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Transactions on Distributed Mobile Replicated Ob jects

TAKEAKI YOSHIDA! and MAKOTO TAKIZAWA!

According to the advances of communication technologies, various kinds of mobile wire-
less stations like personal handy systems and intelligent robots are available. Ob jects support
abstract operations and are distributed in not only fixed stations but also mobile ones. Trans-
actions manipulate multiple, possibly replicated objects in mobile and fixed stations. While
the objects are moving from one location to others in the system, the quality of service (QoS)
supported by the objects change. The connection is tentatively closed by the mobile station in
order to reduce power consumption while the operations issued by the mobile station are being
computed, i.e., disconnected operations. We discuss the migration and replication methods
to treat disconnected operations. In addition, we present an optimistic concurrency control to
maintain mutual consistency among the replicas by taking into account more abstract types
of operations on the objects other than read and write on files.

1. Introduction

According to the advances of communica-
tion and computer technologies, kinds of mo-
bile wireless stations like personal handy sys-
tems are available. The distributed systems are
composed of mobile and fixed stations intercon-
nected by communication networks. The fixed
stations are connected at a fixed location in the
communication network. The mobile stations
in a cell communicate with the mobile support
station (MSS) in the cell by using wireless com-
munication. The mobile support station main-
tains the connection of the mobile station in
the cell with another station. If the mobile sta-
tion moves to another cell, it can continue to
communicate with the station through the mo-
bile support station in the cell. Tanaka!”) and
Teraoka!®) discuss protocols for supporting con-
nections with mobile stations.

Users access objects in the fixed server sta-
tions through the mobile stations. The mobile
stations are not equipped with enough battery
capacity to have long-time communication. In
order to reduce the power consumption, the
connections between the mobile stations and
fixed stations are disconnected while the oper-
ations issued by the mobile stations are being
computed, i.e., disconnected operations!?). Qne
technique to compute the disconnected opera-
tions is to cache data in the fixed station like a
server to the mobile station. Without commu-
nicating with the fixed station, users can ma-
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nipulate the data cached into the mobile sta-
tion. Barbara® and Huang® present how to
cache the data in the fixed stations to the mo-
bile stations and how to maintain the mutual
consistency among the caches and the fixed
stations. Jing'!) discusses the locking scheme
based on the optimistic two-phase locking?’ on
the replicas and a way to reduce the communi-
cation overhead to release the locks.

In this paper, the distributed system is as-
sumed to be composed of objects distributed
in multiple stations. Each object supports ab-
stract data and operations for manipulating the
data, while only read and write operations are
considered in the other papers®»®-'Y). On re-
ceipt of the operations, the objects start to com-
pute the operations, which furthermore may is-
sue operations to other objects. On completion
of the operations, the objects send back the re-
sponses. The computation of each operation on
an object is viewed to be atomic, i.e., the op-
eration is completely computed or nothing?):7).
The computation of an operation issued by the
operation is also atomic, i.e., nested!®) 1",

The objects may be replicated into multiple
replicas in order to increase the reliability, avail-
ability, and performance. In this paper, we as-
sume that the object is fully replicated, i.e..
the replicas have the same data and operations
as the object. We discuss an optimistic con-
currency control to maintain the mutual con-
sistency among replicas of objects supporting
more abstract nested operations than read and
write.

According to the movement of the mobile sta-
tions, the objects in the mobile stations are
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viewed to move from one location to different
locations. Mobile objects are objects which can
move from one location to others in the system.
Fized objects are in the fixed stations. Each
object is considered to support some quality of
service (QoS) like response time and bandwidth.
Thus, according to the movement of the object
o, the QoS of o is changed. The movement of o
is modeled as the change of the QoS supported
by o in this paper. Problem is how to support
users with the service required by the users un-
der situations where the objects are moving in
the system. In this paper, we would like to
discuss how to manage transactions which ma-
nipulate mobile and replicated objects, which
support nested, abstract operations.

In Section 2, we present the system model.
In Section 3, we discuss how to compute dis-
connect operations. In Section 4, we present
how to compute operations on mobile objects.
In Section 5, we discuss how to maintain the
mutual consistency among the replicas.

