Vol. 37 No. 8

Regular Paper

Transactions of Information Processing Society of Japan

Aug. 1996

Local Coteries and a Distributed Resource Allocation Algorithm

HIROTSUGU KAKUGAWA! and MASAFUMI YAMASHITA!

In this paper, we discuss a resource allocation problem in distributed systems. Consider
a distributed system consisting of a set of processes and a set of resources of identical type.
Each process has access to a (sub)set of the resources. Different processes may have access
to different sets of the resources. Each resource must be accessed in a mutually exclusive
manner, and processes are allowed to request more than one resource at a time. Since all
resources are of identical type, a process requesting k resources does not insist on k particular
resources. However, once a resource has been allocated to a process, it cannot be allocated to
another process until it is released. The mutual exclusion and k-mutual exclusion problems
can be considered as special cases of the resource allocation problem. We first introduce a
new class of quorum sets named local coteries as an extension of coteries, to take advantages
of the fact that, in general, resources are not shared by all processes. Then, we propose a
resource allocation algorithm, using a local coterie, that is both deadlock- and starvation-
free. This algorithm allows resources requested by two processes to be allocated without any

interference.

1. Introduction

A distributed system can be viewed as a set
of processes that share many types of resources,
such as processors, memory cells, buses, and
printers, many of which must be accessed in
a mutually exclusive manner; that is to say,
they can be accessed by at most one process at
a time. Therefore the mutual exclusion prob-
lem!®) — that of guaranteeing mutually exclu-
sive access to a resource — is considered to be
a basic problem in distributed systems, and has
been investigated extensively. If there are k re-
sources (e.g., printers) with the same function
(e.g., printing text files), then a process wish-
ing to use the function wants to access an ar-
bitrary one of the k resources, and it may not
need to insist on a particular one. As a natu-
ral extension of the mutual exclusion problem,
the problem of resolving this type of conflict,
which is called the k-mutual exclusion problem,
has recently attracted increasing attention from
researcherst)+2).7)8):12),15),18)

In the conflict-resolution problems mentioned
above, every process can access each of the k
resources. In real distributed systems, how-
ever, processes typically can access only subsets
of the resources. This paper will discuss the
problem of resolving the above type of conflict,
which we call the (distributed) resource alloca-
tton problem.

To provide the reader with a more concrete
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image, we would like to introduce a small exam-
ple. Suppose that there are three processes, a, b
and c, and two resources, z and y. Suppose that
a,b, and c respectively can access z, r and y,
and y (Fig. 1). If b requests a printer when a is
printing on z, then we want to allocate y to b. If
b requests a printer when both a and c are print-
ing, we want to allocate either z or y as soon
as either one becomes available. If b requests
two printers, we want to allocate z and y, so we
must wait for both of them to become available.
This problem is called the drinking philosophers
problem in Chandy and Misra?) and has been
extensible investigated in the last decade, for
example,®3). In the resource-sharing model
adopted in these papers, a resource is shared
by only a pair of processes. That is, its sharing
relation is described by a conflict graph: a node
represents a process, and an edge represents a
resource that is shared by two processes inci-
dent to the edge. In this paper, we discuss a
more general sharing model such that edges are
hyper edges; that is, resources can be shared by
more than two processes.

One may argue the following simple solution
of the problem: Execute a mutual exclusion al-
gorithm ALG(r) for each resource r, and have
processes specify the name of one of the re-
sources when issuing a resource request. But it
is not a successful solution from our viewpoint,
because, for example, in the second situation of
the above example, if b requests printer x, then
it must wait until x becomes available, even if
y becomes available considerably earlier than
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Fig.1 An example of resource sharing
z. If we allowed b to request both z and y, we
would inevitably allow processes to request all
resources simultaneously (i.e., a process would
access the one that becomes available first and
fail to cancel the requests for the others); the
resulting algorithm would be extremely ineffi-
cient.

Raynal proposed the k-out-of-M resource al-
location problem in Ref.16). He considered a
problem of allocating any number k of M re-
sources. In his algorithm, a process sends mes-
sages to every other process; this it is not effi-
cient. Baldoni also proposed an algorithm for
the problem?. His algorithm uses a k-coterie®
to reduce the message complexity. These algo-
rithms only guarantee that the number of al-
located resources is at most M at any time,
and a process cannot know the names of al-
located resources. A general resource-sharing
model for anonymous resources is investigated
by Miyamoto!?).

