Vol. 38 No. 1

Regular Paper

Transactions of Information Processing Society of Japan

Jan. 1997

Decomposable Programs Revised

X1A0YONG Du,t ZHIBIN Liu,t and NAOHIRO IsHIIt

Program decomposition is a program optimization technique for multiple linearly recursive
programs in deductive databases. It decomposes an original program into a set of subprograms
that have small arities and share no recursive predicates. 2D-decomposable programs”) gen-
eralize some previously proposed decomposable programs, including one-sided recursions ?’;
separable recursions ¥; right-, left-, and mixed-linear recursions*); and generalized separable
recursions ®). This paper revises the concept of 2D-decomposability, and proposes two larger
program classes based on detailed analysis and classification of the arguments of the recursive
predicate. We prove that the proposed program classes are decomposable to some extent.

1. Introduction

Program decomposition means decomposi-
tion of an original program into a collection of
subprograms that have small arities and share
no recursive predicates. Intuitively, the size
of the recursive predicate (relation) is bounded
by n*, where n is the number of distinct con-
stants in the database and k is the arity of
the recursive predicate. Reducing the arity of
the recursive predicate can thus result in an
order-of-magnitude increase in the efficiency of
the evaluation algorithm. Wang, et al.”) pro-
posed the concept of 2D-decomposability for
multiple linearly recursive programs, and
showed that 2D-decomposable programs sys-
tematically generalize some previously pro-
posed decomposable programs, including sep-
arable recursions?); right-, left-, and mixed-
linear recursions?®); and generalized separable
recursions®). However, as we will show, 2D-
decomposable programs exclude some meaning-
ful recursions that are decomposable to a cer-
tain extent.

Example 1.1 Consider the following mul-
tiple linearly recursive (mL for short) program
which is a modified version of an example from
Wang, et al. 7).

Three types of part, called Type A, Type B,
and Type C, are used in projects. Relations
a(X)Y), b(X,Y), and ¢(X,Y) denote that X is
an immediate subpart of Y for Types A, B, and
C, respectively. Relation d;(U) (i = 1,2,3) is
a collection of projects satisfying some prop-
erty. Relation q(X,Y,Z,U) is an initial relation
in which parts X, Y, and Z, which come from

t Department of Intelligence and Computer Science,
Nagoya Institute of Technology

81

Types A, B, and C, respectively, are used in
the same project U. We now define a relation
p(X,Y,Z,U) that computes all triples (X,Y,Z) of
parts such that they come from different types
and will be used in the same project.

To 3P(X,Y, Z’U) i (I(X,Y,Z,U)
r:p(X,Y,Z,U): —a(X,A),p(A,Y,Z,U),

d1(U)
ro:p(X,Y,Z,U): - &Y,B),p(X,B,Z,U),
da2(U)
r3 : p(X,Y,Z,U) : — ¢(Z,C),p(X,Y,C,U),
ds(U).

This program is not 2D-decomposable by
the definition in Wang, et al.”), since relation
d; (i = 1,2,3) makes all recursive rules con-
nected.

However, it can still be decomposed into three
small programs as follows:

D,: p(X,U,-): —q(X,Y,2Z,U,-)
m(X,U,-): —a(X, A),
pl(Aa Ua-)adl(U)
D2 : p2(Y1 U9_) : _q(XyY7 Z)Ua_)
p?(Ya Ua —) : —b(YvB)a
p?(B7 U, —)’d2(U)
Ds: p3(Z,U,-):—q(X,Y,Z,U,~)
pg(Z, Ua —) : _C(Za C)7
p3(07 U)"')?d3(U)’
where “—” is a unique ID attached to each tuple

of ¢(X,Y,Z,U). It gives a value identifying the
initial p tuple from which a derived tuple comes,
thus it keeps the original source of a derived
tuple”). The finial result can be generated by
computing a join of p, (X, U, —), p2(Y, U, —) and
p3(Za Ua '_)' o

This example encourages us to revise the con-

82 Transactions of Information Processing Society of Japan

cept of 2D-decomposability proposed by Wang,
et al.”) so that more programs are included.