2. System Model

The distributed system is composed of mul-
tiple stations interconnected by communication
networks (Fig. 1). There are two kinds of sta-
tions, i.e., fired and mobile ones. The fixed
stations are connected at the fixed location of
the network. The mobile stations communicate
with the mobile support station (MSS) by us-
ing the wireless channel. If the mobile station
moves to another cell, it communicates with the
mobile support station in the cell. By the cur-
rent network technologies!”>18), the connection
among the stations can be maintained while the
stations are moving.

A unit of resource in the system is referred to
as object, which is composed of abstract data
and operations for manipulating the data. Each
object o can be manipulated only by the oper-
ations supported by o. We assume that each
object is stored in one station.

There are two kinds of objects, i.e., class and
instance. The class includes the scheme of the
data and the operations for manipulating the
data. The instance is composed of the data
instance of the scheme and the operations in-
herited from the class.

The objects may be replicated into multiple
replicas which are in different stations. Here,
suppose that an object o is replicated into mul-
tiple replicas o!,...,0' (I > 2) where each o' is
in a station s; (z = 1,...,1). If the replicas have
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Fig.1 System model.

the same data and operations as o, o is referred
to as fully replicated to o,...,o'. If not, they
are partially replicated. First, suppose that o is
a class. s; has all operations supported by o if
o is fully replicated. s; has some operations of
o if partially replicated. Next, suppose that o
is an instance. Each s; has the data instance
and the operations. If o is partially replicated.
s; has a part of the data of o.

If an object o is in a mobile station, the loca-
tion of o is changed according to the movement
of the station. We would like to discuss how the
movement of o is viewed. For example, the re-
sponse time to manipulate o may be increased
due to the increased latency to o. Thus, the
movement of o is modeled to be the change of
the quality of service (QoS) supported by o.
[Definition] An object o is mobile iff the QoS
supported by o is time-variant. O

The computation of an operation op in an
object o may invoke operations in other ob-
jects. The computation of op is considered to
be atomic. That is, all the operations invoked
by op complete successfully or none of them. If
some operation invoked by op fails, all the op-
erations invoked by op have to be aborted. The
computation of each operation invoked by op
is also atomic. Hence, the computation of the

operation is considered to be a nested transac-
tion16)19).

3. Operations on Disconnected Ob-
jects

We would like to discuss how to compute op-
erations on mobile and replicated objects.

3.1 Disconnected Operations

Suppose that there are three objects o,. 0y,
and o,;; with the data d;, d;;, and d, ., re-
spectively. Suppose that an operation op, in o,
invokes an operation op;; in o;; and op,; fur-
ther invokes op;; in 0;;x as shown in Fig. 2.
op;; manipulates d,; in o;; and op, i manipu-
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lates d;jx in o0;55. Since the mobile station is
not equipped with such a powerful battery that
it can have long-time communication, the mo-
bile station often has to close the connection
with other stations to reduce the power con-
sumption. The mobile station also may be dis-
connected due to jamming and noise. Thus, the
operations may be disconnected'!) while the op-
erations are being computed. If the object has
no connection with the other objects, the ob-
ject is a disconnected. Objects which are not
disconnected are connected.

There are ways to continue the distributed
computation on mobile and fixed objects in the
presence of the disconnected objects:

(1) migration of objects, and

(2) replication of objects.

In the migration way, the operations and data
of the disconnected object are transferred to an-
other station. On behalf of the disconnected
operations, the operations migrated are contin-
ued to be computed. The data caching is a
kind of migration where only data in the object
is copied to another station. In the replication
way, the object is replicated into multiple repli-
cas o} .. .05 If a replica ofj used by an ob-
ject o; is disconnected, o; manipulates another
replica o, on behalf of o..