This paper proposes a distributed algorithm
for solving the resource allocation problem we
informally introduced above. (A formal defi-
nition will be given in the next section.) The
algorithm makes it possible for the processes to
keep track of accesses to resource names, un-
like the algorithms in Refs. 2), 13), 14), 16). In
some real situations, this function is definitely
very useful: Suppose, for example, that there
are two printers on the first and second floors,
respectively, and that a file is output on one of
them. Then we may want to know from which
one it is output.

Maekawa used a structure of processes called
a coterie, which was proposed by Garcia-Molina
and Barbara®, to design a distributed algo-
rithm for the mutual exclusion problem. This
algorithm was shown in Ref. 11) to be efficient
in message complexity. Since then, the quorum-

* Kakugawa, et al. also proposed a concept of k-
coterie”):8) | that is different from the one proposed
by Baldoni2).
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based approach, which Maekawa adopted, is
considered to be a promising way of design-
ing algorithms for conflict resolution problems.
Our approach is similar; we introduce a new
process structure called a local coterie, which is
an extension of the coterie. Finally, we show
the correctness of our resource-allocation algo-
rithm.

The organization of this paper is as follows.
In Section 2, we give a model of the distributed
systems assumed in this paper and define the
distributed resource allocation problem. In Sec-
tion 3, we introduce local coteries and give a
simple algorithm for constructing a local co-
terie. In Section 4, we propose a distributed
resource allocation algorithm that uses local
coteries. The correctness of the algorithm is
shown in Section 5. In Section 6, we analyze the
message complexity of the proposed algorithm.
Finally, we summarize this paper in Section 7.

2. The Model

The Distributed System Model: A dis-
tributed system consists of n processes U =
{u1,uz2,...,u,}, bidirectional communication
links each connecting two processes, and m re-
sources R = {r;,r2,...,7n} shared by pro-
cesses. The network topology is assumed to be
complete; any two processes are connected by
a link.

Each process has a unique identifier (process
ID) selected from an integer set {1,2,...,n}.
The processing speeds of processes may be dif-
ferent, and may even vary during the execution
of a program. However, every process is guar-
anteed to execute the next instruction within a
finite time, unless it has been terminated. Each
process has its own local clock, but clocks may
indicate different times, and no processes can
tell the global time.

The only mechanism provided in the system
for information exchange between processes is
point-to-point message passing. More precisely,
each process has a message queue of infinite
length, which stores arriving messages. Each
message is delivered in a finite time. The de-
livery delay is unpredictable, but the order of
messages is kept unchanged during the deliv-
ery. Finally, we assume that both processes and
links are error-free.

Processes u € U are allowed to use some of
the resources r € R. By the function a : U —
2R we denote the following relation; for any
ueU,
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a(u) = {r € R | u has access tor} C R.

In this paper, we assume that a(v) # @ for
any v € U. When V is a set of processes, a(1)
denotes Uyeva(v). The triple (U, R, a) is called
the sharing structure of the system.

Define a configuration ¢ of the distributed

system as a tuple of the states of all processes
and communication links. For any u € U, p.(c)
denotes the set of resources that are being ac-
cessed by u when the system is in configura-
tion c¢. A computation 7 of the system can be
described by a (possibly infinite) sequence of
configurations starting from an initial configu-
ration. Note that because of the asynchrony of
the system, the computation is not determined
uniquely, in general, even if an initial configu-
ration is given.
The Resource Allocation Problem: Con-
sider a distributed system such that each pro-
cess consists of an infinite cycle of a computa-
tion phase followed by a resource access phase.
The computation phase does not contain re-
source access instructions, whereas the resource
access phase consists of a series of resource ac-
cess instructions. The latter phase starts with
a resource request instruction for requesting a
number of resources, and terminates with a re-
source release instruction for releasing all re-
sources it is accessing. Let S = (U, R, a) be its
sharing structure. Each time the resource ac-
cess phase is executed, the number of resources
a process u requests can change between 1 and
|o(u)].