The rest of this paper is organized as fol-
lows. Section 2 revises the concept of 2D-
decomposability after briefly reviewing some
basic terms in deductive databases, and defines
two program classes that are larger than the
2D-decomposable class. Sections 3 and 4 show
that these two classes of programs are decom-
posable. In the final section, we present a brief
comparison with related work and offer our con-
clusions.

2. Basic Definitions

Here we give some definitions and assump-
tions required for the rest of the paper. Assume
that there is an underlying first-order language
without function symbols. A program is a finite
set of clauses called rules of the form

A:_Ala"'7Am(m20)’ (1)
where A, called the head, is an atom of an ordi-
nary predicate, and A,, - - -, An,, called the body,
stands for the conjunction A; A --- A Ap,; each
A; is called the subgoal and is an atom of ei-
ther an ordinary predicate or a built-in predi-
cate such as =, >, <, #, >, <. A predicate is
called a base predicate if it is not a head in the
program. Otherwise, it is called a derived pred-
icate. A derived predicate is called recursive
if it is contained in a cycle in the dependency
graph of a program, which has all predicates as
its nodes and has an edge from A to B if A is
found in the body and B is found in the head
of the same rule. A rule is linearly recursive
if the head is the sole recursive predicate and
appears exactly once in the body. A program
is multiple linearly recursive if it contains only
one recursive predicate defined by more than
one recursive rule. Nonrecursive rules are called
ezit rules, and the corresponding predicate F is
called the ezit predicate.

In this paper, we consider only multiple lin-
early recursive programs with a single recursive
predicate, called mL for shorthand. Further-
more, by introducing a special built-in predi-
cate “=”, we may assume without loss of gen-
erality that rules are rectified®; that is, the
heads of the rules in the program are identi-
cal and contain neither constants nor repeated
variables.

Definition 2.1 Let r denote a recursive
rule in mL program P with recursive predi-
cate p, and let p[i] denote the i th position of
predicate p, or ¢ for short if this does not cause

Jan. 1997

any confusion in the context. A position pft] is
persistent if the same variable is found in po-
sition p[t] of the two p instances and nowhere
else in 7. A position p[t] is semi-persistent if
the same variable is found in position p[t] of
the two p instances and in at least one non-
recursive predicate. A collection of positions
T = {p(1],---,p[t]} is a permutation if the
same set of variables are found in the positions
T of the two p instances, and these variables
are found nowhere else in . We denote these
three kinds of position as pers(r), semi(r), and
perm(r), respectively.

For example, for the second rule r; in Ex-
ample 1 1, we have: pers(rl) = {p[2],p[3]},

semi(ry) = {p[4]}, and perm(r;) = {{p[2]},
{p[3]} {p[2] p(3]}}-
Example 2.2 Consider another rule 7,
r:p(X,Y,Z,U,V,W) : —a(X, A),bZ),
p(AY,Z,V,W,U).

We have pers(r) = {p[2]}, semi(r) = {p[3]},
and perm(r) = {{p(2l}, {pl4], p[5], p[6]}, {P[2]
pl4}, p[5], p[6]}}-

Definition 2.3 Let T be a set of permu-
tation positions of p. We define a function
h : T — T such that h(i) = 5 if i and j are
in T, and the same variable X is found in the ¢
position of head instance of p and in the j po-
sition of body instance of p in the rule r. We
also define powers of h as

h1(X) = h(X)

A™(X) = W™ 1(X)).
h is called the permutation function of the rule
T.

From the definition of permutation, h(X) is a
bijective function (i.e., a one-to-one function).

Definition 2.4 Let T; and T3 be two sub-
sets of the permutation positions in rule r, and
r9, respectively. Let hy and h; be the permuta-
tion functions of r; and 75, respectively. T; and
T, are consistent between 7y and o if T} =T
and for each X in T (T3), there is

h1(h2(X)) = ha(h1(X)). (2)
T is a consistent permutation in P if for each
pair of rules r; and 72 in P, Eq. (2) holds.

