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This paper has two major goals: (1) to define a staff scheduling problem for a heterogeneous
workforce with many realistic constraints extracted from the real world, and (2) to investi-
gate its solution using a customized genetic algorithm featuring a group of operators which
combine stochastic behavior and heuristics. After formulating the problem, schedules for the
whole workforce are represented by integer chromosomes of fixed dimension. Violations of
constraints and problem requirements are reflected by cost increases, and genetic operators
act stochastically but tend to decrease such costs. Although the operators interact with each
other, they were designed in an independent way for the sake of simplicity and modularity.
Overall, the action of these stochastic-heuristic operators resembles a sophisticated mutation
operator biased to improve schedules by reducing the costs of constraint violations. Exper-
iments show that high-quality workforce schedules can be obtained in reasonable time even
for large problems.

1. Introduction

Companies or organizations whose workers
are allowed to have irregular working sched-
ules have to cope with the problem of assigning
working shifts to all the workers in order to at-
tend a predicted work demand over a planning
horizon with minimum cost, while considering
a number of restrictions concerning labor con-
straints, individual preferences of each worker,
and so on. Hospitals, hotels, telephone com-
panies, departments stores, etc., are examples
of situations in which workers with irregular
schedules are usually present *.

The planning horizon may consist of a few

utilized workers, implying low productivity and
increased costs. Conversely, if the demand can-

not be satisfied, the quality of the service may
deteriorate as workers may have to work more
than the recommended time. Furthermore, the
company would lose potential profits and would
risk losing market share to competitors. There-
fore, scheduling the workforce in such a way to
match the demand without wasting labor and
overloading the workers is a crucial and om-
nipresent problem in the service industry.

The determination of a sub-optimal work-
force scheduling for the situations above con-
stitutes a multivariable, multimodal, combi-
natorial optimization problem involving many

hours, days, or even weeks or longer periods constraints. Such characteristics discourage

of time over which the demand of work can
be predicted with reasonable accuracy. Ideally,
the predictions would match the actual demand local optima. On the other hand,
perfectly, and all the workers would be sched-
uled in such a way that no worker would either
be idle or have to work overtime, and the total
production would match the demand as well as
possible. However, in real situations particu-
larly found in the service industry, the sched-
ules of all workers are usually determined by
one or more human experts, who have learned
through experience how to simplify constraints
of the problem and generate schedules that, if
not optimal, are considered to be acceptable.
In terms of costs, anytime the service ability
exceeds the demand, there will be idle or sub-

the application of conventional optimization
methods, which are likely to be trapped in
recent
years have witnessed the emergence of evolu-
tionary algorithms, notably genetic algorithms
(GAs)!12)19):21).24) © which have been success-
fully applied to a number of problems with some
of the characteristics mentioned above.

The structure of the remainder of this paper
is as follows: Related work concerning employee
staffing and scheduling and GAs for schedul-
ing are reviewed in Section 2. A constrained
workforce scheduling problem is formally de-
fined in Section 3 for the case when the workers
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* In the remaining of this paper, without loss of gen-
erality, the term company is used to designate the
scheduling context, while the words worker and em-
ployee are considered synonyms.
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are classified into several groups or categories.
A customized GA for the solution of the pro-
posed problem is introduced in Sections 4 and 5;
the former explains the representation approach
and the computation of cost parameters associ-
ated with the violation of problem constraints,
while the latter describes the heuristic genetic
operators conceived to decrease the values of
the violation costs. Simulation results that con-
firm the applicability of the proposed method
to real-world workforce scheduling problems are
shown in Section 6, while Section 7 concludes
the paper.

2. Related Work

2.1 Employee Staffing and Scheduling

Probably the first formulation of the work-
force scheduling problem was accomplished by
Dantzig®, who in 1954 defined a simplified
problem for the scheduling of a homogeneous
(only one category of workers) workforce dur-
ing a single day. Much later, in 1982 Mabert
and Watts defined the tour scheduling problem,
in which decisions concerning the scheduling
of working shifts and days-off for an extended
planning horizon were included?®). In that
problem, the workers are assumed to work in
tours, defined as working shifts of fixed length
and position in the planning horizon, and the
objective is to assign an integer number of em-
ployees to each possible tour in such a way that
the staffing requirements for all the planning
horizon are satisfied at minimum cost.

As computers evolved, researchers began to
consider the challenging case in which the work-
force is heterogeneous, that is, composed of
workers with different qualifications, wages and
other features. This is a more realistic situa-
tion, found everywhere from production lines
to hospitals.