The resource allocation problem is the prob-
lem of implementing the resource request and
release instructions in such a way that when-
ever a process u requests k (< |a(u)|) re-
sources, eventually k resources are allocated
to u. Furthermore, as the restriction arising
from the sharing structure, any computation
T = ¢Co,C1,---,Ci,--.of the resulting distributed
system must satisfy the following two condi-
tions:

Allocation Validity: For any configuration
¢; and any process v € U,
pu(ci) € a(v).
Mutual Exclusion: For any configuration c;
and any two processes u,v € U,
pulcs) N py(ci) = 0.

Allocation Validity guarantees that a process
u only accesses resources to which it has access,
and Mutual Exclusion guarantees that every re-
source is allocated to at most one process at a
time.
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3. Local Coteries

Garcia-Molina and Barbara® introduced the
concept of a coterie, a main motivation of which
is to design a mutual exclusion algorithm that
is both efficient in message complexity and ro-
bust with respect to network failures. A set
Q = {q1,92,---,90;} C 2V is called a coterie
under U = {uy,us,...,un} if all of the follow-
ing conditions hold:

e Non-emptiness: Vq € Qg # 0]

e Intersection property: Vq,7 € Qg N r # @]

e Minimality: Vq,7 € Qg € 7]

An element of a coterie is called a quorum.
Roughly, a coterie is used to solve the mu-
tual exclusion problem as follows: Initially, each
process u holds one token called “permission
(by u)”. Select a coterie Q and let each process
use Q. A process u that wants a resource (in
other words, one that wants to enter the critical
section) sends request messages to all processes
in a quorum ¢ € Q. Upon receiving u’s request,
process v sends its permission to u if it holds
it. Otherwise, when the permission returns, it
sends to one of the processes that are waiting
for it. (How to select the one from the waiting
processes is the key to make the resulting al-
gorithm deadlock- and starvation-free, and we
would like to encourage readers to check, for ex-
ample, Refs. 11), 17).) A process u can access
the resource if it receives the permission from
each of the processes in q. When u releases
the resources, it returns the permissions. The
intersection property guarantees that at most
one process can access the resource.

Unlike the mutual exclusion problem, the re-
source allocation problem, in general, involves
cases in which resources are shared by different
sets of processes. Consider a case in which two
processes u and v do not share a resource. Then
it is a natural requirement that their requests
be interference-free. (This may or may not be
possible, depending on the remaining part of
the sharing structure.) As long as the same set
of quorums is associated with u and v, like the
above mutual exclusion algorithm, the interfer-
ence inevitably occurs, because of the intersec-
tion property.

To take account of the sharing structure, we
associate (possibly different) sets of quorums
with each process. We call aset {Q, |u€ U} a
local coterie with respect to a sharing structure
(U, R, ) if all of the following conditions hold:

e Non-emptiness: Yu € U[Q, # 0.
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¢ Intersection property: Vu,v € Ula(u) N
a(v) #0 = Vg € Qu,¥r € Q,[gNr # 0]

e Minimality: Yu € U,Vq,7 € Q,[q € 7).

Note that the definition of a local coterie in-
cludes that of a coterie as a special case when
[R|=1and a(u) = Rforall u e U.

When two processes u and v do not share re-
sources, there can be non-intersecting quorums
of v and v, and consequently resource allocation
for u and v can be performed independently.
This is the motivation for introducing local co-
teries.

Consider, for example, the following sharing
structure (U, R, a), where U = {uy,u2,u3,u4},
R = {Tl yT2,T3, T4, T5}’ and a(ui) = {Ti, Ti+1}
for all 1 <i < 4. Then, it is easy to check that
the following quorum sets {Q, | v € U} is a
local coterie with respect to (U, R, a):

b Qul = {{UI,UQ}},

® Qu; = {{uj—1,u;j,u;41}} for each j = 2,3,

* Qu, = {{us,uq}}.

It should be noted that Q,, and Q,, do not
contain quorums intersecting each other, which
reflects the fact that u; and u4 do not share re-
sources, that is, a(u;) N a(ug) = @, and there-
fore, the resource allocation for u; and u4 can
be treated independently. (This quorum set is
generated by an algorithm described below.)

First, for any sharing structure (U, R, a), we
show that there certainly exists a local coterie
with respect to (U, R, a).

