Vol. 36 No. 6

Regular Paper

Transactions of Information Processing Society of Japan

June 1995

Specification of Subsystems in Object-Oriented Design

HIROTAKA SAKAT

In the object-oriented design of complex applications, it is essential to specify subsystems
as manageable units of information systems. In accordance with the concept of contracts,
partnerships, and business rules, we propose a formal specification of subsystems under the
name of “subsystem schemes”. We also discuss two closely related issues: expression of the
responsibilities of subsystems and delegation of these responsibilities to other subsystems.
The concept of abstract subsystems (also called frameworks) is significant as regards reuse of
the specification of subsystems. As a preliminary step toward establishing a general method
for the design of abstract subsystems, we create a specification of the behavior of an abstract
business entity class, taking as a typical example an abstract subsystem of the resource-

requesting-and-providing type.

1. Introduction

Recently, a number of object-oriented meth-
ods for developing information systems have
been introduced and widely accepted. These
methods are the result of efforts to estab-
lish object-oriented software engineering for
reusable, extensible, and robust information
systems, and to propose a variety of techniques
such as structural, dynamic, and functional
modeling as well as state transitions and pro-
cess modeling methods!)~7).

In most of these methods, object-oriented de-
velopment of information systems consists of
three phases: analysis, design, and implemen-
tation. The purpose of the analysis phase is
to provide a description of the user’s problem,
or the so-called “real-world” domain. In the
description, the user’s needs must be identi-
fied precisely and correctly in an understand-
able way. In the design phase, various concepts
of the objects that constitute the information
system are extracted and specifications of these
concepts are created. In this phase, software
engineers analyze issues such as what objects
exist, what structural and behavioral charac-
teristics they have, and what constraints they
should obey to preserve the integrity of the sys-
tem, and then prepare specifications of the con-
cepts in appropriate forms. The implementa-
tion phase is for constructing an executable ap-
plication system from the objects specified in
the design phase, using specific languages and
object-oriented database systems.

1 Department of Industrial and Systems Engineering,
Faculty of Science and Engineering, Chuo University

1162

In the design phase of the development of
complex applications, it is essential to divide
the system into manageable units called sub-
systems?)8)~10) A sybsystem is usually iden-
tified by the service it provides. A service is
a group of related functions that share some
common purpose, such as entering orders, mak-
ing seat reservations, and handling graphic user
interfaces?). In the analysis phase, a subsys-
tem is identified corresponding to the service
it provides. In the design phase, a subsystem
is modeled as a conceptual situation in which
many objects collaborate with each other to
perform certain tasks called “responsibilities”.
It is particularly important to give a precise for-
mal specification of a subsystem in the design
phase. Subsystems are finally implemented as
manageable components of the information sys-
tem.

In the object-oriented methods proposed so
far, this concept has been introduced under
names such as “ensembles”, “layers”, “clus-
ters”, and “subsystems”.

Various approaches to subsystem design
have also been proposed, including Design
by Contract!!), Responsibility-Driven Design®,
Object-Oriented Analysis and Top-down Soft-
ware Development!?)| the Law of Demeter!3),
and Use Cases'?). However, it is still an open
problem how to formally specify the subsys-
tem concept, including its behavioral charac-
teristics.

The most important issue in specifying sub-
systems is the conceptualization of business
rules’*). Since a subsystem is taken as an ob-
Ject to which the job of providing a service is
assigned as a set of responsibilities, it is nat-

Vol. 36 No. 6

ural to consider a business rule to be a kernel
of the subsystem concept. In accordance with
this idea, we propose a formal specification of a
subsystem in the design phase under the name
of the subsystem scheme.

Subsystems are specified as objects that col-
laborate with each other through interfaces
called “contracts” in application environments.
We define this collaboration as the delegation
concept of subsystems. The delegation of re-
sponsibilities to other subsystems provides a
basis for designing interaction between subsys-
tems.

One of the main advantages of object-
oriented design is that it supports software
reuse. In the long run, the reuse of design
is more important than the reuse of code'®).
Reusability of design is accomplished by devel-
oping abstract subsystems (also called frame-
works). An abstract subsystem is a collection
of abstract and concrete classes and a specifi-
cation of their collaboration. Some examples
are the Model/View/Controller of Smalltalk-80
and ET** for user interface subsystems.