Decision problems concerning the schedul-
ing of a heterogeneous workforce were proved
to be NP-complete by Bartholdi?), and sev-
eral heuristic approaches have been proposed
for this important class of problems3):9):10),19)
all involving simple gradient procedures. Such
procedures start from a feasible solution and in-
vestigate a few neighbors generated by disturb-
ing a few variables, and replace the solution by
a neighbor whenever the latter has better per-
formance than the former.

Even though the heterogeneous tour schedul-
ing problem has been the subject of active
research, in practice there are many cases in
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which actual workforce scheduling problems do
not fit its formulation. For example, in many
practical situations working shifts are of vari-
able length and may be located with some free-
dom within the planning period. Furthermore,
the conventional tour problem does not con-
sider individual differences among workers, and
is only interested in the number of workers of
each category assigned to each tour. In the
same way, labor considerations such as over-
time work, desirable number of working shifts
per worker, and special time allowances are to-
tally ignored, although in any practical work-
force scheduling problem such factors must al-
ways be taken into account.

Such considerations motivated us to propose
a new formulation for a heterogeneous work-
force scheduling problem with working shifts of
variable length and position, workers with in-
dividualized time preferences, and a series of
labor considerations, described in detail in the
following sections of this paper.

2.2 GA for Scheduling Problems

One may consider that the gradient-based.
heuristic procedures proposed for the conven-
tional tour scheduling problem could be mod-
ified to fit the formulation of a new workforce
scheduling problem featuring flexible working
shifts and a number of new constraints. How-
ever, it is well known that gradient methods
only work well when the search space is convex
and unimodal, and this is not the case with this
class of scheduling problems?)8),

Where gradient optimization methods fail,
evolutionary methods such as GAg!2):15).21),24)
may succeed. An impressive number of rep-
resentative combinatorial optimization prob-
lems has been solved using GAs since the late
1980s, including the traveling salesman prob-
lem'*)21) " the transportation problem?!):25),
clustering’, and applications to process con-
trol'®22) among many others.

A glance at the recent GA literature also
shows a considerable number of papers concern-
ing the application of GAs to scheduling prob-
lems!)5):7):8).11),16)  However, although they all
use the word scheduling as a keyword, most of
them focus on the job shop scheduling prob-
lem")®)-7):16) "3 problem in which the objective
is to schedule the usage of a set of work sta-
tions (machines) of a job shop in such a way
that the job contracts are fulfilled with maxi-
mum profits. This is a problem only slightly
related to workforce scheduling, since there is a
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Fig.1 Pictorial depiction of a heterogeneous work-

force of 36 employees divided into 7 groups or
categories.

relatively small number of variables to consider.
An original problem, the scheduling of univer-
sity tests by a GA has also been considered!!),
but in practice such a problem does not have a
large search space, and can be solved well us-
ing heuristic rules. Workforce scheduling using
a distributed GA was the subject of investiga-
tion by Easton and Mansour®), but they aimed
their approach at the tour scheduling problem,
which has the limitations explained above.

3. Problem Statement

This section introduces the formulation of a
new workforce scheduling problem. Assume
that there is an company with a heteroge-
neous workforce classified into several employee
groups or categories as shown in Fig. 1.

The proposed constrained heterogeneous
workforce scheduling problem (CHWSP) con-
sists of determining the working schedule of all
the workers during a given planning horizon in
order to minimize the total costs, while satisfy-
ing a number of constraints. Such constraints
may be general (e.g., available number of em-
ployees), specific to a group (e.g., maximum
and average duration of a working shift), or spe-
cific to an employee (e.g., time-preferences of a
worker or desired number of working shifts).

The planning horizon consists of discrete,
consecutive, and uniform (same duration) time
intervals t, for t = 1,2,3,...,T. Each employee
works in shifts, each shift consisting of an inte-
ger number of time intervals. Also, let S denote
the maximum number of working shifts of any
employee during the planning horizon.

3.1 Workforce Requirements

The basic requirements of the CHWSP in-
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clude R; and R}, respectively the total required
number of employees and the minimum number
of employees of group g required at the interval
t, for t = 1,2,...,T. Additionally, there is a
parameter v such that yR; gives the minimum
acceptable total number of employees during a
time interval.

