ll Pl
4% N / N
I, P \ LANPINY« AN
. \ / t) \
/ \ / N \
,’ receive(q,m’) |' \
! l | |
‘\ P~ ,‘ detection ‘\ q ,'
\\ (: >~ K4 N O ! timeout
N _s;end(q,m) \ e fceive(p,m)

Fig.8 Deadlock detection.

May 1996

ever, ¢ ignores the signal, because it eventually
detects a communication deadlock.

Consider a case in which an old-version pro-
cess p is restarted from a checkpoint c,. Old
processes should be restarted from a consistent
state. Thus, a new-version process q' of ¢q that
executes an event e satisfying ¢, — e should be
stopped and ¢ should be restarted. The detailed
rollback recovery algorithm using the message
diffusion method '!) is described in our previous
paper 7).

4.3 Example

This subsection gives a simple example to
show that the processes take consistent check-
points and detect communication deadlocks.
Figure 7 shows time-space diagrams of a du-
plicated sensor system. The system consists
of three processes. One is a controller process
(pc). The others are sensor processes that are
duplicated for reliability. One is a main sen-
sor process (psm) and the other is a backup
sensor process (ps5). The system is usually
in the main mode. Sometimes the sensor pro-
cesses exchange roles and the system goes into
the backup mode. The controller process first
transmits start-type messages (ms) to the sen-
sor processes. The main sensor process in-
forms the controller process of the current mode
by means of a main-type message (m,,) or a
backup-type message (m;). Then, one of the
sensor processes, namely, the main sensor pro-
cess in the main mode or the backup sensor pro-
cess in the backup mode, transmits data-type
messages (mg) to the other sensor process and

main mode backup mode
controller main sensor backup sensor controller main sensor backup sensor
start start
stan start
main backup
data data
data data

main sensor

controller

backup sensor
controller main sensor backup sensor
start

start
Ce Csm
o)

Deadiock |

Fig.7 Duplicated sensor system example.

Vol. 37 No. 5

the controller process. Consider a case in which
the system is going to change from the main
mode to the backup mode. The controller pro-
cess and the main sensor process invoke new-
version processes; however, the backup sensor
process does not. The following execution se-
quence is then observed:

(1) Both p. and p, execute send(psm,ms)
and send(psp, ms).

(2) Both psm and pj,, execute
receive(pe, Ms).

(3) psb executes receive(pe, ms).

(4) pl,, executes send(pc,ms).

(5) psm takes a checkpoint csm before
send(p., mm) by CP1.

(6) p. executes receive(Psm,ms).

7) p. takes a checkpoint c. before

receive(psm, Mm) by CP1.

(8) ps executes Teceive(psm,mq) and the
timer expires, because p,, executes
receive(psy, mg). Thus, pg detects a
communication deadlock by DT2 and re-
quires p;,, to invoke rollback recovery.

(9) pc and psy, restart from consistent check-
points c. and c¢sp,, respectively.

4.4 Properties

The proposed algorithm satisfies the follow-

ing properties:

P1. The set of checkpoints denotes the most
recent consistent global state where no fur-
ther rollback recovery is needed.

P2. The minimum number of processes must
invoke rollback recovery.

P3. A system that is not involved in a com-
munication deadlock might be considered
to be in a communication deadlock.

The system must not become inconsistent even

in the presence of premature rollback recov-

ery. Thus, if a process g executes an event
receive(R), where R = U;(pi,m;), the algo-
rithm should support the following cases:

e When the timer expires, an intergroup-type
signal is in the communication channel be-
tween p; and gq.

e When p; receives a detection-type signal, p;
has not taken a checkpoint.

Therefore, p; and g should negotiate before roll-

back recovery.

(1) On receiving a detection-type signal, p;
transmits an acceptance-type signal to g
if p; has taken a checkpoint. Otherwise,
p; transmits a rejection-type signal to gq.

(2) If g does not receive any intergroup-type
signal and g receives an acceptance-type

Group Communication for Upgrading Distributed Programs 879

signal from p;, ¢ transmits an acknowl-
edgment-type signal to p;. Otherwise,
¢ transmits a negative acknowledgment-
type signal to p;.

(3) g restarts the timer.

(4) On receiving an acknowledgment-type

signal, p; invokes rollback recovery.

We would like to prove that the algorithm
satisfies R2 and P2. It has been proved that
the algorithm satisfies the other requirements
and properties in Ref. 7).

Theorem 1 Each deadlocked process p, which

is a new-version process in an upgrading process

group or a process in a stable process group,
executes a message-receiving event.

Proof. A set of processes are involved in a
communication deadlock if and only if the
processes wait for signals from one another.
Thus, p waits for an intergroup-type sig-
nal containing a message m; from p;. That
is, p executes an event receive(R), where
R = U;(p;,m;). Therefore, the theorem is
proved. m]

Theorem 2 At least one deadlocked process

is in a stable process group.

Proof. Suppose that all the deadlocked pro-
cesses are in upgrading process groups.
Form Theorem 1, all the new-version
processes execute message-receiving events
and wait for messages from one another.
This contradicts A3. Thus, at least one
process is a stable process. O

Theorem 3 (R2) Any communication dead-

lock is detected eventually.

