Vol. 37 No. 8

Regular Paper

Transactions of Information Processing Society of Japan

Aug. 1996

An OR-compositional Semantics of GHC
for Programs with Perpetual Processes

TorU KATO! and MASAKI MURAKAMI!

OR-compositionality is an important property of semantics of programming language.
Many results on the semantics of concurrent logic programming language were re-
portedl)*3)*4)’7)*8)'10)’“). But most of them were not OR-compositional or even if OR-

compositional, they required a rigid syntactic restriction.

On the other hand an OR-

compositional semantics of pure logic programming languages is reported in Ref.2). That
semantics required no syntactic restriction for predicates. It achieved the goal by adding new
elements to the semantic domain. Those elements have information for predicates of which
definition may be changed by OR-composition operation. We propose an OR-compositional
semantics of GHC (Guarded Horn Clauses) for programs with perpetual processes by extend-
ing the semantics constructed in Ref. 11) using the idea of Ref. 2).

1. Introduction

Let © be a semantic mapping. For programs
P, and P3, we build a new program P, * P3
by applying syntactic operation * to them. If
there exists a semantic operation *p., such
that O(P, * P3) = O(Py) *pen O(P3) then
we regard this semantics compositional w.r.t.
operation . This property indicates that we
can construct the semantics of the program
P, * P3 : O(Py x P3) from the semantics of
its components O(P,) and O(Pg).

This property allows us to replace P, x Pg
with P, * P; if O(P,) = O(P,) for some
program components P, P, and for a pro-
gram component Pg. Otherwise it is impossible
to replace program components with another
components that have same semantics with-
out affecting the semantics of the whole pro-
gram. Consequently compositionality is impor-
tant property when we use the semantics as the
basis of transformation, composition, or verifi-
cation of programs.

Our interest is OR-composition operation for
concurrent logic programming languages in this
paper. This operation is defined as the union
of sets of clauses.

Many results on the semantics of concur-
rent logic programming language were re-
ported!)3)4).7):8):,1011) But most of them
were not OR-compositional or even if OR-
compositional they required a rigid syntac-
tic restriction. For example the semantics of

t Faculty of Engineering, Okayama University

1497

GHC (Guarded Horn Clauses) was reported
in Ref.11). Though that semantics could
express the behavior of perpetual processes,
that had no compositionality w.r.t. the OR-
composition operation (we will abbreviate it to
OR-compositionality in this paper). The se-
mantics of CC (Concurrent Constraint) which
is OR-compositional was reported in Ref.6).
But it required a rigid syntactic restriction such
that the OR-composition of programs is defined
only if the common predicates among programs
must have the same structure.

On the other hand an OR-compositional se-
mantics of pure logic programming languages
without mechanism for parallel processing is re-
ported in Ref.2). That semantics required no
syntactic restriction for predicates. It achieved
the goal by adding new elements to the se-
mantic domain. Those elements have informa-
tions for predicates of which definition may be
changed by OR-composition operation.

We propose an OR-compositional seman-
tics of GHC for programs with perpetual pro-
cesses by extending the semantics constructed
in Ref. 11) using the idea of Ref.2). GHC have
a synchronizing mechanism and it prevent us to
apply just the same means of Ref.2) to the se-
mantics of GHC. So we apply an extended idea
of Ref. 2) to our semantics.

We extend the idea of 2 open program de-
fined in Ref.2) for GHC.

Definition 1.1 (Term) Let Varbe a set of
variables, Fun= {a,b,nil,cons} a set of func-
tion symbols where a,b and nil are 0-ary sym-
bols and cons a 2-ary symbol. We define the

1498 Transactions of Information Processing Society of Japan

set Terms and term as follows:
i. if 7 € Var or T € Fun, then 7 € Terms
ii. if 7y, 7 € Terms;, then cons(my, 72) € Terms

We call a element of the Terms a term.

Definition 1.2 (Unification goal) ‘X =
7’ is a unification goal where X € Var, 7 is
a term. We denote a unification goal X = X as
true especially.

A set o of unification goals defines a substi-
tution which is obtained when all unifications
succeed. For example we can regard the set
o ={X = [A]Y], A = a} as a substitution that
maps A to a and X to [a]Y] . We will identify
a set of unification goals with the substitution
defined by it. In other words the equation such
as 01 = o2 indicates that o, and o, define the
same substitution!!).

Definition 1.3 (Function Pred, Var)
Let P be a Flat GHC program!?), a clause of
Flat GHC program or an atom. Pred(P) is
the set of all predicate symbols appear in P
and Var(P) is the set of all function symbols
appear in P.

