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This paper studies the statistical and disturbed properties for self-supervised learning sub-
space methods for pattern recognition. We prove that the transformed matrices of the LSM
converge to the estimate of pattern auto-correlation matrix, and give the approximate expres-
sion of the eigen spectrum caused by the LSM’s rotation. Finally the upper bound disturbed
theorem for Learning Subspace is proposed and proved.

1. Introduction

The subspace method was introduced by S.
Watanabe in 19671, which indicates that the
structure information corresponding to each
pattern category clusters according to a sub-
space. Afterwards, some experts presented
several new and different methods for deter-
mining category subspaces?~*). In 1978, T.
Kohonen proposed a new concept called learn-
ing subspace methods (LSM), and developed
the idea of the subspace for pattern recogni-
tion, which utilizes the sequential input sam-
ples to modify or learn (rotate) the formed sub-
spaces so that the principal eigen vectors corre-
sponding to the modified pattern subspaces can
trace and express the changing pattern informa-
tion?. In 1982, E. Oja proposed an averag-
ing learning subspace method (ALSM))®)
which can avoid the sensitivity to the order
of the input samples, but needs to compute
three conditioned correlation matrices and their
eigenvalue decomposition resulting in decreas-
ing the convergence speed®. In order to avoid
the defects of these methods, the author pro-
posed three kinds of learning subspace meth-
ods, i.e., minimum norm learning sub-
space method (MNLSM), detecting er-
ror averaging learning subspace method
(DEALSM), forward-backward smoothing
learning subspace method (FBSLSM)"~?).

However, how are the steadiness and conver-
gence of all these methods? Can they clas-
sify those samples not to be learned, i.e., pos-
sess generalization capabilities? These prob-
lems have not completely been solved. In fact,
the Kohonen’s self-organizing Learning Sub-
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space Method (LSM) is a self-supervised learn-
ing neural network which self-learns and self-
organizes the basis vectors in pattern subspace
using input pattern samples?).

The generalization capabilities in neural net-
works are very important aspects for improv-
ing the network performances. The abilities
to generalize is meant responding properly to
previously unseen input data®. In the case of
the network used as a pattern classifier, this
means classifying correctly samples that have
not been used in training the networks. Poor
generalization can be caused in two cases: (1)
the selected self-supervised method; (2) the
quality and quantity of training samples avail-
able, which makes a main effect on the robust-
ness and disturbance of the clustering subspace
formed. So we study the robustness and distur-
bance of the self-supervised LSM in this paper.

This paper is organized as follows. The con-
cepts of the LSMs for pattern recognition and
their rules for classification are discussed in Sec-
tion 2. Section 3 presents the distance mea-
sure’s theorem for subspaces and the orthogonal
iterating convergence theorem for subspaces.
Section 4 discusses the robustness and distur-
bance properties of the self-supervised LSM,
and gives the convergence solution of trans-
formed matrices of learning subspaces and the
approximate expression of the eigen spectrum
caused by LSM’s rotation, and presents and
proves the upper bound disturbed theorem for
learning subspace. Finally, several conclusions
are given in Section 3.

2. Learning Subspace Method for Pat-
tern Recognition

Assume that the ith one of the K categories
{wi, 1 = 1,2,---,K} corresponds to N, pat-
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tern sample vectors {mfci), 1=1,2.-- K, k =
1,2,---,N;}. The learning rules of Kohonen
self-supervised LSMs are expressed as follows:

LSC =T+ u (B(l)(E )L(l

Lfc = = py :cy)mk )Lm (1)
(j#1=1,2,- K)

L) = L, uf’ ,---,uﬁf(’,)]

where 41, uo are learning coefficients which can
be related to the learnmg vector :cfc). In gen-
eral, || or |uz| < l/||ar: 9112 T denotes trans-
form of the matrix; L( ) indicates the ith sub-
space composed of p ’) basis vectors u ( 2 (n =

1,2,---,p¥) at instant k.
Assume that the general subspace rotation is:

L'=(I+ pxz")L
L=L(u,uz,- -, up) (2)

where p is the learning coefficient; p is the di-
mension of subspace L. For an arbitrary basis
vector u; (1 < ¢ < p) in subspace L, then the
basis vector u; transformed by Eq. (2) is:

=T+ pzxDu; =u, +uz -z
(1<i<p) (3)

where T = zTu;. This result indicates that the
basis vector u; in new subspace L’ is the basis
vector u; in old subspace L plus the scaling
term of the x, thus the projection of the = on
the u} of L’ becomes?:

x

() u>0

@ <0

Fig.1 The geometric explanations for the LSMs.
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' =z"u, +pxTu, - ||z|
=2(1+p-||z|)?) (4)

Because of |u| < 1/||x||?, so if T >
6(x,u;) < 90° then: (1)
is shown in Fig.1 (a); (2)
is shown in Fig.1(b). If
0(:1: u;) < 180°, then: (3)
|z’ || > HmH as is shown in Fig.1 (c¢); (4

0, 2 > Z (or ||2'|] < ||Z]|), as is shown in
Fig.1(d).

According to above geometric explanations
and learning principles for the LSMs, the classi-
fying rule for the Kohonen'’s learning subspace
method is presented as follows:

For an arbitrary pattern vector x, if

TPz > gTpUlg
forall j #i
where P(*) and PY) are respectively the orthog-

onal projection matrices of subspace L(*) and
L),

u
I
T
I

* o~

then zew, (5)

3. Distance Measure and Convergence
Theorem for the LSMs

3.1 The Angle and Distance between
Two LSMs?

Assume that X; € R%¥P Y, € RY*9 are
the matrices composed of orthogonal normal-
ized basis vectors of the subspace 51,52 in
R4, respectlvely Xy = [ug,ug, 4y, Vi =
[v1,v2,---,v4], where supposes p < ¢, 2p < d.

We make singular decomposition on X7TY;:

Xvi=v ovT (6)
where ) = diag(oy,02,---,0,), U € RP*? and
V € R7*9 are orthogonal matrices.

XU = [uj, uy, - uy),

NV = v, 05, ) (7)

According to Eq. (6), we can define the angle

01,6,,---.6, €0, 7] between the S; and Ss:
1 T o
cosby = uy v, = oy
k:1’2""ap ()
obviously, we have 0 < 6§, < --. < 0,, < 3z
We call {u1,uz, -, up} and {v1,vs,---,v,} as

principal eigen vectors of the subspace pair
(Sl y 52)

According to Eq. (8), we may define the dis-
tance measure between the S; and S,:



Vol. 37 No. 6

\ Xp:(l — cos? 6;)

P
=,|>_(1-T? (9)
\ =1

According to above definition, we attain fol-
lowing conclusions for the subspace distance
measure:
(1) Nonnegativity: dist(S;,S52) 20
(2) Symmetrization:

diSt(S] ; 52) = diSt(Sg, Sl)

Definition 1: For an arbitrary matrix A =
[a;;] € R™*¢, we define the F-norms (Frobeuius
norms) of the matrix A:

m d
2.2 eyl

i=1 j=1
= (tr(ATA))? (10)

where tr(.) stands for the matrix trace. Gener-
ally, F-norms possesses orthogonal invariance,
i.e., if Q and Z are orthogonal matrices, then:
IQAZ||r = ||Allr (11)
Theorem 1: Assume that X; € R?*P and
Y; € R%X9 are the column matrices composed
of orthogonal basis vectors of the subspace Sy
and S,, using Egs. (6), (7) and (8), we obtain:

dist(S1, S2) =

1
2

Il AllF

dist(S1, S2) = /tr(XT VoY X1)
= || X{ Yllr (12)

where, X = [X;,X2] and Y = [Y1,Y2] are or-
thogonal matrix in R4xd. The proof see Ap-
pendix A.

Theorem 1 is called distance measure theo-
rem, which provides us several methods com-
puting the distance between two subspaces.
Corollary: The distance between two sub-
spaces S;, Sp is bounded, i.e., 0 <
dist(S1, S2) < /b, if and only if S; and S; co
incide, becomes 0; if and only if S: and S, are
orthogonal, becomes /p.

3.2 The Orthogonal Iterating Conver-

gence Theorem for the LSMs?