Algorithm LocalCoterie(U, R, a);
begin
G := MakeBipartiteGraph(U, R, o);
for eachrin R
N(r) := AllAdjacentNodes(r,G);
for each v in U
Qu = UrEa(u) N(r);
for each u in U
Qu = {‘h}?
(* Q. is the quorum set consisting
only of one quorum. *)
return {Q, | u € U}
end. O

Function MakeBipartiteGraph(U, R,a) con-
structs a bipartite graph G = (U U R, E) with
partite sets U and R, where (v,r) € F iff
r € a(v). Function AllAdjacentNodes(r,G)
constructs the set N(r) of all processes that are
adjacent to 7 in G, ie., N(r) = {u e U | r €
a(u)}.

Theorem 1
Algorithm LocalCoterie(U, R, a) computes a lo-
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cal coterie with respect to a given sharing struc-
ture (U, R, ) in O(|U|? - |R|) time.

Proof: Non-emptiness holds, because for each
v € U, there is a resource r € a(q,), by as-
sumption, and v € N(r), which implies that
{v} C ..

Minimality trivially holds, since the quorum
set (), contains only one quorum for each pro-
cessv e U.

Assume that the intersection property does
not hold. Let v; and v, (v; # v3) be two pro-
cesses such that (a(vi)Na(v2) # B)A(gy,Ngy, =
), where q,, € Q,, for i = 1,2. Let r be a re-
source in a(v1) Na(vz). Because vy, v, € N(r).
we have {v;,v,} C g¢,, N q,,; This is a contra-
diction.

Since G is a bipartite graph, the maximum
number of its edges is |U|-|R|. Thus, G can be
constructed in O(|U| - |R|) time. N(r) can be
computed from G in O(|U]) time. {J, ¢, N(7)
can be computed in O(|U| - |R|). Thus, the ex-
ecution time is O(|U|? - |R|). 0

Corollary 1 For any sharing structure
(U, R, o), there exists a local coterie C with re-
spect to the sharing structure (U, R, a). O

4. The Distributed Resource Alloca-
tion Algorithm

We are now ready to introduce our algorithm
for solving the distributed resource allocation
problem. We first give an outline of the algo-
rithm, and then describe it in detail.

We say that a resource r is available to u if
r € a(u) and r is currently free. On the other
hand, when we say that r is accessible by u, it
simply means that r € a(u).

Together, the processes maintain a dis-
tributed database, which keeps pairs each con-
sisting of a process and a resource it is currently
accessing. A process u wishing to access k re-
sources sends a query asking whether or not
there are k resources available to u. If the an-
swer is yes, then the k resources are allocated
to u.

An essential contribution of this paper is to
use local coteries to implement the distributed
database efficiently. Let {Q, | v € U} be a
local coterie, where @, is the quorum set asso-
ciated with process u. Then the outline of the
algorithm is as follows.

In our algorithm, a process v is (partially)
responsible for resources r that are accessible
by a process w, if v occurs as an element of a
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quorum in @,,. When w is accessing r, as ex-
plained below, w has obtained permission from
every process v in a quorum ¢ in Q.. Process
v, on the other hand, memorizes the fact that
w is accessing r as a part of its database.

A process u wishing to access k resources se-
lects an arbitrary quorum ¢ € Q,, and sends a
query message (QUERY) to every process v in
g. A process v receiving the query (QUERY)
sends back the names of resources available to
u. Upon receiving the list of available resource
names from every process v € ¢, u arbitrarily
selects k resources among those common to all
lists and sends a lock message (LOCK) with the
k names to every process v in g to let it update
the current states of the k resources. When
u releases the k resources, it sends an unlock
message (UNLOCK) with the k names to every
process v in ¢ to let it free the states of the
resources.

The above description of the algorithm does
not explain how to avoid deadlocks and starva-
tions or how to treat cases in which u cannot
find k resources available to u. Moreover, in
order for the algorithm to work correctly, the
query step must be carried out in a mutually
exclusive manner. Nevertheless, we would like
to observe that if u decides to access a set of
resources R', then R’ is currently available to u
(i.e., u has access to R’ and no resource in R’
is used by some process), from the definition of
a local coterie. To avoid deadlocks, we use the
messages (PREEMPT) and (RETURN) to preempt
and return exclusive access to a quorum.