For example, consider the time t = 2 for a
simple CHWSP with only two groups of em-
ployees, and let the workforce requirements for
that time be given by Ry = 10, R} = 5, R2 = 2,
and v = 0.8. In this case, any schedule with
total number of employees at least equal to
0.8 x 10 = 8 is acceptable, although 10 is the
ideal number. Also, there should be at least 5
workers of the first group, and at least 2 of the
second group.

3.2 Employee Groups

In CHWSP, the employees are assumed to
belong to different groups or categories, each
one labeled by a super-index ¢, ¢ = 1,2,...,G.
Group characteristics include: a4, a binary flag
indicating whether time allowances should be
considered (1 = yes, 0 = no); 39, the overtime
allowance coefficient for group g expressed as a
fraction of the main wages; 0 < p9 < 1, the
group’s productivity coefficient; o¥,, o7, and
09,, respectively the minimum, standard, and
maximum number of consecutive time intervals
per working shift for any member of the group:
09, the minimum number of consecutive time
intervals between shifts (rest); w9, and w$,, re-
spectively the minimum and maximum desired
number of working shifts during the planning
horizon; HY, the minimum number of days-off
during the planning horizon; and N9, the num-
ber of employees available in group g.

3.3 Employee’s Specifications

An index e, e = 1,2,3,...,FE is assigned
to each employee. The individual character-
istics of each employee include: g., the group
to which the employee e belongs; W, the ba-
sic wage of employee e for one time interval; an
array P¢ = (nf), for t = 1,2,...,T, indicat-
ing the working time preferences of employee e
for all time intervals; each element of the array
can assume only three values: 1 (preferable), 0
(acceptable), or —1 (unacceptable).

3.4 Other General Data

A day-off is defined as an integer number H
of consecutive time intervals in which an em-
plovee is not scheduled to work. Furthermore,
for each time t of the planning horizon the com-
pany specifies a special time allowance coeffi-
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cient A;, which affects only those groups of em-
ployees for which a? = 1. These coefficients
allow for variation of actual wages according
to time, which is a realistic assumption, since
many companies reward certain groups of em-
ployees for work done on holidays or at night,
for example, while some other groups are not
eligible for the special allowances.

3.5 Wages Policy

All the wages are assumed to correspond to
one time interval and, as stated above, any em-
ployee works in shifts made up integer numbers
of such intervals. For an employee e, the ba-
sic labor costs corresponding to a working shift
between time intervals ¢; and t, is given by

t2
e = (14 AW, (1)
t=t
where the secolnd term enclosed in the paren-
theses stand for special time allowances. For
example, a given group of employees may be
entitled to 30% over the normal wages for work
done on Christmas.

3.6 Goals of CHWSP

A CHWSP is specified by the values T, S,
G’ Rta Rtga 7, agv /899 P’g’ Ufna Ug, 0?\4, Uyg-, wrgn’
wijv HY, N9, E, ge, We, 7Tf, H, A, for t =
L2,...,T,g=12,...,G,and e=1,2,...,E.
For instance, for a problem with T' = 200, E =
100, and G = 10, there is nothing less than
22,715 numbers to consider, making it a very
difficult problem to be solved by conventional
methods.

A schedule for the CHWSP is defined as a se-
quence of numbers specifying the working times
for all the employees of the workforce during the
planning horizon. Let 8 be a given schedule for
all employees for the whole planning horizon,
and let C'(8) represent the schedule’s associated
cost, which includes labor costs and penalties
corresponding to violation of the constraints of
the problem. The objective is to find a sched-
ule s such that C(8) is as small as possible. As
stated, CHWSP is a multimodal optimization
problem with a search space which increases
with the number of employees, the length of
the planning horizon, and so on. Such charac-
teristics lead one to speculate that a GA conve-
niently customized to CHWSP should outper-
form conventional optimization methods based
on simple local gradient procedures.
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Fig.2 Example of a chromosome (candidate solution)
for a CHWSP with E employees and maximum
number of shifts S = 8. (a) The whole chro-
mosome; (b) Schedule of the e-th employee; (¢)
Further zooming-in shows that the employee
has 5 active and 3 inactive working shifts.

