TEMALEEASE500E (ERIIESR) 28 A&

Load Balancing in Parallel Database Systems

4 K—1

Jiahong Wang', Masatoshi Miyazakif, Hisao Kameda!, and Jie Li
tIwate Prefectural University, University of Tsukuba

1 Problem :
Many parallel database systems have the shared-nothing
architecture (Fig. 1). Examples are IBM DB2 Parallel
Edition [4] and Sybase MPP [5]. In a shared-nothing sys-
tem, there are multiple processors connected by an inter-
connection network. Each processor accesses its private
memory. Database is divided into several smaller par-
titions, and these partitions are distributed across disk
drives attached directly to each processor. Retrieval and
update requests are decomposed into sub-requests and
executed in parallel among the applicable nodes.

]

P __] P - Processor
‘ M - Memory
2%

Node4

Interconnection Network

|
] I
[p P

oifce

Nodel Node2

Node3
Figure 1: An example of shared-nothing system and data

skew. In this system, there exists 2% of the data at nodes
1, 2, and 4 respectively, and 94% of the data at node 3.
Node 3 becomes a bottleneck of the system.

When a shared-nothing system is initially built, da-
ta can be evenly distributed over the nodes of the sys-
tem. After a period of use, however, as a result of insert,
delete, and update activities, some partitions grow and
others shrink, and data skew occurs (Fig. 1). Numer-
ous previous studies have shown that data skew degrades
system performance significantly [1]. In order to sustain
system performance, data has to be moved across nodes
s0 as to keep system data load balanced. In addition,
when a new node is added to the system, system data
load has to be rebalanced too. Moving data, includ-
ing dropping and rebuilding indexes, however, general-
ly requires taking a database off line for a long time,
which can be unacceptable for a highly available system
(a system to be fully available 24-hours-per-day and 7-

- days-per-week). This paper addresses a very practical
subject: moving data on line, i.e., redistributing data
concurrently with users’ reading and writing of the da-
ta.

2 Solution

System model: It is assumed that each node has the
same software architecture (e.g., file organization). This
is the general case for shared-nothing systems.

The relational database system is considered. Fach
relation table is divided into several partitions. One par-
tition can not be allocated to more than one node, but
more partitions can exist at one node. A partition and
all its indexes are organized as a partition object, which

is fully self-describing so that it can be moved from node
to node. By the movement of partition objects, the data
load on the system remains balanced. Since a partition
and its indexes are moved as a whole and each node has
the same software system architecture, no index rebuild-
ing is required for the moved data.

The storage of a partition is divided into units called
partition pages. Hierarchical index structure such as B*+-
tree is assumed, and the storage of an index is divided
into units called index pages.

Oun-line data redistribution: Assume that a partition
object P with a single index [is required to be moved
from node S to D. This is performed by the following
two phases. In the meantime, P is available to users.
PHASE 1: Moving the index I: the following four con-
current actions occur:

1.Send D the index pages one by one until the end of
is reached. When the end of I is reached, send system
coordinator a message indicating that I has been sent.
2.For each dirty index page that is to be forced into the
disk from system buffer pool of 5, if this page has been
sent to D, then send D again a copy of this page along
with the corresponding page number.

3.Initialize an index file at D for the received index
pages, and enter each page received into this index file,
with the page number remaining unchanged.

4.Upon receiving the message, system coordinator
switches to D the newly-arrived transactions that access
P, and start the phase of moving the tuple data.
PHASE 2: Moving the tuple data: the following three
concurrent actions occur:

1.Send D the relation pages one by one until the end of
the relation file is reached. When a page is sent, check
if there comes a page-requesting message, If there does,
then send D the requested page.

2.Initialize a relation file at D for the received relation
pages, and enter each page received into this relation file,
with the page number remaining unchanged.

3.For each page access request for P at D, check if the
page has been in D, if it does, then fetch it from D
directly, else fetch it from & remotely by sending a page
request to S and waiting for the requested page.

3 Performance Study

Experimental testbed: In order to evaluate the pro-
posed approach, we buiit a functional shared-nothing
system (Fig. 2). In the front-end node, there exists a
workload generator for simulating a multi-user applica-
tion environment, a redistributor for managing the da-
ta redistribution, and a client version of the Postgresql

3—2

database management system [3]. In each data process-
ing node there exists a modified server version of the
Postgresql in which the proposed approach is embedded.
Data is moved from node 1 (S) to node 2 (D).