3.2 l\liigration of O{) jects

First, we would like to discuss how to migrate
objects from one station to others. Here, sup-
pose that o;; in Fig. 2 is to be disconnected due
to the close of the connections. There are two
ways for migrating the object:

(1) to migrate the disconnected object o;; in

8i; to another station, and

(2) to migrate the connected object 0;jk in

8;jx to the disconnected station Sij-
One way is to migrate the disconnected object
0i; to another station. For example, op;; and
di; of 0;; are migrated from s;; to another sta-
tion s,;; as shown in Fig.3. If 8;jk has the
class of o;5, only d;; can be migrated to Sijk
since s;;x has the operation op;;. After migrat-
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Fig.4 Migration of 0ijk to 8;j.

ing 0;; to s,k, op; can still invoke op;; of o;; in
Sijk- If 0;5 in s;; is reconnected, 0;; waits until
opi; in 8;;; completes. Then, d;; in s, is sent
to s;; if d;; is changed by op;;. On receipt of
dij, d;; is restored to the data in o, ;- In stead
of migrating o;; to Sijk, 0;; may be migrated to
8; or the other station.

Another way is to move the connected objects
to the station s;; to be disconnected. For ex-
ample, suppose that 0;jk is migrated to s;; as
shown in Fig.4. o;;; is migrated to s;; from
Sijk- Since oy is still connected, 0;jx is manip-
ulated by other objects while d;jx is being ma-
nipulated in s;;. In the caching method, only
d;; is sent to s;; assuming that s;; has the class
of 05, i.e., operations for manipulating d;;. It
is problem how to maintain the mutual consis-
tency of d,;x among s,; and 8ijk- The problem
is discussed already by many papers3)9).

As stated now, if 0;; is to be disconnected,
there are two migration ways, i.e., (1) op;; and
dij of 0;; in s,; are migrated to another station
or (2) opijx and d;j; invoked by op;; are mi-
grated from s;;x. It depends on which object
0;; Or 045 coordinates the distributed compu-
tation. For two objects 0;j and o, if 0, coor-
dinates the computation on 0;; and o5, 0y is
referred to as superior to 0i;x- An object which
is not superior is migrated to a superior ob ject.
For example, if o;; is in the mobile handy sta-
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tion and a user interactively manipulates o;;x
through o;;, 0;; is superior to 0;;k, 1.€., 0ijk is
mrgrated into s;;. If neither o;; nor o5 are su-
perior, 0;; and o, ;; are referred to as equivalent.
Suppose that o;; and o, are equivalent. The
following migration strategy is adopted to re-
duce the communication overhead:
[Selection of objects]

(1) If either o;; or o is updated, the object
whose state is not changed is moved to the
other.

(2) If a volume of operation and data to be
sent to 8;;x is smaller than 045 Oijk is mi-
grated to s;;. Otherwise, o;; is migrated to
8ijk- O

Suppose that an object o;; is updated by the
operation op;; and oy is not updated by opi ;.
If the object o;; is migrated to another station
Sijk, 0ij in 8;; has to be synchronized with the
object migrated in s;;x when o;; in s;; is recon-
nected.

3.3 Replication of Objects

We would like to discuss a case that o;; is

replicated into multiple replicas. If one replica
bemg manipulated is dlsconnected another
rephca o is used on behalf of o Suppose that
0i; 18 rephcated into two rephcas ou and o - as
shown in Fig. 5. In this paper, we assume that
the objects are fully rephcated ie. o” and o”
are the same as o;;. If o}, is to be drsconnected
op; can invoke op;; in the replica Ow and op;;
in o - can invoke opi ;i as shown in Fig. 5. Here,
the current state of o} ;; has to be sent to o? P
On receipt of the states of d;; and op;;, the
states are restored to d;; and op;; in oj; and
then o? ;; starts to compute op;; for the current
state received from o}
Another way is to aﬁort op;. By the abortion
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Fig.6 Movement of object.

of op;, op;; and op; i are aborted. Then op; is
restarted and op; invokes op;; in o . again.

4. Operations on Mobile ObJects

We would like to discuss how to compute op-
erations on mobile objects.