4. Customized GA to CHWSP

4.1 Chromosome Representation

The schedule of each employee is represented
as a list of working shifts, where each shift is de-
noted by a pair of integers corresponding to the
first and last time intervals of the shift. A can-
didate solution (chromosome) is a set of work-
ing schedules for each employee, and popula-
tions of such candidate solutions evolve as in
conventional GAs. For an employee e, the i-th
working shift can be represented as

sy = (s1,8%) (2)

where 0 < sf; < 5%, < T denote, respectively,
the first and the last time intervals of the shift.
Inactive shifts are represented by (0,0). Case
when sf; = sf, correspond to working shifts
consisting of a single time interval. The total
schedule for employee € is just the concatenated
list of the corresponding working shifts. Since it
is assumed that any employee can have a max-
imum of § working shifts during the planning
horizon, a simple approach is to represent the
whole schedule for an employee as an ordered
array

Se=1[s] s§ s§ ... s5_1 85 1, (3)
so that the schedule of all workers becomes
s=[s" s s ... sF), (4)

which denotes a complete candidate solution for
the CHWSP and consists of 2 x S x E integers
between 0 and T'.

An example of a chromosome (candidate so-
lution) is shown in Fig. 2 for the case in which
S =8.

4.2 Basic Costs

The wage costs of an employee during all the
planning horizon is given by
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é(9) = Yo cl(6) Q

where c¢(8) is the cost of the i-th shift and ng is
the number of active working shifts of employee
e. For convenience, the n¢ active shifts are al-
ways translated to the first positions, while the
remaining S — n¢ (idle) shifts occupy the last
positions of 8¢, as indicated in Fig.2. For each
candidate schedule s, the following values can
be easily computed: nf, the number of days off;
n?, the number of employees of group g sched-
uled to work at time interval t; n., the total
number of employees at time t; n;, the effective
staff scheduled to time t; and c¢(s), the total
wage cost of the schedule, where

G
n; = z pind (6)
and o=
E
c(8) =) c(8). (7)
e=1

4.3 Costs of Constraint Violations

A given candidate solution may violate cer-
tain constraints by, for example, scheduling
some employees to work overtime. Such vio-
lations are mandatory in many cases, depend-
ing on staff requirements and employees’ data.
In this paper, violations are penalized by in-
creasing the scheduling cost according to the
degree of the violation. Sometimes penalizing a
candidate solution due to the violation of soft
constraints directly reflects the increase in labor
costs as, for example, in the overtime work case.
However, there are penalties that not necessar-
ily mean that any real cost will be incurred, and
such penalties are artificially set. The current
system distinguishes a total of 9 types of con-
straint violations, and associate penalties to all
of them. Some of the violations are applied to
each active working shift of an employee, while
others are computed only with respect to the
whole schedule of an employee, and others only
make sense for the whole workforce schedule.

In order to facilitate the definition of the
costs due to violation of constraints, a positive-
identity function I*(-) is introduced as

I*(z) —{ 0 otherwise. (8)

4.4 Individual Working Shifts
a) Employee group requirement o9, not ful-
filled for working shift s¢: In this case the cost of
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the working shift is increased by 50% of the dif-
ference between the minimum specified number
of time intervals for a working shift of the em-
ployee, and the number of time intervals actu-
ally worked, times the basic employee’s wages.
The penalty corresponding to the i-th working
shift of employee e is given by

vy (e;) = I7[0.5(0%¢ — (572
—si1 + 1))W] (9)

where e =1,2,...,Fandi=1,2,...,n{.

b) Employee group requirement o not ful-
filled (overtime work): The corresponding
penalty for the i-th shift of employee e is given
by

vo(e;) =TT ([(s5o — 851 +1
—Ug-")VVe], (10)

meaning that any working shift exceeding the
standard shift duration specified for the corre-
sponding employee group is considered as over-
time work.

¢) Employee group requirement sy not ful-
filled: This implies a cost increase proportional
to the difference between the minimum speci-
fied number of idle time intervals between con-
secutive shifts and the actual number of resting
intervals. The penalty is defined as

v3(e;) = IT[0.5(07° — (8741,
—sia — 1))We] (11)

fore=1,2,...,Eandt=1,2,...,n5 — L.

d) Employee’s working time preferences not
fulfilled: Recalling that the working time pref-
erences of an employee are expressed as a tri-
state array in which each element can assume
the values -1, 0, or +1, a simple way to penal-
ize schedules which violate an employee’s time
preferences table is given by the non-negative
quantity defined below.

va(e) =05 Y (1—mf)We. (12)
t=s

‘
0.1

The penalty values defined in Egs. (9)-(12)
can be summed up for all the active work-
ing shifts of a given employee e, resulting in
the non-negative values v;(e), va(e), vs(e), and
v4(e), respectively.