Front-end Node:
Workload \,_,~ = .
“C Client_) | CPU: UlraSPARC, 1670z
,”" Redx'slribut

Memory: 128Mbytes
08; Solaris 2.6 Desktop
DB: MIgrmql Client, V6.4.2

r Interéonnectm)z Network (Bthernet lOMbps 1
- = [~
S . Sourcc _____ Destination ¢ -
= -

Data Processing Node 1
CPU: Pentium, 450MHz
Memory: 128Mbytes
Single disk: 10GB

Data Processing Node 2:
CPU: Pentium, 133MHz
Memory: 80Mbytes

Single disk: 1.6GB

OS: RedHat Linux 5.2 OS: RedHat Linux 5.2

DB: Postgresql Server, V6.4.2 DB: Postgresq] Server, V6.4.2

Figure 2: Experimental testbed.

The wisconsin benchmark relation [2] is-used. Each
tuple is 148 bytes long. One partition object (500000
tuples of data with a b-tree index of 10117120 bytes)
of the relation is considered, which is initially placed on
data processing node 1. Note that there was no point in
having more than one relation or partition object in the
experiment because only one partition object of a single
relation is moved at a time.

The workload generator maintains MPL (MultiPro-

~gramming Level) clients. Each client starts a trans-
action, which is executed by the corresponding server.
Fach transaction accesses exactly one tuple at random.
A transaction accesses one index to locate the page of the
tuple, and then retrieves the page from disk and accesses
the tuple. For read-only (RO) transactions, the content
of the tuple is returned to the client. For read-write (R-
W) transactions, the tuple is updated and written back
into the disk. When a transaction is completed, the cor-
responding client exits, and & new client is generated
immediately. The ratio of occurrence probability of RO
to RW transactions is 0.7:0.3.
Performance results: One of the performance metrics
is transaction throughput that is defined as the num-
ber of committed transactions per second. The oth-
er is a so-called normalized loss metric used to esti-
mate the loss of the system in terms of the number
of potential transactions that could not execute due to
contention caused by the data redistribution activity:
loss = (Tnormat — Tredis) * RTyeqis and the normalized
loss is the loss for the proposed approach divided by the
loss for the off-line approach. Here Ty ormar is the aver-
age transaction throughput in the case that no data re-
distribution occurs, RT,.4;s 18 the time to complete the
data redistribution, and T}..4;s is the average transaction
throughput within R7cq;,.

Figure 3 gives average transaction throughputs at dif-
ferent MPLs in the case that data redistribution is and
is not performed respectively. Figure 4 gives results of
the normalized loss for the proposed approach and the
off-line approach. The line “Normalized loss in the case
of off-line” says that, if we perform data redistribution
off line, no transactions can be executed during data re-
distribution period, and the system losses 100% of the
transactions. The line “Normaljzed loss” says that, if we

perform data redistribution on line, 40% of performance
improvement can be achieved.
3) .

=)

=

o

(&3

@

o 25}

12}

[

S

S a2t o &
@ < -

] "

£ 15}

5

Q

s

2 ir

[

£

[

N 0.5

I Throughput during data redistribution period —6—
g o Throughput during normal operation period —&~—

0 5 10 15 20 25
Multiprogramming Level (MPL)

Figure 3: Average transaction throughput.

1.2
1
g .
2 08¢}
-t
®
N 06}
©
E
2 04 r
0.2 ¢ 1
Normalized loss —e—
0d Normalized loss in the case of off-line
0 5 10 15 20 25

Muiltiprogramming Level (MPL)

Figure 4: Normalized loss.
4 Conclusion
We have proposed an effective approach for rebalanc-
ing data load of the shared-nothing system, which al-
lows concurrent read and write operations by transac-
tions while data is rebalanced, so that a very large or
highly available (24-hour) system need not go off line for
data load rebalancing. Our goal is to increase concurren-
cy, decrease overheads, and decrease time requirement as
far as possible, which was achieved by the following: (1)
When data is moved, no locks are acquired on both the
data and its indexes. (2) No time-consuming log scan is
required, which is necessary for the previous on-line data
redistribution approaches. (3) The data and its indexes
are just moved from the source node to the destination
node (as if the ftp utility was used), and re-used there.
Indexes at the source node can be dropped simply, and
the conventional time-consuming index rebuilding at the
destination node is not required. (4) While data and its
indexes are moved, users can use the data normally, as
if no data movement occurred at all.
References
{1] D.J. DeWitt and J. Gray, Parallel Database Systems: The

Future of Database Processing or a Fad?, Comm. ACM, 35(6):

85-98, 1992.
[2] J. Gray, The Benchmark Handbook for Database and Transac-

tion Processing Systems, Ed., Morgan Kaufmann Publishers,

Palo Alto, CA, (1993).
[3] M. Stonebrakeér and’'G. Kemnitz, The POSTGRES Next-

Generation Database Management System, Comm. of the
ACM, 34(10)l 78-92, 199

[4] DB2 Parallél Edition Vl 2 Parallel Technology, IBM Corp.,
Apr. 1997.

[5] S;?base Technical News, Vol.6, No.9, Dec. 1997.