Proof. A communication deadlock is detected
when the timer expires. An old-version
process starts the timer when it executes
a message-receiving event. From Theorems
1 and 2, at least one deadlocked process
is in a stable process group and executes
a message-receiving event. Therefore, the
stable process starts the timer and eventu-
ally detects a communication deadlock. O

In the following theorems, a deadlocked pro-
cess ¢ is in a stable process group and waits for
a message from a process p.

Theorem 4 In order to resolve a communica-

tion deadlock, it is necessary that p be restarted

from the checkpoint.

Proof. ¢ should receive a message from p to
resolve the communication deadlock. That
is, p should execute an event send(S),
where (¢,m) € S. However, p is also in-
volved in the communication deadlock, and

880 Transactions of Information Processing Society of Japan

executes a message-receiving event. Thus,
if pis not restarted from the checkpoint, the
message-sending event is never executed
and the communication deadlock is not re-
solved. Therefore, the theorem is proved.O

Theorem 5 In order to resolve a communica-

tion deadlock, it is sufficient that p be restarted

from the checkpoint.

Proof. Suppose that the communication
deadlock is not resolved. Since the old-
version process of p restarts from the check-
point, an event send(S), where (¢g,m) € S,
is executed and ¢ is out of the communi-
cation deadlock. Thus, the number of pro-
cess groups involved in the communication
deadlock is reduced. Therefore, the com-
munication deadlock is eventually resolved.

a

Theorem 6 (P2) To resolve a communica-

tion deadlock, the minimum number of pro-

cesses must be restarted from the checkpoints.

Proof. From Theorems 4 and 5, a communi-
cation deadlock is resolved if and only if
p is restarted from the checkpoint. It is
proved in Higaki”) that the algorithm re-
quires the minimum number of processes to
be restarted from the checkpoints in order
for p to be restarted consistently. There-
fore, this theorem is proved. O

5. Conclusion

This paper has described a method for up-
grading distributed programs, called dynamic
upgrading. It does not require multiple pro-
cesses to be suspended simultaneously. There-
fore, the availability of the system is kept
high. We also designed an extended group
communication algorithm. By means of the
algorithm, unspecified receptions and commu-
nication deadlocks are detected and resolved.
Therefore, the method can be applied to a wide
range of distributed applications. The dynamic
upgrading algorithm will play an important role
in the construction of flexible and reliable dis-
tributed systems.

Acknowledgments The authors greatly
appreciate the encouragement and suggestions
provided by Dr. Haruhisa Ichikawa of NTT
Multimedia Business Department, Mr. Atsushi
Terauchi of NTT Software Laboratories, Pro-
fessor Makoto Takizawa of Tokyo Denki Univer-
sity, and Professor Yoshitaka Shibata of Toyo
University.

May 1996

References

1) Higaki, H., Moriyasu, K., Okuyama, H.,
Hirakawa, Y. and Ichikawa, H.: Receptive Plat-
form - A System Evolution Environment, Proc.
47th Annual Conventions IPS Japan (1), pp.
201-202 (1993).

2) Segal, M.E. and Frieder, O.: Dynamically
Updating Distributed Software: Supporting
Change in Uncertain and Mistrustful Environ-
ments, Proc. IEEE Conf. on Software Mainte-
nance, pp. 254-261 (1989).

3) Kramer, J. and Magee, J.: The Evolving
Philosophers Problem: Dynamic Change Man-
agement, [EEE Trans. Softw. FEng., Vol.16,
No.11, pp.1293-1306 (1990).

4) Yoshida, N.: Towards Next-Generation Paral-
lel/Distributed System Development, Journal
of Computer Science, Vol.2, No.4, pp.300-305
(1992).

5) Barbacci, M.R., Doubleday, D.L. and Wein-
stock, C.B.: Application Level Programming,
Proc. 9th ICDCS, pp.458-465 (1990).

6) Higaki, H.: Dynamically Updating in Dis-
tributed Systems, Proc. {6th Annual Conven-
twons IPS Japan (1), pp.195-196 (1993).

7) Higaki, H.: Group Communications Algo-
rithm for Dynamically Updating in Distributed
Systems, IEICE Trans. on Information and
Systems, Vol.E78-D, No.4, pp.444-454 (1995).

8) Higaki, H. and Hirakawa, Y.: Dynamically
Updating Technique in Distributed Systems,
Proc. 49th Annual Conventions IPS Japan (1),
pp.289-290 (1994).

9) Chandy, K.M. and Lamport, L.: Distributed
Snapshots: Determining Global States of Dis-
tributed Systems, ACM Trans. on Computer
Systems, Vol.3, pp.63-75 (1985).

10) Lamport, L.: Time, Clocks, and the Order-
ing of Events in a Distributed System, Comm.
ACM, Vol.21, No.7, pp.558-565 (1978).

11) Moses, Y. and Roth, G.: On Reliable Message
Diffusion, Proc. 8th PODC, pp.119-127 (1989).