4.1 Less-qualified Operations

Each object supports some service, i.e., oper-
ations for other objects. The quality of service
means the performance, reliability, availability,
and security aspects of the operations. Accord-
ing to the movement of the object, the qual-
ity of service (QoS) supported by the object is
changed while the object supports the same ser-
vice. For example, the bandwidth between o,
and o, in Fig. 2 is changed to be lower if o, is
moved to a station 31 . which is connected with
the lower bandwidth network b (Fig.6). Thus,
the QoS of o,; is defined for each object o,; is-
suing operations to 0;;x. Q0S(0:j,0;;1) denotes
the QoS which o;; supports for o;jx-

Suppose that o;; is replicated to two repli-
cas o1 and oQJ as shown in Fig.4. If the QoS
of oJ for 0;, i.e., QoS(0;j,0;) is degraded to
be lower than opz expects to take from o, ) 0,
can use another replica o?; in stead of o} if

J supports the better QoS than o . Here, let
ReQ(0;;,0;) denote the QoS Wthh 0; requires
0;; to support. Let @; and Q2 denotes two QoS
values. Q1 < Q, means that @ is better than
Q.. For example, if @, and Q- represent the
bandwidths 10Kbps and 1Mbps, respectively,
Q1 2 Q2.

[Deﬁmtron] Suppose that op; invokes op;;.
op;; is referred to as less-qualified for op; if
QoS(0i;, 0;) 3 RGQ(O”, 0;). =
Suppose that an object o;; is replicated to
(> 2) replicas oU, e o‘J where each replica
is stored in a station s®(h =1,...,1). Let
r(ol]) be a set of replicas 0y - - ,0.,. 0, has to
find a replica o - whose QoS is the best in r(0;;).
o; selects one replrca ofj among the replicas in
r(0i;) as follows.
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[Selection of the replica]

(1) o; sends Rg-QoS messages to all the
replicas o, ...,0};.

(2) On receipt of the Rg-QoS message from
0;, each replica o - sends back the Rp-QoS
message with the QoS of of; to o; (k =
1,...,0).

(3) If o; receives the Rp-QoS messages from
the replicas, o; selects one replica o - with
the best QoS among them.

Then, op; invokes the operation op;; in o . This
method implies larger communication overhead
to broadcast Rg-QoS messages to all the repli-
cas. Hence, we adopt the following heuristics
to select the replica.

[Selection of the replica]

(1) If there is a rephca o;; in the same cell
as o;, the replica o J1s selected If there are
multiple replicas in the cell, the replica Om
which supports o; with the best QoS among
them is selected.

(2) If there is no replica in the cell, o; broad-
casts the Rq-QoS message by the selection
algorithm. a

Another way is that there is one coordinator

of the replicas, say o};. o}; monitors the change

L
of QoS of each replica of;. o; first asks o}, to

ij

k.

find the best replica for o;. Then, o}j selects
the best one, say of;.
While op;; is computed in om, the QoS of 0

rnay be changed according to the movement of
. If op;; could not support the QoS required,
ie op;j is less-qualified, o, can select another
rephca of o;; which supports the better QoS
than of
[Resolutnon of the replicas]
(1) If the QoS of o . is being degraded for
some time units, o, ﬁnds the best replica
Wthh is better than o - by the selection
procedure
(2) If o - is detected, o, requlres o’c to send
the states of d;; and op; to of; On receipt
of them from ofJ, ohJ restores them to the
state. o; invokes op;; in of;. a
4.2 Faulty replicas
One problem on considering the disconnected
operations is how to differentiate disconnected
objects from faulty objects. Suppose that o;; is
faulty in Fig.2. If o;; stops by failure, the con-
nection with o5 is closed. o0;;; cannot know

whether o;; is faulty or not because the connec-
tion is closed and there is no way to commu-
nicate with o;;. Here, we make the following
assumptions:
[Assumptions]
(1) The network is synchronous, i.e., the
propagation delay is bounded.
(2) The computations in the objects are syn-
chronous®). a