Example 2.5 Consider the rule in Exam-
ple 2.2, and its permutation set T = {4,5,6}.
Its permutation function on T is {h.(4) = 6,
h.(5) = 4,h,(6) = 5}. If there is another rule

s, then
s:p(X,Y,Z,U,V,W) : —c(Y, B),d(Z),

p(X,B,Z,W,U,V).

Vol. 38 No. 1

Its permutation on T is {hs(4) = 5, h,(5) = 6,
hs(6) = 4}. ‘

It is easy to certify that h.(h;) = hs(h,) for
every element in T. Hence T is a consistent
permutation in the program P = {r,s}. =]

Definition 2.6 Let e C P be a subset of
rules in P. The persistent, semi-persistent, and
permutation positions of p w.r.t. e are defined
respectively below.

(1) pers(e) = Nrec(pers(r));

(2) semi(e) = Nyee(semi(r) U pers(r))

— pers(e);

(3) perm(e) = {T'|T is a consistent permuta-

tion in e} — pers(e).

Definition 2.7 For each recursive rule in
P, we define three sets of positions of p as fol-
lows:

vary(r) = full(r) — pers(r);

varyq(r) = full(r) — (pers(r) U semi(P));

varys(r) = full(r) — (pers(r) U perm(P)),
where full(r) represents the collection of all po-
sitions of the recursive predicate p in r.

Definition 2.8 Two nonrecursive predi-
cates Q and R are connected if they share a
variable or if there is a nonrecursive predicate
S such that Q and S are connected and S and R
share a variable. Two variables are connected if
they are in the same nonrecursive predicate, or
they belong to nonrecursive predicates @ and
R, respectively, and @) and R are connected.

Definition 2.9 Two positions p[t] and p|s]
are connected if there is at least one rule 7 in
P such that the variables in the p[t] and p|s]
position of the head instance of p are connected.
We now define the relations among rules.

Definition 2.10 Recursive rules r and s
are a c-connection (¢ € {1,2,3}) if either
vary.(r) N vary.(s) # ¢ or there exists
some recursive rule t such that vary.(r) N
vary.(t) # ¢ and t and s are a c-connection.
The c-connection partitions the set of re-
cursive rules in P into equivalence classes
€1,e2,"*,em ,m. > 1, so that r and s are
in the same class if and only if they are c-
connected. For each class e; = {r;,---,7;, },
c-dyn; (or c-dyn(e;)) denotes the positions
varyc(ry) U -+ U vary.(r;,), called the c-
dynamic positions in e;, and c-dyn (or c-
dyn(P)) denotes c-dyn; U---U c-dyn,_, called
the c-dynamic positions of P.

Example 2.11 Consider program P in Ex-
ample 1.1.

We have pers(P) = ¢, pers(r1) = {p(2], p[3]},

Decomposable Programs Revised 83

pers(r) = {p[l],p[3]}, and pers(r;) =

{r(1], p[2]}.

(1) Consider the 1-connection. We have
varyi(r1) = {p[l],pl4]}, vary(rz) =
{p[2], p[4]}, and varyi(r3) = {p[3],p[4]}.
Hence, the partition of recursive rules
is {&e = {ri,r2,73}}, and l-dyn, =
{p(1], p[2], 3], P[4]}. It is a singleton par-
tition.

(2) Consider the 2-connection. We have
semi(ry) = semi(re) = semi(rz) = semi(P)
= {p[4]}. Hence vary,(r1) = {p[1]},
varys(r2) = {pl2]}, and varys(rs) = {p{3]}.
The partition of recursive rules is {e; =
{71}7 €2 = {1‘2}, €3 = {T3}}a and 2-dyn; =
{p(1]}, 2-dyny = {p[2]}, 2-dyn; = {p[3]}.
It is a partition that has three equivalent
classes. O

Definition 2.12 Let P be an mL program.
we define three program classes as follows:

(1) £; = {P|nonsingleton(1-dyn)};

(2) 2 = {P|nonsingleton(2-dyn)

& semi(P) # ¢};
(3) 3 = {P|nonsingleton(3-dyn)
& perm(P) # ¢},
where nonsingleton(dyn) is a predicate that in-
dicates dyn has a nonsingleton partition.