Definition 1.4 (2 open program) Let P
be a program and § is a set of predicate sym-
bols. P is an Q open program if there exists the
following clauses in P:

’LZ—O'IUl,...,U[,b],...,bn.
where each U; is unification goal, each b; is
atom other than an unification goal, Im(1 <
m < n).Pred(b,,) C Q.

Definition 1.5 (OR-composition) Let P,
and Pg be open programs. If Pred(P,) N
Pred(FPj3) C 2 then the OR-composition of P,
and P is defined as the program P, UPs. Oth-
erwise the OR-composition of P, and Pj is not
defined.

Example 1.6 We present examples of Q
open program.

Py={p(X)—X = [A|X,]|X; = [a]|X>],¢(X)).
¢(X)— X = [A]X1]|X, = [).}.

Pp={q(X):— X = [A|X1]| X, = [b|X2], p(X}).
p(X)—X = [4|Xi1]|X, =[.}.

Letp,q € Q, then P4 and Pg are Q) open pro-
grams because they satisfy the condition of Def-
inition 1.4. The program P4 U Pg can produce
a perpetual process. For example there ezists a
process p(X) which outputs the infinite list such
as a,b,a,b,... . This behavior is represented by
the following 1/0 history'V):

P(X) = {(X = [A]X1]|X, = [a| X2]),
(X = [A]X1]| X2 = [b] X3]),...}.

(1)

Aug. 1996

This paper defines the new semantic map-
ping and new OR-composition operation on
the semantic domain which satisfy OR-
compositionality even if a program produces
perpetual processes as Example 1.6.

2. Semantic Domain

This section introduces the semantic domain
and the semantic mapping which can map a
program with perpetual processes to the ele-
ment of the domain.

2.1 I/0 History

Definition 2.1 (Relation =!V) Let ¢ be
a set of unification goals and U a unification
goal. If oU {U} defines a substitution then U is
consistent with 0. Furthermore if o U {U} de-
fines the same substitution to o then we denote

oEU.

Definition 2.2 (Simple substitution) A
substitution X = 7 is simple if 7 is a variable
or a 0-ary symbol or has the form of cons(X,Y)
where X and Y are different variables.

Definition 2.3 (w substitution'!)) Let o
be a set of simple substitutions. If o is a substi-
tution or equal to [J;Z , 6k such that 6, = @ and
Ok+1 = 0r U {X = 7} for some X = r which is
consistent with 6 and 6y J~ (X = 7) then o is
an w-substitution.

Definition 2.4 (Guarded unification)
Tuple (¢|U) and tuple (o,b|true) are guarded
unifications where ¢ is an w-substitution, U is
a unification goal, and b is a tuple of atoms
other than a unification goal. Especially we
call (o, b|true) extended guarded unification if
necessary.

Intuitively (o|U) represents the event such
that the unification goal U is executed after
the arguments of a goal are instantiated by o.
This event corresponds to the_commit opera-
tion of GHC program'?). (g, b|true) indicates
the event that the goal clause b is called after
the arguments of the goal are instantiated by
.

Definition 2.5 For a guarded unification
(a|U) or (o, b|true), we call o as input unifica-
tion or guard part of guarded unification. And
we call U or true as output unification. For a
guarded unification gu, In(gu) represents a in-
put unification of gu and Out(gu) represents a
output unification of gu.

Definition 2.6 (Function |- |')) Let gu
be a guarded unification. |gu| is a substitution
as follows:

Vol. 37 No. 8

lgu| = In(gu) U {Out(gu)}.
Let GU be a set of guarded unifications. |GU|
is a substitution as follows:

IGU| = U,,cqul9ul-

Definition 2.7 (binary relation <'!))
Let gu; and gus be guarded unifications. Fol-
lowing relation holds if and only if there ex-
ists a substitution #; such that In(gu;)6, =
In(gus) and there is no substitution 6, such
that In(gu,) = In(gu;)8s:

gqu; < gusg.
Where o6 is a composition of substitutions o
and 6.

Intuitively (01|U1) < (02|U2) indicates that
U, requires more instantiation than U; to be
executable. In other words, U; has already been
executable when U, turns executable.

Definition 2.8 (Closed from below!!))
Let GU be a set of guarded unifications and Gu
be a finite subset of GU. Gu is closed from be-
low iff for any gu, gu’ € GU such that gu’ < gu,

gu € Gu — gu' € Gu.

Definition 2.9 (Frontier) Let GU be a
set of guarded unifications and Gu be a finite
subset of GU that is closed from below. A
guarded unification gu € GU is a frontier of
Gu if for any gu’' € Gu,

gu £ gu’ and gu’ # gu.

And gu is a minimal frontier of Gu if there is
no gu” € GU such that gu” < gu.