4.5 Total Schedule of an Employee

a) Employee group requirement h? not ful-
filled: This situation is severely penalized by
adding to the employee’s cost the wages corre-
sponding to a minimum working shift.
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vs(e) = IT[(H*s —nf)oW,].  (13)
b) Employee group’s required number of
shifts not fulfilled: An effort is done in order
to try to schedule each employee to a number
of working shifts in the specified range of the
employee’s group. The following penalties have
been adopted:

ve(e) = I"[0.5(wre — n§)ossWe]  (14)
vr(e) = I[0.5(n — wee)osW,].  (15)

4.6 Total Workforce Requirements

Let v! and v? be penalty coefficients specified
in cost units. Then the following violation costs
are defined:

a) Minimum workforce requirement R, not
fulfilled:

£ = 2(R, — n} )t if ny <yR;
vs(t) = I*[(R; —n})v'] otherwise

(16)

b) Workforce requirement R{ not fulfilled:

ve(t) = I*[(R] — nf)?). (17)

The equations above define simple penalties
proportional to the deficit of workers for each
time interval. Penalties are doubled when the
number of effective workers is below the mini-
mum acceptable number of workers vR;. Con-
versely, when the number of scheduled workers
exceeds the requirements, it is expected that
the corresponding costs will eventually result in
the death of the schedule due to selective pres-
sure of the GA mechanisms.

4.7 Total Cost

The total cost of a candidate solution is given
by the sum of its basic labor costs and the
penalties corresponding to violations of soft
constraints and workforce requirements, result-
ing in

C(8) = c(s) + v1(8) + B°9vy(8)

9
+Zvi(s). (18)

All the terms i3n the equation above are non-
negative, so that simple summation suffices to
specify the cost of a schedule. The third-
term on the right-hand side of the equation is
weighted by the overtime allowance coefficient
Bes.

5. Genetic Operators

5.1 Reproduction and Crossover

As in conventional GAs, starting from a pop-
ulation of candidate schedules, the first step to
produce a new generation is reproduction based
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on the total cost values, after fitness scaling is
carried out to help prevent premature conver-
gence. An elitist approach'® is taken, since
the main target is not the population average,
but the population’s best. Following repro-
duction, two-point crossover is performed on a
“per-employee” basis, in such a way to allow
whole schedules for pairs of employees to be ex-
changed.

5.2 Heuristic Operators

After reproduction and crossover, stochastic-
heuristic operators are applied to decrease the
penalty values. Such operators are divided
into three groups: those concerning only iso-
lated working shifts, operators Op, - Opy; those
concerning the whole schedule of a single em-
ployee, operators Ops—Opy; and those concern-
ing a whole candidate solution, operators Opg
Opy. For each violation v;, an operator Op,
has been devised by combining heuristics and
probability. Although the constraints are mu-
tually related, the operators were devised in an
independent way for the sake of simplicity and
modularity, making easy the addition of new
operators.

To conceive the operators, the idea was to
start from a deterministic operation and add
to it a random component heuristically biased.
This approach was first proposed by Davis”),
who argued that a system based on such a pro-
cedure should be able to outperform the deter-
ministic predecessor in the same environmental
niche.

Furthermore, the overall action of the pro-
posed operators was designed in such a way
that all the generated schedules are, in princi-
ple, feasible. For example, schedules in which a
worker is assigned to overlapping working shifts
will never occur. Had a binary representation
and conventional 2-point crossover and muta-
tion operators, as in the popular simple GA!2),
be chosen, much probably a large proportion
of schedules without meaningful interpretation
would result, and computationally expensive
heuristic correction procedures would be nec-
essary. Exploring unfeasible regions of the
search space translates to a waste of computa-
tion resources, so the approach of incorporating
problem-specific knowledge to the representa-
tion and overall mechanism was adopted!3)21).