We can apply the proposed specification tech-
nique to the design of abstract subsystems in
more general application areas. However, it is
necessary to extract specification patterns from
similar concrete subsystems, which requires a
lot of work. We consider that the key to design-
ing an abstract subsystem is specification of the
behavior of the business entity class. As a pre-
liminary step toward establishing a general de-
sign method, we create a specification of the be-
havior of the abstract business entity class, tak-
ing as a typical example an abstract subsystem
of the resource-requesting-and-providing type.
The technique can be straightforwardly applied
to specification of the behavior of abstract busi-
ness entity classes in general abstract subsys-
tems.

The uniform specification of schemes of ob-
jects proposed in this article provides a stable
basis for object-oriented design of information
systems.

The paper consists of the following sections.
In Section 2, we define the basic object scheme,
centered on the life cycle concept of objects,
and introduce techniques for representing life
cycles by using state classes. Section 3 explains
the notion of behavior relationships as inter-life-
cycle constraints between objects. In Section
4, we give a formal description of the subsys-
tem scheme, with detailed examples. Taking

Specification of Subsystems in Object-Oriented Design 1163

as typical examples subsystems of the resource-
requesting-and-providing type in Section 5, we
create a specification of the behavior of an ab-
stract business entity class as well as its ap-
plication to designing the behavior of concrete
business entity classes. Section 6 concludes the
paper with a summary and remarks on prob-
lems yet to be investigated.

2. Descriptions of Objects

2.1 Basic Object Scheme

For the purpose of establishing an object-
oriented approach to information systems, we
take Mylopoulos’s standpoint!®), that anything
about which a statement can be made is an
object. Object-orientation is a way of think-
ing that requires the subject to be distinctly
identified and to obey the locality principle;
that is, information about the subject should
be grouped in a capsule.

A population of objects having common
structural and behavioral characteristics are
categorized as belonging to the same class.
These characteristics are described in the ba-
sic object scheme (or simply the scheme) of the
class, and each object in the class is said to be
an instance of the scheme. For notational con-
venience, we use capital initial letters for classes
and small letters for objects in classes.

The scheme of a class X, denoted B-
Scheme(X), is of the form

B-Scheme(.X)
= (Action, Memory, Life Cycle);

(1) Action is a set of symbols representing
processes defined for the objects. It is the in-
terface of objects in the class X with other ob-
jects.

(2) Memory, which is the internal structure
of objects, is a set of pairs of the form (At-
tribute: Domain), where Attribute is a struc-
tural property of an object and Domain is a
set of objects in a certain class. Each attribute
takes an element of the associated domain as
its value. We ignore, for simplicity, the static
constraints concerning the values of attributes.
Actions that operate on an object share its at-
tribute values as the internal memory.

(3) Life Cycle expresses the behavioral con-
straints of objects, and is described as a pre-
ordered (i.e., reflexive and transitive) set of
states. A state u is a symbol that is interpreted
as a milestone in the object life cycle. Certain
actions that determine the pre-order relations

1164 Transactions of Information Processing Society of Japan

pay consume
place deliver _ delivered — paid —pextinct

Order not_exist —W placed \‘

cancel * -cancelled -

consume

credit pay cancel

Customer not_exist ——® credil_state* —p» extinct

produce consume

Order : placed, (delivered, paid) | cancelled ;

Customer : credit-state®/ {credit, pay, cancel};

Fig.1 Life cycles of the classes Order and Customer.

are associated with each state u. We call them
life-cycle actions. Each life-cycle action ¢ asso-
ciated with u represents a process that causes, if
activated, a state transition from the pre-state
u to the post-state v. The action ¢ has a single
post-state v defined in the life cycle with the
meanings that ¢ can be activated only if the ob-
ject is in the state u. As a special kind of state,
we consider a state that is neither a pre-state
nor a post-state of any state. We call it the void
state.

2.2 Descriptive Notations of Life Cy-

cles

We denote a life cycle by a sequence of forms
{u/t}, where u is a state and t is the life-
cycle action that causes transition from u to
its post-state. We often omit the action part
for simplicity. Figure 1 shows life cycles of
the classes Order and Customer illustrated in
the graph. The initial state not-ezist (“the ob-
Ject does not exist yet”) and the final state ez-
tinct (“the object has disappeared”) are omit-
ted in both classes. In the life cycle of Or-
der, the notation (delivered, paid)|cancelled in-
dicates a possible selective occurrence of ei-
ther of two sequences delimited by a symbol
“|”. In the life cycle of Customer, the notation
credit-state* /{ credit, pay, cancel} indicates pos-
sible repetition of state transitions from credit-
state to itself zero or more times through any
one of the actions credit, pay, and cancel. We
call states of this kind repeated states.