Definition 2.10 (Guarded stream!?)) A
set of guarded unifications GU is a guarded
stream if the followings are true:

For any finite subset Gu of GU that is closed
from below and for any minimal frontier gu of
Gu,

i. Out(gu) is consistent with |Gu| U In(gu).

ii. For any U’ € In(gu), U’ is consistent with

|Gu| and there is no substitution 6 such
that |Gu| = 6In(gu).

Intuitively i ii above define the condition to
represent a set of events occurring in an exe-
cution of a GHC program. Condition i indi-
cates that there is no computation which waits
for inputs contradicting with bindings given
from outside of the processes or with bindings
already computed by the process. Condition
ii indicates that new output bindings are not
included by bindings nor are contradicted by
bindings given from outside of the process or
bindings already calculated by the process.

Definition 2.11 (I/O-history) Let h =
p(X1,...X,) and GU be a guarded stream.
h :— GU is an I/O-history.

An OR-compositional Semantics of GHC 1499

Definition 2.12 (trace!!) Lett: h:—GU
be an I/O-history and g be a goal clause. tis a
trace of g if for some substitution 6, following
conditions hold:

[] 110 =g

e VYgu € GU.In(gu) C 6.

e Y(o|X = 1) € GU.(0 does not instantiate

X or X0 = 16).

2.2 Semantic Mapping

This paper adopts the greatest fixpoint se-
mantics so that we can express 1/O-histories
with infinite length which are associated with
perpetual processes. The semantic mapping
presented here is defined as extraction of I/O-
histories which express calculations of a pro-
gram from the set of all I/O-histories including
ones with infinite length.

The synchronized merge operation en-
ables us to get one of the guarded streams for
a clause from guarded streams for subgoals of
the clause. We can regard the operation as an
extended concept of the combination of substi-
tutions.

In this paper we use the extended notion
of guarded unification (Definition 2.4), so the
definition of synchronized merge must be ex-
tended. Before defining the extended synchro-
nized merge operation, we present some defini-
tion needed for synchronized merge definition.

Definition 2.13 (Predicate p) Let GU,
..., GU, be guarded streams and o be a finite
set of unification goals. We define a predicate
p as follows:

‘”’ll)

def
p(a, GUy,...,GU,) =

VU' € 0,YGu C U;_,GU;.|Gu| EU' =
(|Gu|\ {X = 7|3{c'|X = 1) € Gu}) EU".

Definition 2.14 (Function G) Let GU,,
...,GU, be guarded streams and S; be a set
of guarded unifications. We define a set of
guarded unifications G(GUy,...,GU,,S)) as
follows:

G(GUy,...,GU,,S5,) =

{gu| Ji,g9u € GU,.

(VU' € In(gu),3S2 C 51.|S2| U’
Vp(In(gu),GUy,...,GU,))}.

Definition 2.15 (Function ¥) Let gu be

a guarded unification and S; be a set of guarded

unifications. We define a substitution X(gu, ;)
as follows:

1500 Transactions of Information Processing Society of Japan

E(Q'll,, Sl) =
(In(gu) \ {U'| |Si|EU'}HU
{U'|13S; C 81,3(c’|U") € Sy, U’ € 0'A
(3U" € In(gu).(IS:] = U""A
V0 C |Sy1IS5] # 8 = 0} U™))}.
Definition 2.16 (Synchronized merge)
Let GU,,...,GU, be sets of guarded unifica-
tions and Gui (0 < k) be sets of guarded unifi-
cations as follows:

GUO =

{gu|3i, gu € GU;.p(In(gu), GU, ...,GU,)}.
Gug+1 = GuiU
{(X|Out(gu))| gu € G(GU,,...,GU,,Guy),
if gu = (o|U),

5 { E(gu, Guy) _

(gu, Gug),b if gu = (0, b|true)

Let GU = J;>¢ Guk. If GU is guarded stream

and {U|3(Z|U) € GU} = {U|FZ,IZ|U) €

GU;} then GU is a synchronized merge of

GU,,...,GU, and we denote it as
GU.|...||GU,.

Intuitively the roles of p,G and ¥ in Def-
inition 2.16 are explained as follows. A syn-
chronized merge GU,||...||GU, is constructed
by generating the sets of guarded unifica-
tions Gu;,Gus,...,Guy,... successively. For
all guarded unification in Guj there exists a
guarded unification (I|0) in GU,,...GU,, and it
requires at most k times of communications in
GUy,...GU, to solve I. Guy is a set of guarded
unifications whose guard parts are satisfied by
0 times of communication. In other words those
guard parts are satisfied by the inputs from
outside of GU,,..GU,. p(o,GUy,..,GU,) de-
fines the condition that it requires no output
from GU,,...,GU, to solve ¢. This means o is
solved by the input from outside of GU,, ...GU,,.