Note, however, that saying that unfeasible
solutions are not considered does not mean
that, for example, a worker cannot be sched-
uled to work 100 hours in a row. Such situ-
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ations are theoretically possible, but since the
associated penalty values will be large, it is ex-
pected that the GA selection process will kall
such a poor-quality schedule in a few genera-
tions. The heuristic operators conceived so far
are described bellow, together with an operator
selection procedure that controls their applica-
tion.

a) Operator Op;

(1) Delete shift with probability

€g
s

Probl, =1— f’_ﬂ_s‘_"‘_l, (19)
o
meaning that too short shifts have high
probability of being deleted (canceled).
(2) If the shift survives deletion, extend
it by one time interval to the left or
right in the planning horizon, according
to the employee’s time preferences of the
time interval to be appended, that is, the
probability of stretching the shift to the
left is given by

s 41
-1 0 1
Probjy, = —1| 050 025 0.10
7% _, 0| 075 050 0.25

1 090 0.75 0.50

while the probability of extending the
working shift to the right is given by

Probjign, =1 — Probj.y, . (20)

Putting into words, when the time
preferences are the same for both the
neighboring intervals of the working shift
to be stretched, there is a 50% probabil-
ity of extending the shift in each direc-
tion. When the worker preferences fa-
vor one of the time intervals slightly (1
vs 0 or 0 vs —1), the preferred interval
has a 75% probability of being included
in the extended shift, while the other in-
terval is given a 25% probability. When
the worker prefers one of the intervals
strongly (1 vs —1), the probabilities are
set to 90% and 10%, respectively.

b) Operator Op2
(1) Prune the shift by one time interval
from the left or right, according to the
employee’s time preferences of the time
interval to be deleted, that is, the proba-
bility of shortening the shift from the left

is given by
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Mee ,
-1 0 1
Problg, = —1[ 050 0.75 0.90

. 0| 025 050 0.75
1| 010 025 0.50

and the probability of shortening the
shift from the right (finishing the shift
earlier) is just the complementary value.
The reasoning here is analogous to in
the case of operator Op;: When a work-
ing shift is to be shortened, the time pref-
erences of the first and last intervals of
the shift are compared and given dele-
tion probabilities in such a way to favor
the worker’s preferences, but also allow

mutation in the opposite direction.

c) Operator Op3

(1) Move shifts apart by one time interval
by moving either the left-hand working
shift or only the right-hand one according
to the employee’s time preferences. The
probability of moving the left-hand shift

is given by
(g 1 —mEs72)
3 1. .
Probjeg = 1 10
¢ _ €
_(“s:’+1.2+1 ﬂ-sf“'l) +0.5. (21)

10
d) Operator Opy
(1) Delete the working shift with proba-
bility based on how poorly the shift satis-
fies the employee’s time preferences, that
is

2, (1= )

t:s,‘l

Probd, = .
del 2(3,',2 - 851+ 1)

(22)

e) Operator Ops
(1) For every two consecutive shifts, com-
pute the quantity
(Si+1‘1 — 8i,2 — 1) mod H. (23)
(2) Use the resulting values in a roulette-
wheel fashion, selecting one rest period.
(3) Move the corresponding shifts apart
according to Probl,, making it easy to
create a new day-off.
f) Operator Ops
(1) For idle periods (t;,t2) of length >
o<?, compute
t2

! > (1 +w). (24)

to —t; +1 by
(2) Select a period using the roulette
method.
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PROCEDURE HeuristicOperators
BEGIN
FOR employee := 1 TO E DO
BEGIN

POR ALL shifts DO
Operator (SelectOne (vl, v2, v3, vd));
Operator (SelectOne (v5, v6, v7));
END
Operator (8);
Operator (9);
\END ;

Fig.3 Application of the heuristic operators. Overall,
the procedure can be thought of as a sophisti-
cated mutation operator.

(3) Create a shift of length o¢°.
g) Operator Op;

(1) For all active shifts, determine how
badly each working shift matches the em-
ployee’s time preferences by computing
the non-negative quantity

8i2
> (- (25)
t=8i1
(2) Select a shift by the roulette-wheel
method.

(3) Delete it.
h) Operator Opg
(1) Forallt =1,2,...,T, and every g,
compute

pi(t) = (int)(YR — ny +0.5) (26)
p2(t) = (int)(R, — nf +0.5)  (27)
p3(t) = (int)(YRY — nJ + 0.5).(28)

(2) Select one interval where p; > 0 or
p2 > 0.

(3) Depending on the interval length and
p3, extend neighbor shift or create a new
one.

i) Operator Opy: analogous to Opg.