Theorem 2.13 %, is equivalent to the 2D-
decomposable programs defined in Wang, et
al.”), except when pers(P) # ¢ and 1-dyn is
a singleton partition.

Wang, et al.’s definition covers the case in
which pers(P) # ¢ and 1-dyn is a singleton par-
tition. However, the program in this case is not
horizontally decomposable, because when the
arguments in pers(P) are removed, the number
of rules that define a new recursive predicate
cannot be reduced. We thus exclude this case
from our definition for X;.

Theorem 2.14 Let X;(: = 1,2,3) be de-
fined in Definition 2.12. Then

¥ CEy
and

¥ C Xs.
Theorem 2.14 says that ¥, and X3 are larger
classes than ¥;. Example 1.1 shows an example
in which P € £, but P ¢ ¥,. In the next two
sections, we show that the programs in £y and
Y3 classes can also be decomposed into some
subprograms that have smaller arities and num-
bers of rules.

84 Transactions of Information Processing Society of Japan

3. Decomposing Programs in the 3,
Class

We first prove a syntax property of recursive
rules in ¥,.

Lemma 3.1 Let P be an mL program in
the 5 class. Assume that all recursive rules is
partitioned into equivalent classes e;, --,em,
under 2-connection. Then every recursive rule
in e; has the following form, by reordering the
positions of p:

p(Xi, Y, Zi) : (X, W, Y), p(Wi, ¥, Z0),
where _

(1) Y # ¢ is the vector of arguments in the
positions semi(P); that is, Y is found in
the same positions of two instances of p,
and possibly in nonrecursive predicates. Y
is ghe same for all rules in P;

(2) Z; is the vector of arguments in the po-
sitions pers(e;); that is, Z; is found in the
rule exactly twice, once in the head and
once in the body in the same position. Z;
is the same for all rules in e;;

(3) X;, W; are the vectors of arguments in the
positions 2-dyn;, which are restricted by a
conjunction ¥. X; and W, are the same for
all rules in e;.

Proof. Let r be a recursive rule in e;. .
(1) Since P € X, semi(P) # ¢. Let ¥ =

semi(P); then Y # ¢ in r. According to
the definition of semi(P), Y is found in the
same positions of two instances of p, and
there is at least one recursive rule in P in
which Y isin (X;,W;,Y). Thatis, Y pos-
sibly appears in nonrecursive predicates in
T.

(2) Now we consider full(r) — ¥, where
full(r) is all the arguments in p. full(r) —
Y can be divided into two parts: those ar-
guments in pers(r) and those in varyx(r).
Let Z; be the vector of arguments in the po-
sitions of Ny, (pers(r)). It is fixed in e;,
and found in the rule exactly twice, once in
the head and once in the body, in the same
positions. L.

(3) Let X; = full(r) — Y — Z; be the remain-
der of the arguments of the p instance in
the head, and let W; be the corresponding
arguments of p in the body.

From the definition of the 2-dynamic posi-

tions,

Jan. 1997

2-dyn(e;)
=Uree,varyz(r)
=Uree, (full(r)—(semi(P)Upers(r)))
=Uree, (full(r)—semi(P)—pers(r))
full(r)— semi(P)—Nree, pers(r)
= full(r) — semi(P) —pers(e;).
Therefore, X; and W, are two vectors of
arguments in the 2-dyn;, and are found in
a conjunction formula, say .
From the above three aspects, we have thus
proved the lemma. O

The importance of Lemma 3.1 is that only
the rules in e; can derive new values for the
positions 2-dyn; and that positions pers(e;) in
these rules are irrelevant to such derivations.
No rules in P can derive any new value for the
position semi(P), but all play a role in plac-
ing restrictions on the evaluation of the values
for the positions 2-dyn;. Therefore, to compute
values for the positions 2-dyn; and semi(P), we
need to consider only the rules in ¢; and the po-
sitions 2-dyn; and semi(P) of p. This motivates
the following definition.