Every guarded unification in Guyy; is ob-
tained from a guarded unification (I|O) in
GU,,...GU, such that I is solved by outputs
of GU,,...,GU, or inputs from the outside of
GUy,...,GU,. G(GUy,...GU,,Gu)(C GU, U
...UGU,) is a set of such guarded unifications
as (I|0) above.

Let gu € G(GUh,...,GU,, Gui). £(gu, Guy)
define the operation replacing unifications in
guard part of gu satisfied by the output X =7
from GU,,...GU, with input unifications from
outside required to execute X = 7.

We also extend | operation!!) and X opera-
tion!!) as follows.

Aug. 1996

Definition 2.17 (Function |) Let GU be
a guarded stream and V' C Var. The restriction
of GU by V GU | V is the set defined as
follows:

GU |V =
{{o|X =1)|3k,(c|X = 7) € GU, X € V};}
U{(a’, bltrue)|(c’, b|true) € GU},
where
Vo=V,
Vi = ViU
{X|3gu € GU,3(Y =1) € |gul,3Y € V.
Xappears in 7,Vgu' € GU, if gu’ < gu
X then does not occur in gu'}.

Intuitively the Joperator removes guarded
unifications whose left hand side variable of out-
put unification is used as inner shared variable.
Consequently I/O-history h:— GU | which rep-
resents a process contains only guarded unifica-
tions whoes output action can be observed from
the environment of the process.

Definition 2.18 (Function X) Let GU be
a guarded stream, 0,0, be substitutions, X €
Var and 7 is a term. The set GU X (01, 07) is
defined as follows:

GU X (U] y 02) =
{(Z|U)|3(c’|U;) € GU. £ =0"Ua, \ 0,
U, = U, if(flUffgbéUé
true otherwise
}U{(Z, bltrue)| (o', b|true) € GU,
L=0'Uag \ o2}

Intuitively the X operator removes unifica-
tions in o3 from input unifications of all guarded
unification in GU and adds unifications in o, to
input unifications of all guarded unification in
GU.

Definition 2.19 (I/O-hist) A renaming

mapping over the domain of I/O-histories de-
fines an equivalence relation. 1/O-hist is the
quotient set defined by this equivalence rela-
tion. From now on an element of I/O-hist
is I/O-history afresh. IP is the power set of
I/O-hist .
_In this paper when all elements of a tuple
X are contained in a set Y, we express it as
X CY. When all elements of a tuple X are
contained in a tuple Z and X keeps the order
of the elements in Z, we express it as X C Z
and we call X subtuple of Z. When z is an
element of tuple X, we express it as z € X.
From now on we describe a tuple by enclosing
with “[]” so that we can discriminate a tuple
from a set enclosed by “ {}”.

Vol. 37 No. 8

Definition 2.20 (conGs, Gs) Let C be a
clause as follows:

C = hZ—OIUl,...,Un,bl,...,bk,...,b[
where each U; is unification goal, each b; is
atom other than an unification goal. For
some j C {k,...,l}, let 10 = [b:=GU;|3i €
{1,...,k~1}Uj] be a tuple of I/O-history. For
C,10 and j C {k,...,l}, we define the predi-
cate conGs(C, j, i0) a set of guarded unification
GS(C j,10) and guarded stream Gs(C, j, 10) as
follows:

conGs(C, j,10) dEEf
30, Vi(e {1,....,k —3} Uj).
b,:— GU;(€ o) is a trace of b,6.

Gs(C, j,10) =

{(0|U1>a sy (UlUn)}U
(GO IGU s (lees GU)Y_
(0, {U1,. .-, U.})){Var(h) U {{o,b|true)}.

whereb—[b |3s € {k,..., 1} \J]-

If Gs(C],ZO) is a guarded stream then
Gs(C, j,10) = Gs(C j,10), else Gs(C, j,10) is
undefined.

Definition 2.21 (Function 7)) Let P be
a GHC 9 open program, C(€ P) a clause as
h—a|Uy,...,Un,b1,... bg,... by, where o is a
set of unification-goals, each U; is unification-
goal, each b; is atom other than a unification
goal and Pred(bs),...,Pred(b) C .

Tp : IP — IP is the function defined as
follows:

Tp(S) =
{h:— GS(C j,10)| CePjcC {k,.... 1},
i0CS, conGs(C],zo)}

For an I/Q-history t = h:—Gs(C, j, i0), we
call a clause C the associating clause of t.