The algorithm assumes that each process u
maintains the following local variables. For con-
venience of explanation, as in the above rough
explanation, define

Sy ={w | u € ¢ for some q € Q,},

R, = U a(w).
wWES.,

Intuitively, S, is a set of processes w such
that at least one of w’s quorum includes u. The
set R, is a set of all resources accessible by each
process in S, and u (partially) manages the al-
location of resources in R,,.

e C, — The current logical time at u. It
is initially 0 and is automatically incre-
mented®.

e D, — The array that memorizes whether

* By means of a standard technique that uses unique
process IDs, events occurring in the system are fully
ordered according to the logical time®).
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or not r is allocated to a process for each
r € R,. More precisely, D,(r) = (v, t) if r
is locked by a (LOCK) message with times-
tamp t issued by v. Note that this occurs
only when v, wishing to access r, selected
a quorum ¢ € @, such that v € ¢g. Other-
wise, D,(r) = (L,t), where t is the times-
tamp attached to the latest (UNLOCK) mes-
sage received by u. Initially, D, = (L1,0)
forallr € R,.

e W, — The name of process to which u
sends the current states of resources. (u
is waiting for a (LOCK) message as a reply
from this process.) If u is not waiting for a
reply message, W, = 1.

e T, — The timestamp attached to the
(QUERY) message that the process held in
W, issued. T, = Lif W, = L.

e X, — The priority queue to hold (QUERY)
messages waiting at u for their turns. They
are sorted in the order of their timestamps.

We describe our algorithm AllocResource in

an event-driven form.

Algorithm AllocResource;

Let {Q.} be the local coterie used in the algo-

rithm. For simplicity of description, the pa-

rameters of a message may be omitted, and

we may write, for example, (LOCK) instead of

(LOCK, u,C\y, Gy)-

(1) When a process u wishes to access
k(< |a(u)]) resources:
It arbitrarily selects a quorum q € @,.
and sends a (QUERY,u,C,) to every pro-
cess in ¢*%. Recall that C,, is the current
logical time at u and is used to timestamp
the message. Process u waits until both
of the following two conditions hold:

e It has received at least one messages
of type (RESPONSE, v, D,) from each
process v € q. Note that v sends
a (RESPONSE,v,D,) message carry-
ing the latest version of D, as soon
as D, is updated, even if it has sent
an older version to u (see Case 7).
Note also that u does not need to
store old versions. It simply discards
them and holds the latest one (see
Case 3).

e A, contains at least k resources,
where A, C a(u) is a set of resources
r satisfying D,(r) = (L1,t,) for all

“** The number k of requesting resources is not a pa-
rameter of a (QUERY) message.
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(2)

(3)

(4)
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v € q. Recall that every D, con-
tains the states of all resources in
a(u) from the view of v. Intuitively,
A, is the set of resources currently
available to u, as we will show in the
next section.
If both of the above conditions hold, u ar-
bitrarily selects a set of k resources from
A,,say R', sends a (LOCK, u,C,, R') mes-
sage to every process v € ¢, and accesses
R'.
When a process u releases the set
G, of resources:
It sends an (UNLOCK,u,C,,G,) message
to every process v € q.
When a process u receives a
(RESPONSE, v, D,,) message from a
process v:
It stores D,. If it has received an older
version of D, it discards it and stores
the latest one. Because messages are as-
sumed to be delivered in order, u always
holds the latest version among of the ver-
sions received so far.
When a process v receives a
(QUERY, u,t) from a process u:
If W, = 1, that is, if process
v is not waiting for a (LOCK) mes-
sage from another process, it sends a
(RESPONSE, v, D) message to u, and sets
W, :=u and T, := t. Recall that ¢ is the
logical time at the process u where the
(QUERY) message was issued (see Case 1).
Otherwise, W, = w for some process
w € U, that is, w waits for the two condi-
tions in Case 1 to hold. If T, < ¢, that is,
if w has higher priority (since T, is the
timestamp attached to w’s (QUERY)), v
stores (QUERY, u,t) to queue X,. Other-
wise, if T, > t, u has the higher priority.
Then, in order to preempt the right to
lock resources, that v gave to w, v sends
a (PREEMPT,v) to w, and waits for w to
reply either with a (RETURN) or a (LOCK)
message (see Cases 1 and 8), after stor-
ing the (QUERY) messages issued by u and
w to X,. When v again needs to send a
(PREEMPT) to w while waiting for a reply
from w, v ignores it.
When a process v receives a
(RETURN, w) message from a process
w:
It takes the (QUERY,z,t) message from
the top of queue X,. This is the (QUERY)
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message that has the highest priority.
Then, v sends a (RESPONSE, v, D) to z,
and sets W, :=x and T, :=¢.