Definition 3.2 Let P € ¥5. Assume that
the set of recursive rules in P is partitioned
into equivalent classes e;,---,e,, under 2-
connection. For each recursive rule r,

p(Xh Y,Zi) : —w(‘gia Wia_},)’ (3)
p(Wiv Y’ Zi)’

in e;, where X i Y and Z; are the variables that
appear in 2-dyn(e;), semi(P), and pers(e;), re-
spectively, let II;(r) denote the rule

Qi(fia ?7 _) : _¢(X.i’ Wi’?%

- 4
qi(Wth _), ()

and for each exit rule r,
(X, Y, Z) : —exit(X,,Y, Z)) (5)

in P, where f,—,?, and Z,, are same vectors of
arguments as in formula Eq. (3), let II;(r) de-
note the rule

q'i(X’h)77") : 'ezit(fia?, Zi’_)a (6)

“__”

where is a unique ID for every tuple in the
exit relation. The program D; = {ILi(r)|r €
e;} U {IL;(r)|r is an exit rule} is called the pro-
jection of P on e;. We denote it as D; = I1;(P).

Theorem 3.3 Let P be an mL program in
the X, class. Assume that the set of recursive
rules in P is partitioned into equivalent classes
€1, " *,em, under 2-connection, and that D; is
the projection of P on e;. Then

Vol. 38 No. 1

P =" (D;)Mg
where M is the natural join of relations D,
and g is the projection of the exit relation on
pers(P) U semi(P).
Proof. Consider a rule r in e;:

P(X‘i,?, Z-;) ,(/)(T)(X“W“Y)
P(Wn Y Z; i)-

We can represent 'w(")(X,,W,, Y) concep-
tually as two parts, "1’1 (Xl,Wl,'ld) and
(¥, id,), where id, is the tuple identifier of
virtual relation (7).

We now show that for any rule r; € e;, Tj €
ej (i # j) ri and r; commute. In fact, since
e and | e; are two dlﬂ'erent equivalent classes,
X; ﬂX = ¢, and W n W d) We also have
YNT = ¢, where T € {X,,XJ,W,, W, i} Hence,

(X, W, V), 99 (X, W, ¥)
= ("X, Wi, idy,), 9§ (P idy,),
WX, W, idy,), 057 (P, idy,)

= '/’Y])(Xw WJ’ idr,), ¢§TJ)(?a id,,),
YR, Wiidy,), 08 (P id,,)

=97 (X;,W;,Y), 9™ (X, Wi, V)

Therefore, for any sequence of applications
of rules in P, we can commute them in such a
way that all rules in e; are applied before those
in e; (¢ < j). By Lemma 3.1, all rules in e;
can derive new values only for the positions 2-
dyn;, and the positions pers(e;) in these rules
are irrelevant to such derivations. This means
that we can eliminate all variable in pers(e;) if
we consider only rules in e;. O

Example 3.4 Consider the following pro-
gram P:

To ZP(X,Y,Z,U,V,W) P
9(X,Y,Z,U,V,W)
(X, Y, Z, U V,W): —a(X, A),
p(A$ Yv Z’ U, V) W), dl (U)
re : p(X,Y,Z,U,V,W) : =b(Y, B),
p(X’ Ba Z’ U7 V) W)a d‘Z(V)
r3:p(X,Y,Z, U, V,W): -c(Z,0),
p(X’ Y) C; U, V’ W)a d3(W)

We have pers(P) = ¢, semi(P) = {p[4],
p[5],p[6]}. The partition of recursive rules is
{ex = {r1}, ea = {r2}, and e3 = {r3}}, and
2-dyny = {p[l]}, 2-dyny = {p[2]}, 2-dyns =
{p[3]}. From the Theorem 3.3, the program
P can be decomposed into three subprograms,
D; =1I;(P) (i = 1,2,3), as follows.