Definition 2.22 (Function Og) Let P be
a GHC Q open program, Tpl0 = I/O-hist and
Tpl(n+1) = Tp(Tpln). The semantic mapping
Oq is defined as follows:

OQ() nn>0 TP,LTL

Example 2.23 Let P4 and Pp be (2 open
programs defined in Example 1.6 and let P =
P4 U Pg.
Oa(P) = \,>0 Tpin where

Tpl0 =
P(X)— (X = [A1X4]1X, = [alXa]), .).
g(X)— {(X = [AIX1]|X1 = [plXa]), -})

An OR-compositional Semantics of GHC 1501

Tpll =
{ p(X)—{ (X =[4]X1]| X, = [a|X2]
(X = [AlX1]| X2 = Bl X3]), - - -}
g X)—{ (X = [A]X4]| X1 = [b|X2]),
(X = [A[X1]|X2 = [a| X)), - -},
H S
Tpin =
{ p(X)—{ (X = [A|Xh]| X1 = [a]X2]),
(X = [A|X1]| X2 = [b| X3)), - .-,
(X = [A|X1])1 X2: = [b| X2i41]),
= [a|X2i12]),

(X = [AlX1)| X2im
S T SO

Repeating the same operation, we can show
(1) of Examplel.6 is an element of Oq(PaU
Pg) inductively.

3. OR-composition Operation

The OR-composition operation of Oqn(Pj)
and Oq(Ppg) is defined as the extraction of
I/O-histories expressing the computations on
the program P4 U Pg from the set of all 1/O-
histories. This operation can construct I/O-
histories with infinite length expressing the in-
finite computations on P4 U Pg.

We extend the domain of function Pred (Def-
inition 1.3) to contain semantics of program.

Definition 3.1 Pred(O(P)) is the set of
all predicate symbols appear in O(P).

Definition 3.2 (Gsor) Let t be an I/O-
history as follows:
t=h—{ (a1|U1),..., (on|Un), ...

(an+1,bitme),...,

(Onsmsbm|true), ...}
where b; = [b},...,b"],
{Pred(b}),...,Pred(b*)} C Q.

And let J be a set of J (tuple of suffixes of
goals) as follows J = {J|1 <1< o003y €
20Lopd T = [j1y ey Jms--]} __We define
the set of guarded unifications Gsor(t J,10)
and the guarded stream Gsor(t, J, 10) for some
‘], € J, t and a tuple of I/O-history 0 =
[bP—GP|1 < i < 00,3j; € J,3p € ji] as fol-
lows:

Gsor(t, J,10) =

{(UIIUI)’ ceey (UnlUn)} S (”lzl(“PEj:Gz

X (op44, {Un,- .’:Un})iVar(h))

U(UiZl{(onH,bt‘|true)}).

1502 Transactions of Information Processing Society of Japan

where I;: is a tuple as

be, = [bjlve {1,...,p:}\ ji)

If Gsor(t J, zo) is a guarded stream then
Gsor(t, J, w) Gsor(t J,10), else
Gsor(t, J, w) is undefined.

Definition 3.3 (Operation |J,) Let P4
and Pg be Q open programs. If Pred(Oq(P4))
N Pred(Og(Pg)) € N then the OR-
composition on the semantic domain is unde-
fined likewise the case on the syntactic domain.
Otherwise the OR-composition operation | J is
defined as follows:

Oa(Pa)Ugq Oa(Ps) = Ni>o He

where
Hy = 1/O-hist,
Hy, = HiN

{h:= Gsor(t, J, i0)]
t e OQ(PA) UOq(Pg),J € J,
zo—{b” G”|1<z<oo 36, 3j; € J,
bP— Gi”is a trace of b70}}.
For an I/O-history t = h:—Gsor(t', J, z'~o),
we call an I/O-history t' the associating I/0O-
history of ¢t and we say t is constructed from
t.
Example 3.4 Let Py and Pg be GHC
open programs defined in Example 1.6.

OQ(PA)
{ ¢o(X)—{ (X = [4]X1]|X, = [))}.
P(X) -{ (X = [A]X1]| X1 = [a]X2]),
(X = [A]X1]| X2 =)}
p(X)—{ (X = [4]X1]| X, = [a|X2]),
(X = [A]X1], ¢(X1)|true)}.}.
Oq(Pp) =
{ p(X): { (X = [A|X1]|X1 = []) }'
g(X)—{ (X = [A]|X1]|X; = [b| X2]),
(X = [A|X1]| X2 =)}
g(X)—{ (X =[4]|X,]| X1 = [b|X2]),
(X = [A]X1], p(X1)|true)}.}.
OQ(PA)U“OQ(PB) =Nk>oHr where
HO -
{ p(X)—{(X = [A1X1]| X1 = [a]X2)),.. .},
(I(‘X’)—{L’(= [A!Xl]IAYl = [bl4¥2]>, .. .}.,
) S

Aug. 1996
H1 =
{ p(X)—{ (X = [A|X}]| X, = [a] X2]),
(X = [AIX4]1Xz = BIXs]), -).,

a(X)={ (X = [A|X,]|X; = [b|Xa]),
(X = [A]X4]| Xz = [alX3]),...}.,

{ p(X)={ (X = [A1X1]| X, = [a]X3)),
(X = [A]X1]| X2 = [b]X3]), ...
EX = [AlXI]IXm' = [b|X2i+1]>7

X = [AIX1])| X2i41 = [a] X2i42]),

Repeating the same operation, we can show
(1) of Example 1.6 is an element of
Oa(Pa)|J,,Oa(Pp) inductively.