The life cycle has a granularity in its repre-
sentation. A state u may be further decom-
posed into a local life cycle that is in turn a
pre-ordered set of more refined states.

2.3 Generalization Concept

The generalization concept, which takes ac-
count of the life cycles of objects, is defined as

June 1995

follows.

Suppose we have schemes of class X and
Y: B-Scheme(X) = (Action-X, Memory-X,
Life-Cycle-X') and B-Scheme(Y) = (Action-Y,
Memory-Y’, Life-Cycle-Y). If there is a func-
tion h = (ha,hm,hy) from B-Scheme(X) to
B-Scheme(Y') with the following properties (1)
through (3), we say that B-Scheme(X) is the
generalization of B-Scheme(Y') and that Y is
the subclass of X (or X is the superclass of)
w.r.t. the generalization function h.

(1) ha is an inclusion function from Action-
X to Action-Y; that is, Action-X C
Action-Y and ha(t) = t for each t in
Action-X.

(2) For each attribute-domain pair (4 : D)
in Memory-X, we have an attribute-
domain pair in Memory-Y hy ((A
D)) = (A : D') such that D' C D.

(3) hr is an inclusion function from Life-
Cycle-X to Life-Cycle-Y; that is, Life-
Cycle-X C Life-Cycle-Y and hp(u) = u
for each state u in Life-Cycle-X. Under
this mapping, hy () may be further re-
fined in Life-Cycle-Y'.

The superclass-subclass relationship is also
called the is-a relationship, and makes up the
is-a hierarchy of classes.

2.4 State Classes as Diagrammatic

Representations of Life Cycles

Using the notion of “State” as a design pat-
tern of objects'”), we represent the life cycle
diagrammatically. Figure 2 shows an object
diagram using the OMT?)-like notations, with
rectangles, triangles, and diamonds represent-
ing classes, is-a relationships, and references to
objects, respectively.

We model the life cycle of a class, say Order,
by a set of classes: Order-State and its sub-
classes Placed, Delivered, Paid, and Cancelled.
We call them the state classes. Order-State is
an abstract class (i.e., a class that produces no
objects). Each of its subclasses has exactly one
object, called the state object, that represents
a state of the life cycle of Order. The value of
the attribute state of each object order refers
to a state object that reflects the current state
of order. Each object order delegates the ac-
tivities of its life-cycle actions to the state ob-
Jects. The state object of the class Placed, say,
has life-cycle actions such as deliver and can-
cel that perform appropriate processes neces-
sary for state transitions of order, and change
the value of state to state objects reflecting the

Vol. 36 No. 6 Specification of Subsystems in Object-Oriented Design 1165
Order-Entry Inventory-Control
- delegate
OF-Agent | IC-Agent
. State Order- : i state . State .
Orter |-l Order : 3| Delivers- | " Delivery | | Supply >y Supply
/- ‘ / I\
PSS B [P G I A NS
\ T T 1
Placed lDeIiverej l’ Paid ‘ C. ancellu{ Accepted| |Assigned| |Distribus urchase i
[cceple e rdered Supplied Paid

DB

Customer Product
! L

i

Vendor

Fig.2 State classes associated with business-entity classes in the
subsystems Order-Entry and Inventory-Control.

post-states.

In the diagrammatic representation, the pre-
order relations of states are not explicitly illus-
trated, but are hidden in the behavior of state
objects. Corresponding to a void state, we as-
sume a dummy state class that has no effective
actions.

The notion of state classes, though not indis-
pensable for representing life cycles, is useful for
representing life-cycle patterns of objects hav-
ing is-a relationships. For example, the refine-
ment of a state is represented by is-a hierarchies
of state classes. In abstract subsystems design,
which will be discussed in Section 5, the be-
haviors of abstract classes and their subclasses
are also represented by is-a hierarchies of state
classes.

3. Behavior Relationships as Inter-
Life-Cycle Constraints

In any state transition, an object should obey
the defined pre-order in the life cycle. In this
sense, the life cycle defines constraints on the
behavior of a single object.