When a process v receives a
(LOCK, w, t, G,,) message from a pro-
cess w:

It updates its data D, by setting
D,(r) := (w,t), for each r € G,.. Then
it continues (the algorithm fragment for)
Case 5 if X, is not empty.

When a process v receives an
(UNLOCK, w, t,G,,) message from a
process w:

It updates its data D,; it sets D,(r) :=
(L,t), for each r € G,. U W, # L,
it sends a (RESPONSE, v, D,) message to
W,. Otherwise, it continues Case 5 if X,
is not empty.

When a process w receives a
(PREEMPT, v) message from a process
v:

If it has sent back an (UNLOCK) message
to v, it simply ignores the (PREEMPT)
message. Otherwise, it sends back a
(RETURN, w) message, and then discards
the copy of D, at w that was previously
sent by a (RESPONSE, v, D)) message from
v. (Recall that w keeps D, unchanged
for each process v.) Then, w waits for
another (RESPONSE) message from v. O

Although a (RESPONSE) message carries all of
D, in the above description of AllocResource,
it is enough to carry the data on a(u) in D,
since a process u will use information on a(u)
in D,.

5. Proof of Correctness

In this section, we show the correctness of Al(-
locResource, provided that processes accessing
resources release them within a finite time.

Since a process u selects the resources it ac-
cesses from the candidate set A,, which is a
subset of a(u), the following theorem holds.

Theorem 2 Algorithm AllocResource guar-
antees Allocation Validity. O

Before we proceed to the remaining proper-
ties, recall that a process u requesting k re-
sources arbitrarily selects k resources from A,
determined from D,’s for v € ¢ € Q,. It then
sends a (LOCK) message carrying the names of
k resources to every v, after which it is free
to access the k chosen resources. Process v,
on the other hand, updates D, in response
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to the (LOCK) message. If two processes that
share resources received D,’s simultaneously,
they could select the same resources and access
them simultaneously. Our algorithm guaran-
tees that this situation never occurs. We in-
troduce the notion of a Q-region to prove this
formally.

A process u requesting k resources sends a
(QUERY) message to every member v of a quo-
rum g € Q., and collects D,’s until the two
conditions of Case 1 hold. If a (PREEMPT) mes-
sage from w € ¢ arrives in the meanwhile, pro-
cess u discards D, and waits for a new D,,.
Recall that receiving a D, from every v € g is a
necessary but not sufficient condition. We say
that u is in the Q-region if u has received a D,
from every v € g, but has neither sent a (LOCK)
message nor received a (PREEMPT) message since
then.

Lemma 1 Let u and v be any two processes
such that a(u) N a(v) # . Then u and v are
never in their Q-regions simultaneously.

Proof: Assume that there exist two processes
u and v such that a(u) Na(v) # @ and v and v
are in their Q-regions at the same time. Let w
be a process such that w is in both the quorums
chosen by u and v. Note that such a w exists,
since a(u) Na(v) # 0. Without loss of general-
ity, assume that w sent a (RESPONSE) message
to u first. From the definition of the algorithm,
w extracts the request from v after sending a
(RESPONSE) message to u. By assumption, w
sent a (RESPONSE) message to v before a (LOCK)
or (RETURN) message was sent from u. This ac-
tion contradicts the definition of the algorithm.

O

Suppose that a resource r has been allocated.
If no v knew this fact when it sent D, for the
first time to u, A, could include 7. In this case,
r may be allocated to more than one process,
since the candidate set A, is determined from
the D,’s. The next lemma guarantees that this
situation never occurs.

Lemma 2 Let u and v be any two processes
such that r € a(u) N a(v) # @. Assume that r
has been allocated to u, and that v is now in its
Q-region. Further, assume that u used quorum
qu € Q. for resource request and that v is using
quorum ¢, € Q,. Then for any w € ¢, N q.,
D, (r) = (u,t) for some t.

Proof: From the definition of a local coterie,
g. N g, # 0. Since u is accessing a resource 7,
it sent a (LOCK) message to every process in gy
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when it exited from the Q-region, and it then
started accessing r. Every w € ¢, N q. sends
a (RESPONSE) message to v after it receives a
(LOCK) message from u, because v is in the Q-
region.