By the way the I/0-histories constructed here
are identified with the I/O-histories constructed
in Example 2.23. This indicates that Definition
3.3 is in accordance with Definition 2.22.

4. Justification of OR-composition
Operation

In this section we prove that our semantics
satisfy compositionality. More strictly, for any
GHC 2 open programs P4 and Pg, we prove

OQ(PA UPB) OQ PA U OQ PB)

Lemma 4.1 For any GHC 0 open pro-
grams P4 and Pg,

Oa(Pa U Pg) 2 Oa(Pa)J,Oa(Ps).
Proof: Let P = P4 U Pg, Tp be a function
of Definition 2.21. We show I/O-histories that
are not contained in Og(P4 U Pg) are also not
contained in Oq(Py))U,,Oa(Pg). For y (> 0),
we define the set D, be D, = Tply\Tpl(y+1).
By Definition 2.21, for any y and for any I/O-
history ¢ € D, if we write { as h:— Gs(C, j,10)
then the following condition holds:

10 C Tply A conGs(C, j,10) - C ¢ P,
(2)

By Definition 3.3, every I/O-history t =
h:—Gsor(t', Jzo) in Oq(Pa UQOQ Pg) has
the associating I/O-history ¢ in Ogq(P4) U
Oq(Pg). It is obvious from Definition 2.21
and Definition 2.22 that Oq(P4) U Oq(Pg) C
Oq(Pa U Pg). By Definition 2.21, all 1/0-
histories in O (P4 U Pg) must have the associ-

ating clause in P, so do t’. Hence there exists
C' € P such that

Vol. 37 No. 8

= hi= Gs(C", ju', 10p), (3)

where conGs(C", jy, 30y) holds.
t’' has also following structure:
t' = h—{ (o1lu1),. .., (onlun), ...
(an“,bllvtrue), e,

- (UTH-ma bmltrue>, e } (4)
where b, = [b},...,b"],
{Pred(b}), ..., Pred(b?)}C Q.

Let C’ be h:——O'IUl,...,Un,bl,...,bk,...,bl,
and Pred(bt)),...,Pred(b)) C Q. If j; of (3)
is not equal to {k .,1} then for one of ex-
tended guarded umﬁcatlons Jonﬂ,b |true) €
{(an+1,b1|true) s (Ontm,bm|true)}, bs is a
subtuple of [bg,.. b,] and the other extended
guarded umﬁcatlons are elements of bodes of
I/O-history in oy of (3). t is constructed by
merging body of some 1/O-histories in b, for all
v € {1,...,m}. So t can be written as follows:

t = hi—Gs(C", jy»,10,,).

Where j' C j”,Vio € io},,3io' € ioy, the
relation of i0 and i0’ is same as t and ¢’ and
conGs(C', jy,10},) holds. Else if j; of (3) is
equal to {k,...,!} then all extended guarded
unifications of (4) are elements of bodes of I/0O-
history in 70y of (3), and ¢t can be written as
follows:

t = hi— Gs(C", j,i0).

In any case, t constructed from ¢' has the as-
sociating clause C' € P. Every I/O-history t
satisfying the condition (2) is constructed from
a clause C ¢ P.

Consequently 1/O-histories ¢ is never in
Oq(Pa)J,0a(Pp). Thus we proved Dy &
Oq(Pa)J,On(Psg) for any y. Consequently

OQ(PA U Pg) 2 Oa(Pa)J,Oa(PB).

Lemma 4.2 For any GHC Q open pro-
grams P4 and Pg,

Oq(Pa U Pg) C Oq(Pa)J,,Oa(Ps) -
Proof: Let H, (y > 0) be the set defined in
Definition 3.3. We show I/O-histories not con-
tained in Oq(P4)|J,,Oa(Pp) are also not con-
tained in Oq(P4 U Pp).

For any y (> 0), we define the set D, be
D, = H, \ Hy4, and the set T be
T = {h—G|

Jh:— G’ € Oq(P4)U Oq(Ps),

Jh:— G € I/O-hist,

G 2 G'\ {gulgu € G,

gu is an extended guarded unification}}.