The assumptions mean that faulty objects can
be detected by the timeout mechanism.
We adopt the following strategy to detect
faulty objects:
[Detection of faulty objects]
(1) The disconnected object o,; sends peri-
odically an Alive massage to o; and Oijk-
(2) After the disconnection, if 0i;k or o, does
not receive any message from o;; for some
predetermined time units, o;;x considers
that o;; is faulty. a
The operational objects have to send Alive mes-
sages to inform other objects of their being op-
erational. The Alive message is sent by using
the connectionless communication.
4.3 Computation of QoS
Since o manipulates o, by an operation op,,
the QoS is redefine as QoS(o0;:0p;,0). We
would like to discuss how QoS(o;:0p,,0) is
computed. Since operations in objects are
nested, QoS(o0;:0p;,0) depends on not only the
computation of actions in o but also QoSs
of operations invoked by op;. Suppose that
op; invokes operations op;i,...,op;m of ob-
jects 0i1,...,0im, respectively. QoS(o,:0p;,0)
is computed as follows:

QoS(o; : op;j,0) = fi(QoS(0i1 : opi1,0;),
y» Q0S(0im : OPim, 0;),qos(op;, 0)).

Here, qos(op;,0) denotes the QoS required
for op; to manipulate o;. f; is a function
which gives the QoS of op; from the QoSs of
Opi1,---,0P;m. There are kinds of QoSs. The
computation time of op; is obtained by adding
the computation times of op;i,...,0p;, and
op;, i.e., f; is “+” if op; is computed sequen-
tially. If op;1,...,0pim in op; are computed in
parallel, the QoS is obtained by taking the max-
imum one among of op;1,...,0p;m.

In order to compute the QoS of op;, o; asks
045 to send QoS(o;j:0p;;, 0;) periodically or each
time op; is invoked.
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5. Type Based Optimistic Concur-
rency Control

We would like to discuss how to maintain mu-
tual consistency among the replicas.

5.1 Lock Modes

Objects may be replicated. Here, for an ob-
ject oy, let r(o,) be a collectlon of replicas of o;,
ie, r(o;) = = {o},.. (i > 2), where each
o] is a replica of o; ( ] =1,...,1;). Each replica
o} is stored in a station s;; (] =1,...,1;). We
would like to discuss how to mamtam mutual
consistency among the replicas.

Before an operation op; is applied to o;, o;

is locked. If o; is locked, op; is computed in
o0;. If not, op; waits. Two operations op; and
op; are referred to as compatible iff the states
obtained by computing op; and op; in any or-
der are the same. In order to increase the con-
currency, kinds of lock modes are introduced,
e.g., read and write modes. The objects sup-
port more kinds of operations than read and
write of the file objects. An operation op; of o;
is assigned a lock mode m(op;). The compati-
bility relation among the lock modes is defined
as follows'?).
[Definition] For every pair of lock modes m,
and ms supported by an object o;, m; is com-
patible with mo iff an operation of m, is com-
patible with operations of m;. a
If m,; is not compatible with mq, m; conflicts
with mq. That is, op; of m; has to wait until the
operations of mg complete in o;. For example,
a Bank object supports operations deposit and
withdrawal. The modes of deposit and with-
drawal are compatible.

Objects support various kinds of abstract op-
erations like deposit and withdrawal while the
database systems support only read and write
operations. Hence, various kinds of lock modes
are supported by the objects. The precedence
relation among the lock modes is formally de-
fined by Korth!®). Here, let M, be a set of lock
modes supported by an object 0. For each mode
m in My, let ¢(m) (C Mp) be a set of modes
which m is compatible with.

[Definition] For every pair of modes m; and
ms of an object o, m; < mg (mg is stronger
than m,) iff ¢(m1) 2 c(m2). a
Here, m; < m, means that m; is stronger than
my. If neither m; < mg nor mgs < m;, My
and m, are equivalent (m; || mg). Here, m; <
mq or my || my. Here, read < write because
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c(read) = {read} 2 c(write) = ¢.