Given that symmetric matrix A € R**%, sup-
pose that Qo € R4%? is an orthogonal column
matrix composed of given initial basis vectors,
then use the orthogonal iterating method to
produce a matrix sequence {Qx} C R**P as
follows:
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Zi = AQg 1
k=1,2, - (13)
QrRy = Zk

where Z, is a transformed matrix of the or-
thogonal matrix Qk—_1; Ry is an upper trian-
gular matrix which includes positive element,
resulting in the Zj. being transformed by Gram-
Schmidt orthogonality normalization. In order
to analyse the nature of this iterating method,
assume:

QT AQ = diag(Ar, Az, -+, Ag) = D
A1) > A2l = > el (14)

where

Q=100 D=[¢ 5,09

and D, € RP*P D, € R(d=P)x(d=P) are diag-
onal matrix, Q, € R¥?, Qs € R¥(4=P) are
the block matrices of the Q, A; is the ith eigen
value. If |Ap| > |Ap41], we call the R(Qq) as p-
dimensional principal eigen subspace of the ma-
trix A, which is also invariant one correspond-
ing to the principal eigen value A, A2, -5 Ap.

Suppose that the orthogonal iterating meth-
od is convergent, then:

lim R(Qx) = R(Qa) (16)

Below, we give a theorem for the p-
dimensional principal eigen subspace of the ma-
trix A to which the subspace R(Q) produced
by the orthogonal iterating method converges.
Theorem 2: Assume that the eigenvalue de-
composition of the symmetric matrix A € R*d
is given by Egs.(14) and (15), and [Ap[ >
Aptils 8 = dist[R(Q4), R(Qo)] < 1, then the
matrix sequence Q formed by Eq. (13) meets:

dist[R(Qa), R(Q)]
(d—p)s? Ilz’)"r_l'?k

p—s”
(17)
—p)s2
1+ z(rjpfl“)v\_ﬁzi»l-l?k
thus
lim R(Qx) = R(Qa) (18)
k—oc

The proof see Appendix B.

According to Eq. (17), the convergence speed
which the subspace R(Q}) converges to R(Qa)
is related to IifAil, the bigger the value, the
faster the conve'rgence speed. This theorem
indicates that the above orthogonal iterating
method can form the eigen subspace of the sym-
metric matrix A.
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4. The Robustness and Disturbance
for the LSMs

Assume that the general form for the self-
supervised LSMs is as follows®)11):

L,=(I+ ukmkm{)Lk_l =ApLy_,
= ApAik-1-- ALy = Ay Ly (19)

where A, £ I+ uk:z:ka:{ is cAaJled a transformed
matrix at the kth instant; Ay = AxAr_;--- A;
a transformed matrix form the k = 1 instant to
the kth instant.
Theorem 3: For the LSM of Eq. (19), assume
te = p < 727 and ||zk|| = 1 (without loss of
generality), then the convergence solution for
Ak is:

A= lim Ay ~ I+ 'R (20)

k=N

where R = ~ Zzzl Zmxl is the estimate of
pattern autocorrelation matrix; u’ = Np.

Proof: Let Z; = :cka:z

VA= (T4 uZ0U + uZisy) (I + u2y)

my—

k k 1
=1 +ﬂ E Zvu +ﬂ2 E Z Zvul Z1n2

m=1 m)=2mg=1

mip—1lmy—1

k
+Il3 E E E Z'"l Zm2 Zn|3 + -

m1=3my=2m3=1

k
+u* Z

my=1 mp—1

E 5 Z1u]Zvn2"'Zvuk

mi=kma=k—1 my=1
(21)
Because of ||z|| = 1, the trace of the Z,,, is:
tr(Zm,) = tr(Tm, zr )
= tr(mz;kmmk) =1 (22)
S (Zmy Zmy - Zmy,) = 1 (23)

In order to derive the approximate solution
of the transformed matrix, general method is to
discuss the approximate solution corresponding

to its trace, so we make the trace the A\k:

tr(ﬁk)=d+ pk+ p*CEi + - + ukCf

k-1
=d+uk‘(l+u—2—

2k D(k=2) i’“;l)

+p +

6 k
(24)

Therefore, if uN—Q_l- < l,ie, p K Wr"_—l, when
k — N, we can neglect the term of above p2.
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A (25)
where ' = Nu, R= % Zﬁ:l Tpxl. O
Obviously, when the N pattern samples are
orthogonal, the high order term (above u?) in
the right of Eq.(24) are all zero, so Eq. (20)
becomes an accurate expression .
The above result can be generalized to any
LSMs, i.e., R can be varied with different learn-
ing methods®:

R= R _ S uEDRO) (26)
J#1

where R() is the auto-correlation matrix for the
ith category subspace, (") is the learning co-
efficient for the patterns in the jth category ro-
tating or learning the ith category subspace.
Lemma 1: Given that a symmetric matrix
A =T+ rcel € R4 where the 2-norm of
thece€ R?is 1, and 7 € R. Then®:
(1) MNA)=14a7,a,>0, Z?:I a; = 1.
(2) Ifr>0,0(4)>1,i=1,2---.d.
(3) f7<0,0(4)<1,i=1,2,---.,d.
where A;(A) is the ith eigen spectrum of the
matrix A.