In general application environments, an ob-
ject does not exist in isolation, but behaves in
collaboration with objects of the same or dif-
ferent classes. In addition to the life cycle con-
straints defined in the scheme, it is necessary to
maintain consistent relationships between life
cycles of collaborating objects. As inter-life-
cycle constraints, we define the concept of be-
havior relationships, denoted as follows:

(a) u state(z,u){/t} {and p}
— p state(y,v) {/s};

The notation p state(x,u) expresses “a state
transition of the object = to the state u.”
The symbol p is a Boolean expression with at-
tributes as variables; it may or may not appear.
This form expresses: “If the transition of the
object to the state u occurs and the Boolean
expression p, if any, is true, then the transi-
tion of the object y to the state v should also
occur.” If the states u and/or v are repeated
states, we attach for clarity the life-cycle ac-
tions that bring about the transitions denoted
as u state(x,u)/t and/or p state(y,v)/s.

The general form of behavior relationships
is written as in (b), where each o; denotes
p state(x;,u;){/t:} or p;, and 7; denotes p
state(y;,v;){/s;}-

(b) o1 and o7 and ... and o

— 11 and 7 and ... and 7Tp;

4. Schematic Representation of Col-
laborating Objects

4.1 Subsystem Scheme

A subsystem is a situation in which objects of
various classes collaborate for a certain business
purpose, namely, to perform given responsibili-
ties. We call participating objects partners. A
subsystem is itself a subject about which state-
ments can be made regarding topics such as
responsibilities, collaborating objects, and be-
havior relationships between objects. There-
fore, a subsystem could be thought of as an

1166 Transactions of Information Processing Society of Japan

object. However, a subsystem is required to
have more knowledge or intelligence than in-
stances of basic object schemes. To describe
the characteristics of a subsystem,we must take
account of contracts concerning responsibilities,
roles of partners, and behavior relationships be-
tween partners. For this reason, we define the
subsystem scheme by extracting the concepts of
contracts, partnerships, and business rules that
are not described in the basic object scheme.

The subsystem scheme of a subsystem S, de-
noted S-Scheme(S), is of the form

S-Scheme(S)
= (Contract, Partnership, Business-Rule);

Since a subsystem scheme is considered to

have exactly one instance, we use, for simplic-
ity, the same symbol S for the subsystem that
is an instance of S-Scheme(S).
(1) Contract is the interface with other sub-
systems and is a set of forms (Responsibil-
ity:Client), where Responsibility and Client are
lists of responsibilities and subsystems, respec-
tively. A responsibility is a symbol representing
a certain task. Contract denotes that the sub-
system S contracted the specified client subsys-
tems for the specified responsibilities.

In response to a request from client subsys-

tems to perform a responsibility, the subsystem
S brings about certain state transitions of part-
ners. The set of states of related partners that
should be brought about to perform a respon-
sibility could be thought of as a specification of
the responsibility. We call it the realization of
the responsibility.
(2) Partnership is a set of pairs of the form
(Role:Partner), where Role is a symbol repre-
senting a certain role and Partner is a list of
names of classes. Partnership is the internal
structure of a subsystem with the meanings
that objects of the classes in Partner play the
given role in the subsystem S.

In ordinary subsystems, we assume three ba-
sic roles: Agent, Business-Entity, and Resource.
There is exactly one class of the role Agent in
a subsystem, and its only object, the agent, be-
haves as a representative as well as a coordina-
tor of the subsystem. The request for a respon-
sibility is directed to the agent by the agent of
the client subsystem. The agent then coordi-
nates the necessary state transitions of related
partners to realize the responsibility.

Each class of the role Business-Entity models
a type of business in the real world, and its

June 1995

object represents a business unit. There may be
more than one class having the role Business-
Entity in a subsystem.

Each class of the role Resource models a type

of resource that is used to perform a certain
business function. Resource objects are shared
by Business-Entity objects of various subsys-
tems. We assume a special subsystem DB con-
sisting of partner classes that are shared Re-
source classes, and treat each Resource class in
DB as being also a partner in subsystems that
necessitate it.
(3) Business-Rule consists of the behavioral
constraints of a subsystem, and is specified as
a collection of life cycles of partners and be-
havior relationships that should be maintained
between partners. Business-Rule determines
the behavioral characteristics of the subsystem.
The heart of Business-Rule is life cycles and be-
havior relationships concerning Business-Entity
classes. The life cycle of a Business-Entity class
describes the business process steps, and the
behavior relationships between Business-Entity
objects and Resource objects express business
rules to maintain the consistency of system
states.