The usage of the heuristic operators can be
summarized as illustrated in Fig.3. First,
for each active working shift of each employee,
the non-negative penalty values v (e;), vo(e;),
v3(e;), and wv4(e;) are used to construct a
roulette wheel, from which one of the viola-
tions is selected randomly, and then the cor-
responding operator is executed. After repeat-
ing the action for all the working shifts of a
given employee, the penalty values vs(e), vg(e),
and v7(e) are used to generate another roulette
wheel, which is then spun once, and the cor-
responding operator is put into effect. After
repeating the action for all the employees, fi-
nally the operators Opg and Opg, which act on
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Fig.4 Workforce schedule obtained by the proposed
GA for a small CHWSP consisting of 10 em-
ployees of 3 groups over a planning horizon of
168 time intervals.

the whole workforce schedule, are applied in se-
quence. Overall, the procedure can be thought
of as a sophisticated mutation operator, with
random behavior biased by heuristic rules in
such a way to improve the schedule’s quality.

6. Experimental Results

The proposed GA for CHWSP was imple-
mented as a C-language program in a worksta-
tion environment, and several simulations with
realistic data were carried out. In all the simu-
lations, selection took place using the stochastic
remainder method'?), the crossover probability
was 0.7, and the 10% top individuals were al-
ways forced to appear in the next generation,
in an elitist strategy. The cost parameters v!
and v? used in the computation of the violation
costs vg and vg were set to the maximum wage
corresponding to a single time interval. Note
that in the proposed method there is no need to
specify a mutation probability, since the prob-
abilities are built in the heuristic operators.

First, the resulting workforce scheduling for a
small CHWSP with E = 10 employees divided
into G = 3 groups, T = 168 (this is equiva-
lent to a whole week divided in one-hour in-
tervals), and S = 7 is shown in Fig.4. Since
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Fig.5 Optimal workforce schedule obtained by hand.
In terms of cost, both schedules are equivalent,
indicating that the customized GA was able to
find an optimal solution.

this is a small CHWSP, it can be solved op-
timally by a human, whose solution is shown
in Fig.5. Although there seem to be a few
differences between the workforce schedules in-
Fig. 4 and Fig.5, in fact both schedules turned
out to be equivalent in cost terms, indicating
that the solution obtained by GA is the optimal
one*, and was obtained after 50 generations of
a population of 100 randomly-initialized chro-
mosomes.

The problem defined as CHWSP was de-
signed based on the workforce scheduling needs
of actual companies with flexible working shifts.
In this situation, the workforce requirements
are only short-term forecasts made by company
experts. Once forecasts are made and the cor-
responding workforce schedule is determined,
there may be dynamical changes in the work-
force requirements, depending on the particular
problem.

To verify the robustness of the proposed
method, the personnel requirements were
changed after convergence to the optimal sched-
ule had been achieved, and the results are

* The actual data consisted of more than 2,500 num-
bers, too many to be reproduced in this paper.
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Fig.6 Reaction to dynamic changes in the workforce

requirements after convergence. After the 60th
generation the workforce requirements were in-
creased (a) or decreased (b) abruptly, but the
system succeeded in converging to the new op-
tima after a brief transient.

shown in Fig. 6. The horizontal axes shows the
number of generations, while the schedule costs
are shown in the vertical. The curves represent
the best of 10 runs with different initial values,
and employ an elitist approach. The first part
of the graph shows the convergence to the opti-
mal schedule, which was obtained as early as in
the 43rd generation in the best case. After the
60th generation, two independent disturbances
were applied to the problem, corresponding to
an increase and a decrease in the required work-
force during the planning horizon, and the re-
sults are shown in Fig.6(a) and Fig.6 (b), re-
spectively. After an initial transient, both cases
quickly converged to steady states with opti-
mal costs*®, demonstrating the robustness of
the proposed approach.

The performance of the proposed approach
to solve the CHWSP was also compared with
other methods in the literature, and the re-
sults obtained are shown in Table1l, where
RW, BAB, SA, and GA stand for random walk,
branch-and-bound?®), simulated annealing!”),
and the proposed GA method. For the BAB
method, schedules were generated randomly
and all the neighboring possibilities were inves-
tigated until the total cost exceeded the cost
of the best schedule obtained so far. For the
SA, mutations were generated in a range pro-
portional to the temperature, and 50 levels of
temperature from 5 to 0.1 were used for anneal-

% The schedules obtained were confirmed to corre-
spond to the optimal ones using an exhaustive
method.