An OR-compositional Semantics of GHC 1503

Intuitively T is a set of all I/O-histories which
has the associating clause in P4 U Pg. By Def-
inition 3.3, for any y and for any I/O-history
t € Dy, if we write t as = h:—Gsor(t, J,i0)
then the following condition holds:
i0C HyAb, = [b},...,bP"]A
{Pred(b}),...,Pred(b?*)} C QA
J = {J'|1 <i < o0,j; € 2{1-P:},

J = []l!]fn’]}/\
io = [bP—GP|
1<i<oo 30,3J € J,33: € J,
pE Ji, b~ G” is atrace of b76).
N
t = h—{ (a1|U1),...,{oa|Up), ...,
(Un+1,b1|j1"ue), R
b |true), ..

JET. (5)

The reason why we use T instead of Oq(P4)U
Oq(Pp) is that all I/O-histories constructed
from the element of T can be constructed
from the element of Oq(P4) U Oq(Pg), so
I/O-histories constructed from the element of
T are not contained in D,. By Definition
2.21, every I/O history t = h ~Gs(C,j,i0) €
OQ(PAUPB) is constructed from a certain
clause in P4 U Pg. As Oq(Pa) U Oq(Pg) C
Oq(Pa U Pg), every t' in Oq(P4)UOq(Pp) has
the associating clause C in P4 U Ppg, so do for
all I/O-history ¢ in T. Namely, for all t" € T
there exists C' € P such that

= h—Gs(C, ju,i0p),

where conGs(C, j,, i/o\;).

On the other hand according to the defini-
tion of T, for all I/O-histories t ¢ T there is
no associating clause in P4 U Pg. Consequently
t constructed from t does not have the asso-
ciating clause in P4 U Pg. This means any
I/O-historie satisfying condition (5) is never
in Oq(PaUPg). Thus we proved D, ¢
Oq(Pa U Pg) for all y. Consequently

Oq(Pa U Pg) C Oa(Pa),O0a(Ps) -

Theorem 4.3 For any GHC 2 open pro-

grams P4 and Pp,

Oq(P4a UPg) = OQ(PA)UQOQ(PB) .
Proof: Obvious from Lemma 4.1 and Lemma
4.2,

5. Application to CC

(Un+ma

We constructed an OR-compositional seman-
tics for GHC programs. But the approach
adopted in this paper can be applied not only
to GHC but also to other concurrent logic lan-

1504 Transactions of Information Processing Society of Japan

guages. For example we can construct an OR-
compositional semantics for CC programs in a
similar way.

An unfolding semantics is presented in
Ref.5). The semantics of a cc(C) program is
a set of reactive behaviors which are trees ab-
stractly representing all the possible computa-
tions of a program. Given a clause C of a cc(C)
program, A reactive behavior associated with
C is obtained by applying Unfolding rules to
C. This semantics is not OR-compositional as
shown by next example.

Example 5.1 Let P4, Pg, Po be cc(C) pro-
grams as follows:

Py= {p(X,Y)—=X=b:7 - q).
qY)—7:Y =a— nil}
Pg= {p(X,)Y)— X=b:7—>
T:Y =a— nil.
gY)—7:Y =a — nil}
Po={q(Y)—7:Y =b}
PsUPc = {p(X,)Y)=X =b:7 > ¢qY).
qY)— 7:Y =a— nil
+7:Y =b—nil.}
PgUPe= {p(X,Y)— X=b:7—
7:Y =a— nil
qY)— 7:Y =a - nil
+7:Y =b— nil}
The unfolding semantics of each program is as
follows:
UNF(Py) =UNF(Pg) =
(X, Y)—-X=b:r>71:Y =a - nil.
qV)—1:Y =a— nil}
UNF(Pc)={qY)—7:Y =b}
UNF(P4UPc) =
{p(X,)Y)-X=b:7> 7:Y =a—-nil
+7:Y =b— nil.
qV)— 7:Y=a—- nl
+7:Y =b— nil.}
UN F(Pg U Pe) =
{pX,)Y)-=X=b:7To7:Y =a—> nil
qY)— 7:Y =a — nil
+7:Y =b— nil.}
Clearly
UNF(PsUPc) #UNF(PgUP:). (6)
If there exists OR-composition operator U, on
semantic domain then
UN}-(PA) U UN}—(Pc) =UNF(PyU Pe).
UNF(Pg) U, UNF(Pc) = UN F(Pg U Pc).
As UNF(Ps) = UN F(Pg), left-hand-side of
(5.1) = left-hand-side of (5.1). So right-hand-
side of each equation must be equal. This con-
tradicts with (6).

In order to distinguish UNTF(P4) with

UNF(Pg) and make this semantics OR-

Aug. 1996

compositional, we ezxtend unfolding rules and
construct OR-composition operation.
5.1 Extended Unfolding Rules
Unfolding rules in Ref.5) consist of three
rules.
i. Replacement of procedure calls by proce-
dure definitions.
ii. Transformation of AND nodes to OR
nodes.
iii. Freezing of failed and deadlocked paths.