4.2 Subsystems Order-Entry and In-

ventory- Control

[Subsystem Schemes]

As examples of subsystems, we consider Order-
Entry and Inventory-Control, together with the
subsystem DB, as shown in Fig.2. Since the
objects of Customer, Product, and Vendor in
DB are shared by the two subsystems, we treat
these objects as partners of Order-Entry and
Inventory-Control as well. Figure 3 shows
the subsystem schemes of Order-Entry and
Inventory-Control.

In Order-Entry, OE-Contract defines respon-
sibilities concerning the order entry business to
be requested from the client subsystem OE-
Graphic-User-Interface. To carry out the re-
sponsibilities, OF-agent coordinates the activ-
ities of objects of Business-Entity class Or-
der and related Resource classes. Inventory-
Control has two groups of responsibilities that
concern two Business-Entity classes, Delivery
and Supply, respectively. IC-Deliver is the re-
sponsibility for assigning and distributing prod-
ucts and is subdivided into three responsibili-
ties. The second group of responsibilities is for
purchasing products to supply stocks of prod-
ucts. The business rules of two subsystems de-
fine the way in which objects of Business-Entity

Vol. 36 No. 6

S-Scheme (OrderEntry) = (OE-Conlract,OE-Pannemhip,OE-Busincss-Rulc);

[OE-Contract]
{OE-Place, OE-Deliver, OE-Pay, OE-Cancel} : OE-Graphic-User-Interface ;
[OE-Partnership]
(Agent : OE-Agent) , (Business-Entity : Order) , (Resource : Customer) ;
"Customer is a class of DB."
[OE-Business-Rule]
Life Cycles of Partner Classes
Order : placed, (delivered, paid) | cancelted ;
Customer : credit-stare®! {credit, pay, cancel};
Behavior Relationships
(OE,) mnstate (order, placed) — wstate (customer, credit-state) /credit;

(OE,) wstate (order, paid) — pstate (customer, credit-state) /pay ;

(OE,) pstate (order, lled) — pstate (. credit-state) /cancel

(a) Subsystem Scheme of Order-Entry.

S-Scheme (Inventory-Control) = (IC-Contract, IC-Partnership. IC-Business-Rule) ;

[IC-Contract)
{ IC-Deliver = (IC-Accept, IC-Assign, IC-Distribute)} : Order-Entry |
{IC-Purchase, IC-Supply, IC-Pay} : 1C-Graphic-User-Interface ;
{1C-Partnership)
(Agent : IC-Agenf) , (Business-Entity : Delivery, Supply) . {Resource : Product. Vendor) ;
{IC-Business-Rule] .

Life Cycles of Partner Schemes

d distributed

Delivery :pted, assig
Supply . purchase-ordered, paid ;
Product : stock-state*! {assign, deliver, supply} .
Vendor : credit-state*! {credit, pay} ;
Behavior Relationships
(IC)) wustate (delivery, accepted) and enough-quantity (delivery) -
W state (delivery, assigned) ;
(IC)) wstate (delivery, accepted) and not enough-quantity (delivery) —
wstate (supply, purchase-ordered) ;
(IC,) wstate (delivery, assigned) — p state (product, stock-state) /assign ;
(IC,) wstate (delivery, distributed) — state (product, stock-state) /deliver ;
(IC,) wnstate (supply, perchase-ordered) — W state (vendor, credit-state) /credit;
(IC) wstate (supply. supplied) — W state (product, stock-state) /supply ;

(IC,) nstate (supply, paid) — pstate (vendor, credit-state) [pay

(b) Subsystem Scheme of Inventory-Control.

Fig.3 Subsystem schemes of Order-Entry and
Inventory-Control.

classes should be processed.