When w receives a (LOCK) message from u, it
updates its local database so that 7 is allocated
to u, along with its allocation time. When w
sends a (RESPONSE) message to v, w knows that
r is already allocated. Thus, D (r) = (u.t) for
some . O

Theorem 3 The algorithm AllocResource
guarantees mutual exclusion.

Proof: Assume that a resource r € a(u) N
a(v) is allocated to both u and v simultane-
ously. The proof is by induction. The mutual
exclusion condition holds at the initial state of
the system, since no resources are allocated to
processes. From lemma 1, no two processes
sharing resources are in their Q-regions simul-
taneously. Without loss of generality, we as-
sume that u leaves its Q-region first by sending
a (LOCK) message to allocate r to u. Then, v
can enter its Q-region only after all processes in
gu. N gy receive a (LOCK) message from u. where
gu € Qu (g, € Q) is the quorum that u (v)
chooses for response request. Since u and v
share resources, g, N ¢, is not empty. Let w
be any process in q, N g,. Then, w updates
its database so that D, (r) = (u,t,) holds for
some t, when it receives the (LOCK) message
from u. Hence, every (RESPONSE) message sent
to u from w contains D (r) = (u,t,). There-
fore v cannot choose r; this is a contradiction.

O

Theorem 4 Algorithm AllocResource is
deadlock free.

Proof: Since processes request all necessary
resources when the resource access phase starts,
we do not consider deadlocks caused by nested
requests. We consider the deadlocks at the
query step.

Assume that a deadlock occurs. Since the
number of processes is finite, there exists a
time such that the number of processes that are
deadlocked does not increase afterwards. We
consider what will happen. Although there may
exist processes that do not send and/or receive
messages in general, we can assume without loss
of generality that there are no such processes.

Let V C U be the set of processes that are
deadlocked, and assume that u € V" is the pro-
cess whose timestamp attached to the (QUERY)
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message is the smallest (i.e., it has the high-
est priority) among V. The (QUERY) message
sent by u will reach every process in a quo-
rum g € @, in a finite time. Since the logical
clock monotonically increases, the timestamp of
u’s (QUERY) message will become the smallest
among all processes. From the definition of the
algorithm, each process v in g behaves as fol-
lows. If v sent a (RESPONSE) message to a pro-
cess w € U but has not received the correspond-
ing (LOCK) message, then v sends a (PREEMPT)
message to w to switch the query right to u. If
v receives a (RETURN) message from w, it will
send a (RESPONSE) message to u. Otherwise,
it will send a (RESPONSE) message to u, when
w returns a (LOCK) message, since u’s (QUERY)
message has the highest priority. On the other
hand, processes that share resources with u can-
not be in their Q-region, and hence, resources
are not allocated to them. Therefore, within a
finite time, enough number of resources in a(u)
become free and the request by u will be satis-
fied within a finite time; This is a contradiction.

a

Theorem 5 Algorithm AllocResource is
starvation-free.

Proof: Assume that starvation occurs, and
let u be the starved process that has the small-
est timestamp (i.e., the highest priority). With-
out loss of generality, we ignore processes that
never request resources and whose timestamps
do not increase, because they have no interac-
tion with other processes.

Let ¢ € Q, be a quorum chosen by « and
let v; be any process in ¢q. If v; has sent a
(RESPONSE) message to u, then v; never sends a
(PREEMPT) message, because u has the highest
priority. Thus, v; has not sent a (RESPONSE)
message to u. But the request by a (QUERY) is
enqueued in X,,, according to the timestamps,
and every request (if any) that has higher prior-
ity than u’s in X, is a request by a non-starved
process. Thus, such requests are met and the
request by u eventually comes to the top of the
queue. Every process using resources eventu-
ally releases them, and lists of free resources
are sent to u by a (RESPONSE) message. O

We can conclude that the algorithm AllocRe-
source correctly solves the resource allocation
problem.

Theorem 6 Algorithm AllocResource
solves the resource allocation problem. 0O
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6. Message complexity

In this section, we analyze the message com-
plexity of the proposed algorithm. In the
best case, the messages (QUERY), (RESPONSE),
(LOCK), and (UNLOCK) are used for each process
in a quorum. Thus, the message complexity in
the best case is 4|g|, where ¢ is the smallest
quorum.