5.2 Optimistic Locking

The typical scheme to maintain the mutual
consistency among multiple replicas is the read-
one and write-all (ROWA) principle. That is,
the read operation is issued to one replica while
the write operation is issued to all the repli-
cas. If one replica is locked in a read mode, the
read operation can be computed in the replica.
On the other hand, if all the replicas could
be locked in the write mode, the write oper-
ation is computed in all the replicas. In or-
der to reduce the communication overhead, the
optimistic approach!?) is adopted. Carey? dis-
cusses the optimistic two-phase locking (O2PL)
protocol. Jing'!) extends the O2PL so as to
reduce the communication overhead by avoid-
ing the releases of the locks. In the O2PL, one
replica is locked by read but the replicas are not
locked by write. When the transaction com-
mits, the replicas updated are locked by write.
More abstract types of operations are consid-
ered in the objects than the read and write op-
erations. The read-one and write-all principle
can be extended by taking into account the var-
ious kind of lock modes.

The second point on the operations is con-
cerned with whether the operations change the
state of the object or not. For example, deposit
and withdrawal change the state of Bank while
they are compatible. If an operation op does
not change the state of o, op can be computed
in only one replica of 0. Otherwise, op has to be
computed in all the replicas to keep the mutual
consistency among the replicas.

The third point is concerned with whether
the operations invoke another operation or not.
Suppose that an operation op; in o; mvokee op;;
1n o0i; and o; is replicated to two reph( as o and

If op; is computed in o} and 0%, op;, is in-
voked twice, i.e., by op; in o} and o?. It implies
the inconsistency among o; and o;;. Hence. if
an operation in an object invokes another op-
eration, the operation can be computed in only
one replica and the state obtained by comput-
ing the operation in the replica has to be trans-
ferred to the other replicas to make the states
consistent.

[Optimistic locking] Suppose that an opera-
tion op of a mode m; is issued to o.

(1) If my; < m, for every mode m; of o, one

replica o* in 7(0) is locked, and op is com-

puted in o* if op does not change the state
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of o, otherwise op is computed in all the
replicas,

(2) Otherwise, all the replicas in r(o) are
locked, and op is computed in all the repli-
cas. O

Problem is the communication overhead since
all the replicas have to be locked by the opera-
tions whose modes are not minimal.

5.3 Optimistic type-based locking

We adopt the optimistic approach to reduce

the communication overhead, named optimistic
type-based locking (OTL). We make the follow-
ing assumption.

[Assumption] The less restricted the opera-
tions are, the more often they are used. O
Each operation op locks some number of repli-
cas in (o) rather than locking all the replicas.
The more restricted the operation mode is, the
more replicas are locked. For each operation
op; in o0;, a number g(op;) is given as follows.

* q(op:) < q(op;) if m(op;) < m(op;).

o 1<gq(op:) <L

e for every op;, if m(op;) X m(op;), q(op;) =
1.

op; locks g(op;) replicas of 0;. For example, sup-
pose that there are five replicas of an object o,
and o; has three operations op;;, op;2, and op;3.
Suppose that m(opi1) < m(opiz) < m(op;3).
g(opin) = 1. gq(opi2) and g(op;3) are, for ex-
ample, given as 2 and 3, respectively. Before
computing op;2, two replicas in five ones are
locked.

An operation op; locks an object o; by the

following scheme.
[Locking scheme]

(1) Before computing op;, g(op;) replicas in
r(0;) are locked in a mode m(op;). Here,
let s(op;) be a subset of replicas in 7(o;)
which are to be locked here.

(2) If all replicas in s(op;) are locked, op; is
computed.

(a) If op; invokes operations in other ob-
jects, op; is computed in one replica in
s(op:).

(b) Otherwise, op; is computed in all the
replicas.

(3) If some replica in s(op;) is not locked, op;
aborts. a

Since a stronger operation op locks more repli-
cas, op is more often aborted if other stronger

operations are manipulating the replicas. If a
replica is in the same cell as an object invok-
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ing op;, the replica is locked at step (1). The
replicas with the better QoS are selected to be
locked as discussed in the preceding subsection.
We would like to discuss how an operation op
invoking op; commits. The commitment of op,
on multiple replicas is coordinated by the two-
phase commitment?). One replica o* in s(op,)
plays a role of the coordinator and the other
replicas are the participants.
[Commitment)]

(1) of sends a Prepare message to all the
replicas. The participant replica ¢! which
is not locked by op;, i.e., 0! in r(0,)—s(op;),
is locked in the mode m(op;) on receipt of
the Prepare message. If locked, the replica
o] sends back Yes message to o.