[Realization of Responsibilities]

We define the state expression of the realiza-
tion of a responsibility 7, denoted R(r), as a set
of states that a business entity and its related
partners should reach to accomplish 7. The
realization is straightforwardly derived from

Specification of Subsystems in Object-Oriented Design 1167

[OER,] R (OE-Place) = {state (order, placed) , state (customer, credit-state) /credit} ;
[OER,] R (OE-Deliver) = {= R (IC-Deliver) , state (order, delivered)} ;

[OER,} R (OE-Pay) = {state (order, paid) , state (customer, credit-state) /pay} ;
[OER,} R (OE-Cancel) = ({state (order, cancelled) , state (customer, credit-state) /cancel} ;

[ICR] R (IC-Deliver) = (R (IC-Accept) , R (IC-Assign) , R (IC-Distribute))

*This realization is broken down into the three realizations [ICR,] ~ [ICR,]
[ICR,,] R (IC-Accept) = {state (delivery, accepted)} ;

[ICR,] R (IC-Assign) = {statc (delivery, assigned) , state (product, stock-state) /assign} ;
[ICR,,] R (IC-Distribute) = {state (delivery, distributed) , state (product, stock-state) /deliver} ;
{ICR,)] R (IC-Purchase) = {statc (supply, purchase-ordered) state (vendor, credit-state) [(credit} ;
[ICR,] R (IC-Supply) = {state (supply, supplied) ,state (product, stock-state) /supply}

[ICR,] R (IC-Pay) = ({statc (supply. paid) ,sate (vendor, credit-state) | pay} ;

Fig.4 State Expression for the realization of
responsibilities.

the business rule. In Fig.4, [OER,] through
[OER4] (except for OER;) and [ICR,] through
[ICR4] describe state expressions for realiza-
tion of the responsibilities of Order-Entry and
Inventory-Control.

To carry out a responsibility r, the agent of
the subsystem performs all the activities neces-
sary to bring about the states specified in the
state expression of R(r), activating appropriate
actions of partners. To carry out a responsi-
bility, say OE-Pay, OE-agent activates the life-
cycle action pay of a Business-Entity object or-
der and changes its state. OE-agent also up-
dates the state credit-state of the related Re-
source object customer according to the behav-
ior relationships (OE;). If we model the life
cycle by state classes, the life-cycle actions of
Business-Entity objects are in turn delegated
to the state objects.

Instead of performing all of these activities,
the agent could delegate activities for updating
Resource objects to Business-Entity objects.
The life-cycle actions of Business-Entity objects
are then extended, not only to change their own
states, but also to update the states of related
Resource objects. In the state class represen-
tation of life cycles, these extensions should be
reflected in the actions of state objects.
[Delegation of Responsibilities]

The responsibility OE-Deliver of Order-
Entry, since it concerns the complicated inven-
tory control business processes, is usually del-
egated to the subsystem Inventory-Control. In
general, the delegation of a whole or a part of a
responsibility r of a subsystem S to a responsi-

1168 Transactions of Information Processing Society of Japan

bility 7’ of another subsystem S’ is thought of
as a collaboration of subsystems, and is speci-
fied by using the realization concept. Through
the delegation, a whole or a part of the state
expression of R(r) is not realized in the sub-
system S (i.e., actual state transitions do not
occur in S), but is replaced with the realization
R(r"). We denote this replacement = R(r').

For example, the state expression [OER;]
in Fig.4 indicates that a part of the respon-
sibility OE-Deliver is delegated to Inventory-
Control, where the responsibility IC-Deliver is
realized. The delegation = R(IC-Deliver) is ac-
complished by directing the request from OEF-
agent to IC-agent through the reference at-
tribute delegate. IC-agent carries out this re-
sponsibility by producing delivery, an object of
Delivery, and bringing about necessary state
transitions of this object together with its re-
lated Resource objects as specified in [ICR;]
and [ICR;,] through {ICR,3]. IC-agent no-
tifies OF-agent of the completion of the real-
ization. (F-agent interprets this notification
that the state transition to delivered of order
has been completed. We can model this dele-
gation as the replacement of the state subclass
Delivered of Order-State by the state subclasses
of Delivery-State, and represent it by the dotted
line in Fig. 2.

5. Specification of Business-Entity
Classes in the Abstract Subsystem
of Type RRP

One of the main advantages of object-
oriented design is that it supports software
reuse. In the long run, the reuse of design
is more important than the reuse of code.
Reusability of design is accomplished by devel-
oping abstract subsystems (also called frame-
works). An abstract subsystem is a collection
of abstract and concrete classes and a specifi-
cation of their collaboration. We can apply the
proposed specification technique to the design
of abstract subsystems in general application
areas.