The worst case happens in the following sit-
uation: A process u sends a (QUERY) message
to every process v; in a quorum g to use |a(u)|
resources. When a (QUERY) message arrives at
v;, v; has sent a (RESPONSE) to some process w;
and is waiting for a (LOCK) message. The pri-
ority of u is higher, and v; sends a (PREEMPT)
message to w;. Then, w; sends a (RETURN) mes-
sage to v; and v; sends a (RESPONSE) message
to u. These messages (plus a (LOCK) message)
are necessary for u to be in its Q-region.

A requesting process ¢ may not find enough
resources through the responses it receives. As-
sume that u cannot find any resources. That is,
assume that each v; has allocated resources to
some processes. If these processes are using one
resource per process and they release their re-
sources one after another, each time v; receives
an (UNLOCK) message, v; sends the latest D,
embedded in a (RESPONSE) message to u. Be-
cause u is requesting |a(u)| resources, v; sends
a (RESPONSE) message |a(u)| times.

When u unlocks the resources, it sends an
(UNLOCK) message to v; and then v; sends a
(RESPONSE) message (possibly) to w;.

Since the above situation can happen for each
process in a quorum, the message complexity in
the worst case is (7 + |a(u)|)|q|, where ¢ € Q..

7. Discussion

In this paper, we have discussed the resource
allocation problem, and proposed a distributed
algorithm. Unlike for other conflict resolution
problems such as the mutual exclusion and the
k-mutual exclusion problems, we consider cases
in which processes may have access rights to
different sets of resources. To take account of
the resource-sharing relation of the system, we
have introduced a new concept called “local co-
terie.”

The number of messages that need to be ex-
changed per resource request can be shown to
be 4|g| in the best case and (7 + |a(u)|)|q| in
the worst case, where |q| is the quorum size. In
cases where each resource is shared by a small
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number of processes, since the quorum size |q|
can be small, our algorithm is suitable.

Manabe and Aoyagi proposed a distributed
resource allocation algorithm for anonymous
resources!?).  Their algorithm uses a k-
coterie?1?) and runs in O((2h + 3)|g| + 3) mes-
sage complexity, where h is the number of re-
sources a process requests and |g| is the size of a
quorum. A drawback of the k-coterie is that |g|
becomes large when the number k of resources
increases. For example, Baldoni®) proposed a
method of constructing a k-coterie whose quo-
rum size is O(n*/**1), where n is the number of
processes. When k becomes large, the quorum
size approaches O(n).

On the other hand, in our algorithm, we can
simply use, for example, a coterie based on a
finite projective plane!!), whose quorum size is
approximately /n. We may even be able to find
a better local coterie that takes advantage of the
sharing structure under consideration. The ba-
sic idea of a local coterie is that processes that
do not share any resources should not interfere
with each other, and quorums are designed not
to intersect as possible.

When |a(u)| is large, our algorithm is also less
efficient in the worst case. But the worst case
described in section 6 seems not to occur very
often. To evaluate the average performance,
simulation is necessary.

We can improve the algorithm by modifying
the proposed algorithm to choose “optimal” re-
sources. For instance, consider the following
situation: a secretary working on the 6th floor
wants to print a file. She has three accessible
printers, LP4, LP5, and LP6, located on the
4th, 5th, and 6th floor, respectively. The “op-
timal” resource would be LP6, since it is on the
same floor. The problem can be solved by defin-
ing a priority for each resource and selecting the
free resource whose priority is the highest. Note
that different users can assign different priori-
ties to the resources. It is easy to include the
resource selection strategy for each process in
the proposed algorithm.

Finally, we would like to mention some topics
for future work. It is possible to use a single-
ton coterie, namely, {{u}}, for some process u
as a local coterie to minimize the message com-
plexity. This is by no means a good selection.
Our algorithm has the general advantage of the
quorum-based approach of being robust with
respect to process and/or link failures; as long
as at least one quorum “survives,” there is a
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possibility that resource allocation can be con-
tinued. However if a singleton coterie {{u}} is
adopted, since a failure on u is fatal, the ro-
bustness of the algorithm fails. Discussion of
the fault-tolerance aspect of this algorithm, in
connection with a criterion for good local coter-
ies, is left as a topic for future work.
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