TElALE 2255000 (FRILERD) @EKR

1—209

Call-Graph Optimization of Java Applications

4L -2

Antonio Magnaghi, Shuichi Sakai and Hidehiko Tanaka

The University of Tokyo

1 Introduction

Java popularity has remarkably increased over the last

few years and the utilization of Java programming lan-
guage has flourished both in academic and industrial
projects. The demand for high-performance Java ap-
plications is, however, stressing the necessity of appro-
priate compilation techniques and aggressive optimiza-
tion procedures. In this paper we present a framework
to enhance static analysis of Java applications by ex-
ploitation of type-inference [1, 4]. And we experimen-
tally evaluate how such a framework can be utilized to
improve interprocedural analysis for source code level
optimizations. For brevity reasons, the proposed con-
cepts are not strictly formalized and exposition simply
outlines the implemented algorithms.

2 Type-Inference via Living Classes Analysis

The program to analyze is represented by the Appli-
cation Taxonomy (AT). AT collects, in a control-flow
insensitive manner, all reference types (classes or in-
terfaces) needed for compiling the application. AT el-
ements are distinguished in class-nodes and interface-
nodes. AT nodes are organized in a tree data struc-
ture that collects all syntactic and semantic informa-
tion necessary for successive analysis procedures. The
developed representation model (AT) formulates also
proper conditions in order to deal with programming
constructs critical to static analysis, such as dynamic
class generation and native methods.

We aim at inferring the classes an expression can be
instance of at run-time based on the analysis of ob-
jects instantiated by the application. Thus, we define
the application Living Classes Set (LCS). LCS collects
all AT class-nodes that correspond to classes conserva-
tively generated by any application execution path. A
class C is excluded from LCS if and only if there can
be no execution path in the application that causes C
to be instantiated.

Let type(.) be a function that returns the unique
static type associated to a program expression. type(.)
is properly defined as Java is strictly statically typed.
Let subTreeClasses(.) be a function that maps every
AT node n to the set of class-nodes of the AT sub-tree
rooted in n. There exists a one-to-one correspondence
o between reference types in the application and AT
nodes. Hence subTreeClasses(.) can equivalently be
described as a function that maps every reference type
t in the application to the set s of all application class
types that subclass t. Therefore, if expression expr has
static reference type ¢ = type(ezpr), then at run-time
expr is instance of classes in subT'reeClasses(o(t)).

This represents a conservative assumption.
In order to refine type-information, the function
typelnference(.) is introduced. For every ap-
plication reference type ¢ typelnference(t) =
subT'reeClasses(o(t)y N LCS

3 FExperimental Evaluation of LCA

Given a program call-graph representing the possible
callees at each call site, interprocedural analysis sum-
marizes the effects of callees at each method entry. Be-
cause of Java dynamic dispatching mechanism, the set
of possible callees at each call-site is difficult to evaluate
precisely, necessitating to compute the possible classes
of message receivers or the possible values returned by
invoked methods. Generally, more consolidated call-
graph construction techniques rely on interprocedural
data-flow analysis. In this section we investigate an
alternative approach: type-inference through LCA is
applied to enhance call-graph construction.

Application | Classes | Code Lines
1. httpserver 1 62
2. proxy 3 309
3. RngPack 8 1419
4. dent 22 4286
5. Jasmine 177 15585

Figure 1: Benchmarks

The choice of benchmarks is a delicate aspect be-
cause of the lack of standard programs that are widely
accepted by the Java community. This is due, on one
hand, to the broad variety of programming contexts
that Java APIs address, and, on the other hand, to
the relative newness of the language. We chose a set
of five Java benchmarks based on diversification of ap-
plication area and complexity as well: 1.) httpserver:
is a simple HTTP-server application; 2.) proxy: is a
generic cascading proxy server supporting single socket
network applications; 3.) RuogPack: implements a.ran-
dom number generator; 4.) dent: is a formatter of
Java source code; 5.) Jasmine: is a Java byte-code de-
compiler. Figure 1 summarizes some features of these
programs. The number of classes in figure 1 refers to
classes (interfaces) contained in the application distri-
bution package. The number of code lines refers to the
application source code whether it is available, other-
wise it is obtained through byte-code decompilation.
All benchmarks are pure Java applications.