As we have seen in the subsystems Order-
Entry and Inventory-Control, the role Business-
Entity and the related business-rules character-
ize the behavior of subsystems. Since the pro-
cessing of business units in the real world is
mapped to the Business-Rule in the subsystem
scheme, we consider the life cycles of Business-
Entity classes to be a kernel of subsystem de-
sign. As a preliminary step toward establishing

June 1995

a general design method for abstract subsys-
tems, we have created a specification of the be-
havior of an abstract Business-Entity class, tak-
ing as a typical example an abstract subsystem
of the resource-requesting-and-providing type
(type RRP). Concrete subsystems of this type
are seen in many existing real systems for tasks
such as airline reservation, hotel reservation, or-
der entry, and inventory control that involve the
handling of requests for resources such as seats,
rooms, and products. Although we take sub-
systems of type RRP as an example, the tech-
nique is straightforwardly applicable to specifi-
cation of the behavior of abstract business en-
tity classes in general abstract subsystems.

In an abstract subsystem of type RRP, the
life-cycle pattern of the abstract Business-
Entity class is developed by analyzing general
rules of resource-requesting-and-providing busi-
nesses. We consider the abstract class RRP-
Business that has the life-cycle pattern repre-
sented by the state class RRP-State, as shown
in Fig. 5. Each subclass of RRP-State is also
an abstract class and expresses the following
business steps:

Not-Etist:

Negotiated:

the business does not exist yet.
the requester requests resources
and the provider accepts the
request; that is, the business
is contracted between the re-
quester and the provider.

the resources (goods or money)
are provided to the requester.
the resources (money or goods)
from the requester are received
in return.

Cancelled: the business is cancelled.

If we design Business-Entity classes such as
Order, Delivery, and Supply in subsystems
of type RRP as concrete subclasses of RRP-
Business, the life-cycle pattern RRP-State pro-
vides effective means for reusability of the spec-
ification of life cycles of these classes. Figure 5
shows the mappings of RRP-State to each of the
state classes Order-State, Delivery-State, and
Supply-State. We refer to these state classes as
application state classes derived from the life-
cycle pattern RRP-State.

In applying the life-cycle pattern to applica-
tion state classes, we assume the following de-
sign principles:

(1) Each state class in the life-cycle pattern
corresponds to one application state class
(including dummy state classes). Appli-

Provided:

Received:

Vol. 36 No. 6

(2)

(3)

Specification of Subsystems in Object-Oriented Design

e
®

State

1169

Not-Exist legotiate:

— >

rovided

[
«[i]

|
Received

Order-State Not-Exist Placed

>

DeliveredH Paid J {Cmcellea

BB
Hiet

Delivery-State Not-Exist Accepted

Provided

L

. : Eurchase- | Paid k ‘ 7
Supply-State M—_) rdered | e Sup ;"Ed

Fig.5 The life-cycles pattern RRP-state and its application state classes.

cation state classes may be renamed.
Application state classes may further be
refined into subclasses (e.g., the state
class Provided of Delivery-State is refined
into the state classes Assigned and Dis-
tributed).
In each application state class, the life-
cycle actions should be defined accord-
ing to the business rules to reflect the
pre-order relations, behavior relation-
ships, and delegation of states transi-
tions. They should perform one of the
following actions:

(a) Change the state to the post-state
by itself or delegate this activity
to another agent. Furthermore,
change the states of related Re-
source objects. This activity de-
pends on the design decision.

(b) Do nothing. This means that
no action should be taken in this
state.

The life-cycle actions of subclasses of Order-
State, for example, are described below. Ac-
tions that do not appear in the subclass do
nothing,.

Not-Exist place

Update the credit-state of
customer by activating the
action credit,

Set the attribute state of
order to the state object of
Placed,;

Placed deliver

Delivered pay

6.

Delegate IC-Deliver to IC-
agent;

Set the attribute state of
order to the state object of
Delivered;

Update the credit-state of
customer by activating the
action cancel;

Set the attribute state of
order to the state object of
Cancelled;

Update the credit-state of
customer by activating the
action pay;

Set the attribute state of
order to the state object of
Paid;

cancel

Conclusion

As a basis for object-oriented design of com-
plex applications, we have proposed a formal
specification of subsystems that covers the fol-
lowing areas:

(1)

Formal specification of subsystems as
subsystem schemes, taking the business
rule as a kernel.

Realization of responsibilities derived
from the business rule.

Interaction between subsystems in accor-
dance with the concept of delegation of
responsibilities.