Appendix

The algorithm is now described in detail.
Each process stores the following information
structures: three FIFO signal queues (E-queue,
R-queue, and RB-queue), one signal buffer (P-
buffer), two sets of process group identifiers (CP
and RB) and a variable for version information
(Vop). Each signal contains the following four
header fields and a message field: the message
identifier field, the signal type field, the check-
point flag field and the event type field. The
value of the signal type field is one of the fol-

Vol. 37 No. 5 Group Communication for Upgrading Distributed Programs 881

lowing: I (intergroup), E (eventinform), D (de- deliver(groups,messages);

tection), or R (rollback). The checkpoint flag send(old(p),(mids,E, R,groups,messages));
field contains T (true) or F (false) and the event else

type field contains S (send) or R (receive). send(old(p),(,D;,,,));

Send(S): S=(q,m) p stops;

if Vop=single then fi

if CP=0 then else

send(all(q),(mid,IF,,p,m)); s:=dequeue(E-queue);

else if events =R then
send(all(q),(mid,I,T,,p,m)); if checkpoints = § then
append(CP,q); p is suspended until receiving ws where midys =
fi mids;

else if Vop=new then remove(P-buffer,ws);
send(new(q),(mid,I,,,p,m)); checkpoints :=checkpointws;
send(old(p),(mid,I,,S,q,m)); fi

else if checkpoints =T then
s:=dequeue(E-queue); append(CP,{p,groups});

if events =S then p takes a checkpoint;

if (groups,messages)=(q,m) then else

send(old(q),(mids,I,F,,p,m)); deliver(groups,messages);

else fi

append(CP,{p,groups}); else

send(old(groups),(mids,I, T,,groups,messages)); append(CP,{p,groups});

p takes a checkpoint; send(old(groups),(mids,I,T,,p,messages));
fi p takes a checkpoint;

else p takes a checkpoint; fi fi

fi fi SignalReception(s){intergroup}
Receive(R): R= Ui(qi,m;) if Vop=single then

if Vop=single then if checkpoints # @ then

if the timer ezpires then enqueue(E-queue,s);
send(old(Vaq:),(,D,,,,)); fi

else else if Vop=new then

p restarts the timer; enqueue(R-queue,s);
s:=dequeue(E-queue); else

if checkpoints =T then if checkpoints = § then

if CP= 0 then send(new(p),s);

append(CP,p); else if (3gs€R-queue) midqs =mids then
p takes a checkpoint; checkpointqs :=checkpoints;

fi else if CP= { then
append(CP,groups); append(P-buffer,s);

if (groups,messages)€R then else if checkpoints =T then
deliver(groups,messages); append(CP,groups);

else else

send(old(VCP),(,R,,,,)); enqueue(RB-queue,s);
append(RB,p); fi i

fi SignalReception(s){eventinform}
else if CP= 0 then
deliver(groups,messages); enqueue(E-queue,s);

if CP# 0 then if (3bseP-buffer) midps =mids then
enqueue(RB-queue,s); checkpoints :=checkpointys;

fififi fi

else if Vop=new then remove(P-buffer,bs);
s:=dequeue(E-queue); else if events =S then

if (groups,messages)€R then append(CP,groups);

882 Transactions of Information Processing Society of Japan

send(old(groups),(mids,I,T,,p,messages));
fi

SignalReception(s){detection}

if CP= 0 then

append(RB,p);
send(old(VCP-p),(,R,,,,));

if RB=CP then

p moves all the signals in RB-queue to R-queue;
p is restarted,;

fi

else p moves all the signals in RB-queue to R-
queue;

p ts restarted;

fi

SignalReception(s){rollback}

if Vop=single then

if RB= 0 then
send(old(VCP-p),(,R,,,,));
append(RB,p);

fi

append(RB,groups);

if RB=CP then

p moves all the signals in RB-queue to R-queue;
p is restarted;

fi

else if Vop=new then
send(old(p),(,D,,,,));

p s stopped;

else

if RB= 0 then

append(RB,groups);
send(new(p),(,R,,,,));

else

May 1996

append(RB,groups);

if RB=CP then

p moves all the signals in RB-queue to R-queue;
p is restarted;

fififi

(Received September 22, 1995)
(Accepted February 7, 1996)

Hiroaki Higaki was born in
Tokyo, Japan, on April 6, 1967. He
received the B.E. degree from the
Department of Mathematical En-
gineering and Information Physics,
the University of Tokyo in 1990.
Since joining NTT Software Labo-
ratories in 1990, he has been engaged in research
regarding distributed algorithms and distributed
operating systems. He received IPSJ Convention
Award in 1995. He is a member of ACM and IE-
ICE.

Yutaka Hirakawa was born in
Hamamatsu, Japan, on February
28, 1956. He received the B.E.,

b o M.E., Ph.D. degrees in electrical

Wi engineering from Kobe University
‘}:; - in 1978, 1980, and 1991, respec-
s tively. He is currently a research

group leader in NTT Software Laboratories. His re-
search interests includes distributed systems, spec-
ification description techniques and their applica-

tions to multimedia systems. He is a member of
IEEE Computer Society and IEICE.