According to this lemma and the properties
of the eigen spectrum of a matrix, we easily
obtain the eigen spectrum distribution theorem
corresponding to the transformed matrix of the
self-supervised LSM:

Theorem 4: The eigen spectrum correspond-
ing to the transformed matrix of a subspace

-~

AW = [ 4 D RG) _ Z#,-u“'”f?(” is11).

N,
/\k(A(l)) =1+ u(”i) Z aSrlL)(k)

m=1
N,
- Zu(w) Z a9 (k) (27)
J#1 m=1

where

d d
d_an(k) =1 3 aP(k) =1
k=1 k=1

This theorem is easily induced from the above
Lemma 1.

From above Theorem 4, we can see that the
mechanism of the self-supervised LSMs is to
gradually increase the eigen values of principal
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components in its own subspace, and to pro-
gressively reduce the effects of the eigen spec-
trums from the other category subspaces. Be-
low we discuss the disturbed properties of the
self-supervised LSMs.

Theorem 5: Assume that the transformed ma-
trix A € R%*¢ is disturbed by a random matrix
E € R%%?, the decomposing and the blocking
of the matrix A and E are as follows®"!!):

_ T 0,57
A= Q[ 0 T ]Q

Tpo_ | Bl Er2

@ EQ= [ Es  E2 ] (28)

where Q = [Q1,Q2] is an orthogonal matrix,
Q, € R¥?, Q, € R4*(d-P)  and assume
2p < d, and suppose that there exists a matrix
P e R(d_")j”, which ensures that the column
vectors of Q1 = (Q1 + Q2P)(I + PTP)™7 are
the orthogonal basis ones of R(A+ E), then the

distance for their eigen subspaces:

dist[R(Q1), ROy < AE2llz (59

o
where o0 = ’\p - ’\p+1 - ||E11“F — “EQQ”F >0
iszcalled separation degree, ||E12||r - [|Eai||F <
g
_4‘.
Proof: From the above given condition,

Ref. 12) has proved: there exists a matrix P €
R(d—p)xp.

1|l < AEall (30)
so that each column vector in matrix @ =
(Q1+Q2P)(I+ PT P)~2 forms a set of orthog-
onal base ones corresponding to eigen subspace
of matrix A + E. So we obtain:

QTQ, =+ PTP)"? (31)
thus
. F 1
IR itk = 2 7557m) (32)

where o;(P) > 0 indicates the ith eigen value
for matrix P which is usually very small. Gen-
erally, max{o,(P)} < 1, then:

1

7700 ~ 1 —Fa?(P) (33)
~NQT QR =) (1 - oi(P))
i=1
=p-||P|I% (34)

Finally, according to Theorem 1, we obtain:
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dist[R(Q1), R(Q1)] = \/p - 1QT Q113

~ 1P < B2l
- o

(35)
4
This theorem indicates that the upper bound
of the distance between the disturbed eigen sub-
space and the old eigen subspace is associated
with the disturbed properties in random ma-
trix E and the difference between the smallest
eigen value ), in its own eigen subspace and the
largest eigen value Apy; in the corresponding
complementary subspace; which discloses that
the learning mechanism of the self-supervised
LSMs successively increases the principal eigen
values in pattern eigen subspace by means of re-
peatedly iterating, so that the value A, — Ap+1
becomes bigger and bigger. Finally, the dis-
turbed upper bound of the pattern eigen sub-
space formed is inversely proportional to the
separation degree between the eigen spectrum
corresponding to the principal eigen subspace
and the eigen spectrum corresponding to its
complementary eigen subspace®-1!).

5. Conclusions

This paper discusses the statistical and dis-
turbed properties for self-supervised learn-
ing subspace methods for pattern recognition.
First, the new distance measure between two
subspaces is defined, the distance measure’s
theorem based on the F-norms is given and
proved. We prove the convergence of the learn-
ing subspace methods by two steps. The first
step is to prove that the iterating subspace is
convergent, the second step that the conver-
gence solution of the iterating subspace is also
convergent by an orthogonal iterating method.
So the orthogonal iterating convergent theo-
rem for subspaces is given and proved. After-
wards, the robustness and disturbance proper-
ties for the self-supervised LSMs are discussed,
the approximate expression of the eigen spec-
trum caused by LSM’s rotation is also given.
Finally, the upper bound disturbed theorem for
the LSMs is gived and proved.