Extraction of the life-cycle pattern of the

1170 Transactions of Information Processing Society of Japan

abstract Business-Entity class in an ab-
stract subsystem of type RRP and its ap-
plication to the derivation of application
state classes.

As generally recognized by practitioners, “An
important characteristic of object-oriented de-
velopment is that the analysis, design, and
implementation phases adopt similar models,
although each phase has different empbhasis.
This enables smooth transition between differ-
ent phases””). It is expected that the unified
view of objects including subsystems will en-
hance this advantage by allowing extensive use
of essential concepts of object-orientation such
as encapsulation of internal design, generaliza-
tion, aggregation, and reuse of specification for
subsystems.

Among many problems yet to be investigated,
we are especially interested in pursuing research
on the following:

(1) Analysis of various types of subsystems
that involve complicated contracts, part-
nerships, and business rules.

(2) Development of a formal specification
of is-a hierarchies of classes spreading
across various subsystems as partner
classes.

(3) Object-oriented database design meth-
ods for integrating basic object schemes
and subsystem schemes.

References

1) Booch, G.: Object Oriented Design with Appli-
cations, The Benjamin/Cummings Publishing
Company (1991).

2) Rumbaugh, J., et al.: Object-Oriented Model-
ing and Design, Prentice-Hall (1991).

3) Sakai, H.: A Method for Contract Design and
Delegation in Object Behavior Modeling, IE-
ICE Trans. Information and Systems, Vol E76-
D, No.6, pp.646-655 (1993).

4) Shlaer, S. and Mellor, S.: Object Lifecycles:
Modeling The World in States, Yourdon Press
(1992).

5) Shlaer, S. and Mellor, S.: Object-Oriented Sys-
tem Analysis: Modeling The World in Data,
Yourdon Press (1992).

6) Jacobson, I, et al.: Object-Oriented Software
Engineering: A Use Case Driven Approach,
Addison-Wesley (1992).

7) Aksit, M. and Bergmans, L.: Obstacles in
Object-Oriented Software Development, Proc.
OOPSLA 92, pp.341-358 (1992).

8) Rubin, K.S. and Goldberg, A.: Object Behav-

June 1995

ior Analysis, Comm.ACM, Vol.35, No.9, pp.48-
62 (1992).

9) Wirfs-Brock, R., et al.: Designing Object-
Oriented Software, Prentice-Hall (1990).

10) Jacobson, I, et al.: Using Contracts and Use
Cases to Build Pluggable Architectures, Jour-
nal of Object-Oriented Programming, Vol.8,
No.2, pp.18-24 (1995).

11) Meyer, B.: Object-Oriented Software Con-
struction, Prentice-Hall (1988).

12) De Champeaux, D.: Object-Oriented Analysis
and Topdown Software Development, European
Conference on Object-Oriented Programming,
pp.360-375 (1991).

13) Lieberherr, K. and Holland, F.: Assuring
Good Style for Object-Oriented Programs,
IEEE Software, pp.38-48 (1989).

14) Loucopoulos, P., et al.: Business Rules Mod-
elling: Conceptual Modelling and Object-
Oriented Specifications, Object-Oriented Ap-
proach in Information Systems, pp.323-342,
North-Holland (1991).

15) Wirfs-Brock, R. and Johnson, R.: Surveying
Current Research in Object-Oriented Design,
Comm. ACM, Vol.33, No.9, pp.104-124 (1990).

16) Mylopoulos, J.: Object-Oriented and Knowl-
edge Representation, Object-Oriented Data-
bases: Analysis, Design, & Construction (DS-
4). pp.23-37, North-Holland (1990).

17) Gamma, E., et al.: Design Patterns Ele-
ments of Reusable Object-Oriented Software,
Addison-Wesley (1994).

(Received July 31, 1995)
(Accepted February 7, 1996)

Hirotaka Sakai is a profes-
/ sor of Department of Industrial
' and Systems Engineering, Fac-
ulty of Science and Engineer-
ing, Chuo University. His re-
search contributions have been
primarily in the field of data en-
gineering, in particular, semantic data models,
database design, and object-oriented software
engineering. Sakai received Dr. of Engineering
in 1982 from Kyoto University. Until 1983, he
has been in Hitachi, Ltd., where he was engaged
in developments of software products. He also
served as a chairman of special interest groups:
Database Systems of IPSJ and Data Engineer-
ing of IEICE. He is the author or coauthor of
several books in database design and object-
oriented design.