The conducted experimentation can be described as
follows. Firstly AT is constructed and LCS is evalu-
ated. Figure 2 shows for each benchmark the cardinal-



1—210

ity of AT and LCS. A preliminary observation is that
for benchmarks 1 to 4 the number of taxonomy classes
does not vary much (about 200 elements). The number
of classes (interfaces) that constitute the applications is
relatively small (see figure 1), and therefore the major-
ity of AT nodes are represented by classes (interfaces)
belonging to jdk APIs. Benchmark 5 represents an ex-
ception: 49.2% of AT nodes are classes (interfaces) that
belong to the application (177 AT nodes out of 360).

|AT| | |LCS]|
1. httpserver | 198 111
2. proxy 197 113
3. RngPack 191 106
4. dent 206 116
5. Jasmine 360 260

Figure 2: AT and LCS Cardinality

It is interesting to additionally observe that for ap-
plications 1, 2, 3, and 4 the percentage of living classes
in the AT is considerably stable (respectively: 56%,
57.3%, 55.5% and 56.3%) even if the size of the ap-
plications in terms of lines of code varies in a remark-
able way from benchmark 1 to benchmark 4. The fifth
benchmark shows a different behavior instead: 72.2%
of taxonomy classes are living classes. Such a high
percentage of living classes affects LCA precision as
following experimental steps clearly prove. Succes-
sively, experimentation consists in evaluating the ef-
fectiveness of LCA for call-graph optimization. Hence,
two approaches are used when producing the applica-
tion call-graphs. In the first place, for each benchmark,
the call-graph is produced without the exploitation of
type-inference by LCA. Therefore, only AT is taken
into consideration when analyzing call-sites. Then, the
call-graph is computed again, but LCA is performed
in order to gather more precise information. Figures 3
visualizes the achieved results.

Method Reduction (%)
1. httpserver 19.9
2. proxy 18.7
3. RngPack 18.5
4. dent 104
5. Jasmine 9.2

Figure 3: Method Reduction

Figure 3 compares the number of methods (construc-
tors) included in the constructed call-graphs when LCA
1s not employed against the case when LCA is carried
out. It shows for each benchmark the reduction per-
centage of the number of call-graph methods (construc-
tors). LCA performs efficiently on benchmarks 1,2,3 4:
it is possible to obtain by LCA a 20% reduction of
methods (constructors) in the call-graph compared to
the case where LCA is not employed. In the case of the

fifth benchmark, instead, LCA produces a 9.2% reduc-
tion. As previously observed such a benchmark shows
a higher percentage of living classes (72.2%) compared
to the other selected applications.

4 Conclusions

We proposed both a conceptual framework and an im-
plementation to carry out type-inference on Java pro-
grams. Using this framework, we empirically accessed
a set of benchmarks, which vary in complexity and area
of application. We applied LCA type-inference to these
benchmarks in order to optimize their call-graphs. Ob-
tained results showed that LCA enabled substantial
improvements in call-graph construction. For those
benchmarks where the percentage of application living
classes was approximately 50%, LCA type-inference led
us to a significant reduction in the number of call-
graph constructors/methods (20%). However, in one
case (benchmark 5) the percentage of living classes was
remarkably higher (more than 72%) than in the other
benchmarks, and call-graph optimization achieved by
LCA was limited. We are improving LCA performance
also in such situations by adopting a control-flow sen-
sitive algorithm for evaluation of application living
classes. We expect that LCA type-inference can re-
sult beneficial not only to call-graph construction, but
also to other essential tasks performed by optimizing
compilers. Specifically, in our research project about
automatic parallelization of Java programs [2, 3], LCA
is adopted not only to enhance program call-graphs,
but also to develop an interprocedural analysis frame-
work where aliasing conflicts are investigated via Type-
Based Aliasing Analysis (TBAA) [3].

References

(1] 8. Collin, D. Colnet, O. Zendra. Type Inference for
Late Binding: the SmallEiffel Compiler. In Pro-
ceedings of the Joint Modular Languages Confer-
ence (JMLC’97), Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 67-81, 1997

[2] A. Magnaghi, S. Sakai, H. Tanaka. An Inter-
procedural Approach for Optimizations of Java
Programs. In Proceedings of Information Process-
ing Society of Japan, 1998

[3] A. Magnaghi, S. Sakai, H. Tanaka. Inter-
procedural Analysis for Parallelization of Java
Programs. In Proceedings of the 4th International
Conference on Parallel Computation (ACPC99),
Lecture Notes in Computer Science, Springer-
Verlag, pp. 594-595, 1999

[4] A. Magnaghi, S. Sakai, H. Tanaka. Evaluation
of a Type-Inference Framework for Java Appli-
cations, Proceedings of the Workshop on Java
for High-Performance Computing, ACM Interna-
tional Conference on Supercomputing (ICS99),
pp. 67-74, June, 1999, Rhodes, Greece.