From the analyses of the above statistical and
disturbed properties, we can attain several con-
clusions about generalization capabilities as fol-
lows:

(1) For self-supervised clustering methods,
their generalization capabilities are associated
with the learning algorithm used, and the qual-
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ity and the quantity of training samples avail-
able which make a main effect on the robust-
ness and disturbance of the clustering subspace
formed.
(2) The working mechanism of the self-
supervised LSMs is to gradually increase the
eigen values of principal components in its own
subspace, and to progressively reduce the ef-
fects of the eigen spectrums from the other cat-
egories’ subspaces.
(3) The upper bound of the distance between
the disturbed eigen subspace and the old sub-
space is associated with the disturbed proper-
ties in random matrix E, and the difference be-
tween the smallest eigen value ), in its own
eigen subspace and the largest eigen value ),
in corresponding complementary subspace.
Obviously, above analysis of the disturbed
properties and generalization capabilities for
self-supervised learning subspace methods for
pattern recognition is instructive to speech
recognition and clutter classification in time
varying and nonstationary dynamic environ-
ments.
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Appendix A

Proof:
YT
YT =T-Y,v]) (A-2)
I-XInY"'x, = XTvwylx, (A3)

tr(X{ .Y, X)) = tr(1 - XTV YT X))
(A-4)
From Eq. (6), we obtain:
xiny'x, =vdy 2w? (A-5)
Ltr(I - XTvy T X))
=tr(U(I =Y *)UT)

= tr(diag(1 - (rf,l - 03, 1 —a?))

p
p
=2 (-0}
=1

~dist(S1,52) = \/(tr (X TV, Y Xy)

(A-6)

(A-7)
Besides
IXTYF = [IXI % + | XTI Vs %
(A-8)
and
IXTY|F = 1X1]1% = tr(XT Xy)
=tr(l) =p (A-9)
P
IXInlE =3 o? (A-10)
i=1

Combining Eq. (A-8) with Eq. (A-9):
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IXTYallr = JIXTY 1% - IXTY213
4
= Z (A-11)
- dist(Sy, S2) = 1|X1TY2||F (A-12)

ThlS completes the proof for Theorem 1.
Appendix B
Proof: From Eq.(13), we deduce:

A*Qo = Qk(RkRk-1-- R1) (B-1)
From Eqgs.(14) and (15), we obtain:
Dk 0
T pkp) — Dk — 1 _
QratQ=D"=| 1 (B-2)
- D*QTQo = Q" Qk(RkRk—1 -+ R1)
(B-3)
\% Vi
D* [ W(']o } = [ Wkk ](RkRk—l"'Rl)
(B-4)
Let Vi 2 QTQx, Wi = Q5 Qk, k=0,1,2,--

Combining Egs. (B-4) and (B-2):

DY 0 Vo
0 D} W
= [ |mim) @)

Because general Vj is nonsingular, the solu-
tion of this equation:
Wi = DEWoV, DRV (B-6)
Using the distance measure given by Theorem
1(p=49)
- dist[R(Qa), R(Qx)] = |QF QxllF

||D5[F [Wollr
= ||W, <
” kHF —_ ”D,ICHF ”VOHF “ kHF
(B-7)
ID31lF =
< Vad-ppnl* (B-8)
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D5l = 4| D il
1=1
> /ol (B-9)
- dist[R(Qa). R(Qo)] = |Q5 QollF = s

QI QollF = VP — 82

In the light of the same method:

Villr = 1QTQkllF = v/ — 1QE Q%
= \/p— lIWkll; (B-11)

Combining Egs. (B-8), (B-9), (B-10) and (B-
11) with (B-7), we obtain:

d—Dp Apti
WVillr <4/ ——1—
Wille </ =R1E

X——p\/—s—j—;\/?— ||W'kl|%*

(B-12)

The solution of this inequality is Eq. (17).
Because of |Ap,| > |Ap41, when k — o0,

(B-10)

dist[R(Qa), R(Qx)] — 0
That is:
lim R(Qx) = R(Qa) (B-13)

This proof is complete.
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