We extend rule i. as follows. Rule ii. and iii.
are available as they are.

Definition 5.2 (Extended rule i.) Let P
be a cc(C) program and C be a clause in P.
Every procedure calls p appearing in C are re-
placed by its definition in P if pred(p) € Q,
otherwise p is replaced by or-tree such as

p + (definition of p).
Unfolding semantics using extended rule i. can
distinguish P4withPg since

UNF(Py) =
{p(X,)Y)—-X=b:7> 7:Y =a - nil
+q(Y).
q¥V)—7:Y =a > nil.}
#UNF(Pp) =

{PX,)Y)-X=b:7>7:Y =a— nil
qY)—7:Y =a— nil}

So the contradiction which occurred in a pre-
vious example has disappeared .

Formal OR-compositional semantics of cc(C)
using this idea and construction of OR-
composition operation will be shown in our fu-
ture work.

6. Conclusion

This paper presented an OR-compositional
semantics for GHC programs with perpet-
ual processes by extending the semantics con-
structed in Ref. 11) and using the idea of Ref. 2).
Though our semantics is OR-compositional and
can express perpetual processes, it cannot dis-
tinguish processes which may deadlock from
processes which does not deadlock. So we must
extend this semantics to be deadlock sensitive
by adding more information to I/O-history. For
example I/O-history with tree structure is one
approach.

References

1) Beckman, L.: Towards a Formal Semantics for
Concurrent Logic Programming, Proc. Third
Int. Conf. Logic Programming, pp.335-349
(1986).

2) Bossi, A., Gabbrielli, M., Levi, G. and Meo,

Vol. 37 No. 8

M.C.: Contributions to the Semantics of Open
Logic Prgrams, Proc. the International Confer-
ence on Fifth Generation Computer Systems,
pp-570-580 (1992).

3) Falaschi, M., Levi, G., Martelli, M. and
Palamodessi, C.: A New Declarative Semantics
for Logic Languages, Proc.5th Conf.and Symp.,
pp.993-1005 (1988).

4) Gabbrielli, M. and Levi, G.: Unfolding Reac-
tive Semantics for Concurrent Constraint Pro-
grams, Lecture Notes in Computer Science,
Vol.463, pp.204-216 (1990).

5) Gabbrielli, M. and Levi, G.: Unfolding and
Fixpoint Semantics of Concurrent Constraint
Logic Programs, Theoretical Computer Sci-
ence, Vol.105, pp.85-128 (1992).

6) Gaifman, H., Maher, M.J. and Shapiro, E.:
Reactive Behavior Semantics for Concurrent
Constraint Logic Programs, Proc. North Amer-
ican Conf. on Logic Programming, pp.553-569
(1989).

7) Gerth, R., Codish, M., Lichtenstein, Y. and
Shapiro, E.: Fully Abstract Denotational Se-
mantics for Flat Concurrent Prolog, Proc.
North American Conf. on Logic Programmang,
pp.553-569 (1989).

8) Levi, G. and Palamidessi, C.: Contributions
to the Semantics of Logic Perpetual Processes,
Acta Informatica 25, pp.691-711 (1988).

9) Lloyd, J.W.: Foundations of Logic Program-
ming, Springer-Verlag (1984).

10) Maher, M.: Logic Semantics for a Class of
Commited Choice Programming, Proc. Forth
Int. Conf. on Logic Programming, The MIT
Press, pp.858-876 (1987).

11) Murakami, M.: A Declarative Semantics of

An OR-compositional Semantics of GHC 1505

Flat Guarded Horn Clauses for Programs
with Perpetual Processes, Theoretical Com-
puter Science, Vol.75, pp.67-83 (1990).
12) Ueda, K.: Guarded Horn Clauses, Technical
Report, TR-103, ICOT (1985).
(Received January 5, 1995)
(Accepted April 12, 1996)

Toru Kato is a student
of Graduate School of Natu-
ral Science and Technology of
Okayama University. His cur-
A rent research interests is formal

e \,nj\i semantics of concurrent logic

programming languages. He
graduated Graduate School of Engneering of
Okayama University in 1993.

Masaki Murakami is an as-
sociate professor of Division of
Logic and Computation in De-
partment of Information Tech-
nology of Okayama University
since 1991. His current research
interests are the theory of con-
currency, formal semantics of programming lan-
guages and program transformation of concur-
rent programs. He graduated Department of
Information Engneering of Nagoya Institute of
Technology in 1980. He received his Dr. of En-
gineering from Nagoya University. He joined
Fifth Generation Computer Project from 1985
to 1989. He was working for Fujitsu from 1989
to 1991.