(2) If some replica o} in r(0;) — s(op;) is not
locked, o} sends No to of.

(3) If of receives Yes from all the partici-
pant replicas, of sends Commit to all the
participants. If of receives No from some
participant, of sends Abort to the partici-
pants sending Yes.

(4) If the participant replica o/ receives
Abort, o] abort op; if o] had computed op;.

(5) If the participant replica o] receives
Commiat, all the replicas in r(0;) — s(op,)
are locked.

(a) Unless op; invokes operations in
other objects, op; is computed in all
replicas in 7(0;) if op; changes the
state, otherwise op; commits.

(b) Otherwise, the state of the replica
whose op; is computed is sent to all the
replicas. O

If op; invokes an operation op;; in another ob-
ject and op; is computed in o;, op;; is computed
more than once. In order to avoid the iter-
ated computation, op; is computed in only one
replica, say o;. In stead of computing op; in the
other replica, the state of o; is sent to all the
other replicas of 0,. If op; commits, all the locks
on the replicas are released.

6. Evaluation

We would like to evaluate the optimistic type-
based (OTL) locking scheme by comparing with
the traditional read-one and write-all (ROWA)
scheme in terms of the number of transac-
tions aborted and the number of lock requests.
Here, let o be an object supporting operations
Op1,-..,0px, which is replicated into replicas
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ol,...,0, ie, r(o) = {o',...,0'}. Suppose

that m(op;) < m(op;) (¢ < j). Let f(op;) be
the probability that op; is issued to o. Here,
f(opr) + ...+ f(opn) = 1. q(op;) denotes the
number of replicas to be locked by op; in the
OTL scheme. Here, g(op1) = 1, g(opr) =1, and
q(op;) < q(op;) if i < j, i.e., m(op;) < m(op;).

Suppose that the operations op,,...,opy are
randomly issued to o. Let Ao be the prob-
ability that an operation is aborted in the
OTL scheme. If at least one kind of oper-
ation sends the lock request to one replica,
the operations are aborted. Hence, Ao
is given as 1~ [TL,(1 = flop.) - alop)/1)
_Eizllf(opi)Q(Opi)/l Hj—_-l(j;&i)(l - f(op;) -
q(op;)/1)]. In the OTL scheme, op; locks g(op;)
replicas. Let Ar be the probability that an
operation is aborted in the traditional ROWA
way. Ar is obtained by assigning g(op;) with 1
and g(op;) with I (j > 2) in Ao because only
op locks one replica and the other operations
lock all the replicas in (o).

Next, let us consider how many lock requests
are sent to the replicas. Let Lo and Lt denote
the probabilities that each replica is locked in
the OTL and traditional ROWA schemes, re-
spectively. Lo is given by E?___l f(opi)q(opi)/1.
Lt is given by f(op1)/l + (f(op2) + ... +
flopr)) =1~ flop1)(I — /L.

Ao, A7, Lo, and Lt are computed for the
number ! of replicas where h = 5, i.e., o has
five operations. Here, g(op;) = [1/2"*|(i =
1a-~-ah)) f(OPl) = O4,f(op2) 02af(0p3) =
0.2, f(ops) = 0.1, f(ops) = 0.1. Figure7 and
Fig. 8 show Ao and Ar, and Lo and Lt for
the number [ of replicas, respectively. These
figures show that less number of transactions
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are aborted and less number of lock requests
are issued in the OTL scheme than the tradi-
tional ROWA.

7. Concluding Remarks

In this paper, we have discussed how to sup-
port nested transactions manipulating repli-
cated and mobile objects in the distributed sys-
tem. We have modeled the mobile objects to
be ones whose QoS is changed according to the
movement of the objects. We have discussed
the optimistic two-phase locking to maintain
the mutual consistency among the replicas.
Here, the read-one and write-all principal is ex-
tended so that the objects can support more
kinds of abstract operations than read and write
and the operations are nested.
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