1996

1562 Transactions of Information Processing Society of Japan Aug.
Table1l Comparison among RW (random walk), BAB (branch-and-bound),
SA (simulated annealing), and GA (proposed method) applied to
the solution of a small-scale CHWSP. While both RW and BAB
failed to find the optimal solution, SA and GA succeeded. The
proposed method was by far the fastest one.
Search Convergence to Optimal Cost of the Best
Method | Time (s) | No. of Schedules | Schedule After 10,000s
RW — — 223,085
BAB — — 201,475
SA 482 24,613 197,900
GA 72 4,213 197,900
1.00E+07p tion of 100 chromosomes. The graph shows the
' average of 10 runs with different initial values.
8.00E+06 In all the experiments convergence was achieved
in less than 200 generations. Although it is not
§ 6.00E+06 practical to verify whether the best solution ob-
3 \ tained after 200 generations corresponds to the
= 4.00E+06 absolute optimal, the values of all the penalty
£106 values decreased uniformly. Of course, this con-
2.00E-+06 vergence alone does not guarantee that the so-
0.00E+00 X . lution obtained is good, but analysis of the re-
' © 2 8 8 2 8 8 2 8 8 8 sulting schedule and penalty values by a human
Generation confirmed the high quality of the obtained so-

Fig.7 Decrease of the total schedule cost for a large
CHWSP with 50 employees. Further analysis
indicated that high-quality solutions were ob-
tained.

ing, together with the Metropolis criterion.

For 10 runms, the second column in Tablel
shows the average time at which the optimal
solution was first determined, while the third
column shows the number of workforce sched-
ules which were evaluated until finding the opti-
mal. Finally, the last column of the table gives
the cost of the best solution found in 10,000
seconds of processing time. Both RW and BAB
failed to find the optimal solution, while SA and
GA succeeded. From the results, it is clear that
the proposed approach was considerably faster
than SA, and in average needed only about 1/6
of the number of schedule evaluations SA re-
quired to find the minimum.

Simulations were also carried out for a larger
problem with £ = 50 employees divided into
G = 4 groups, planning horizon T = 336, and
maximum number of working shifts per em-
ployee S = 12. This problem involves an enor-
mous amount of data (almost 19,000 numbers),
80 in practice sub-optimal solutions are accept-
able. The search space is also very large, with
chromosomes made up of 1200 integers in the
interval [0, 336]. The decrease of the overall
schedule cost is shown in Fig.7 for a popula-

lution. The corresponding graphs were omitted
here due to page restrictions, but allowed us to
conclude that the customized GA succeeded in
generating high-performance workforce sched-
ules for the problem, confirming the effective-
ness of the proposed approach. Concerning
the execution time, each run of 200 generations
took approximately 10 minutes on a worksta-
tion computer.

7. Concluding Remarks

A difficult workforce scheduling problem
(CHWSP) with real-world constraints was
defined, and an approach to solve it by
a customized genetic algorithm was pro-
posed. The problem involves a great num-
ber of variables, rather complex data struc-
tures for program implementation, and sev-
eral probabilistic-heuristic operators described
in this paper. In comparison with similar prob-
lems proposed in the literature, CHWSP is
more general, using the concept of flexible work-
ing shifts and data individualized on a per-
employee basis.

The customized GA is characterized by a so-
phisticated mutation operator composed by a
series of operators which compete with each
other to improve the quality of a workforce
schedule. The GA operators were designed in-
dependently, in such a way to facilitate the ad-
dition of new operators. Therefore, the design
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of more sophisticated operators is a natural av-
enue for improvement of the system.

The system has been implemented and exper-
imental results have shown that, for problems
of moderate size which usually require hours or
days of a human expert, good schedules can be
obtained in a few minutes. For very large prob-
lems, however, computation time may become
a problem. A parallel implementation using the
idea of population partition among several pro-
cessors of a parallel computer is currently under
investigation. Additionally, further specializa-
tion of CHWSP for dealing with more partic-
ular situations as, for example, working sched-
ules of nurses or aircraft crews, is being consid-
ered.

Several parameters are built in the definitions
of the operators. As a matter of fact, proper pa-
rameter setting is a problem with all stochastic
optimization methods, and there is no general
theory indicating how to set the probabilities
of crossover and mutation in GAs for optimal
results. All the operator probabilities were set
using heuristic reasoning. A small batch of ex-
periments performed with slightly different val-
ues for the parameters did not produce signifi-
cantly different results for the two problems il-
lustrated in the paper, suggesting that the per-
formance of the proposed method is not highly
sensitive to the parameter values. However, this
is only an experimental indication, and a com-
plete analysis of the sensitivity of GAs with re-
spect to the probabilities of crossover and mu-
tation is out of the scope of this paper.
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