Decomposable Programs Revised 85

D1 :pl(X,U,V,W,—) L=
Q(X1Y1ZaUaVaWa—)
p1(X,U,V,W, =) : —a(X, A),
Y41 (A’ Us V’ Wv —)a dl(U)

Dy :po(Y, U, V,W, =) : —
oX,Y,Z,U,V,W,-)
p2(Y,U,V,W,-): =b(Y, B),
p2(B,U, V,W, —),d2(V)

Ds :p3(Z7UaVaWa_) P
X, Y,Z,U,V,W,-)
p3(Z,U,V,W,-): —c(Z,0C),
p3(C, U, V, W, —),d3(W). O

Obviously, further optimization of the above
example is possible. According to the definition
of semi(P), it contains two parts for every re-
cursive rule r, one belonging to semi(r) and the
other belonging to pers(r). If U,¢, (semi(r)) N
Uree, (semi(r)) = ¢, the variables in the posi-
tion of semi(P) — U,¢, (semi(r)) can be elimi-
nated from the subprogram D;, since the rules
in e; cannot derive new values for those posi-
tions.

Example 3.5 The subprogram in Exam-
ple 3.4 can be further optimized as follows:

D1 :p]_(X,U,—-) .=
o X,Y,Z,U,V,W,-)
m(X,U,-): -a(X, A),
pl(AaUa _)7d1(U)

D2 P2(Y,V,‘) P
Q(XaYaZ9U,VaW)—)
p?(Y,Va—) : —b(Y,B),

p2(B’ V’ —)de(V)

D3 :p3(Z,W,-): —
Q(XaY7 Z,U,‘/,W,—)
ps(Z, W, =) : —c(Z,0C),
p3(C, W, =), d3(W). a

By the definitions in Section 2 and the theo-
rem in Section 3, it is easy to construct a poly-
nomial time algorithm to decompose programs
in the X, class.

4. Transforming Programs in the Xj
Class

In this section, we first discuss some prop-
erties of the permutation, and then prove the

86 Transactions of Information Processing Society of Japan

theorem that any program in X3 class can be
transformed into a program in ¥£; or ¥, class
by introducing indexes. We also show that the
computation of the indexes can be simplified,
and hence that there is no shortcoming like that
of the indexes used in the counting method V).

Definition 4.1 LetT = {1,---,m} be aset
of permutation positions of p, and let h be a
bijective function defined on T. T is called a
primary permutation set if no subset of T is a
permutation set.

Example 4.2 Consider the recursive defi-
nition

p(X,Y,Z,U,V): —p(Y,Z,X,V,U).

Obviously T = {1,2,3,4,5} is a permutation
set, whose permutation function is defined as
{h(1) = 2,h(2) = 3,h(3) = 1,h(4) = 5,h(5) =
4}. However, it is not a primary permutation
set, since one of its subsets, 71 = {1,2,3}, is
also a permutation set. It is easy to show that
T, is a primary permutation set.

Lemma 4.3 Let T = {1,---,m} be a per-
mutation set of p, and let k be a bijective func-
tion defined on T. If T) C T is a primary per-
mutation set, then T, = T — T} is also a per-
mutation set.]

Hence, a permutation set is either a primary
permutation set or can be divided into several
primary permutation parts that are disjoint.

Lemma 4.4 Let T = {1,---,m} be a per-
mutation set of p, and let h be a bijective func-
tion defined on T. Assume that h is not an
identity.

(1) if T is a permutation set, then hi(z) # z,
hi(z) # W (z), for all 0 < i # j < m, and
hm(z) =z,forany z € T.

(2) If T is not a primary component, and T is
assumed to be divided into d primary per-
mutation subsets {T},---,Tq} with ¢; ele-
ments in T; (= 1,---,d), then for any z €
T, h(z) = h(z), where ¢ = lem(cy, -+, ca)
and lem is the least common multiple of
the list.

Proof.

(1) Assume that there is a comstant ¢ <
m such that h°(z) = z. Consider a
set T, = {ag,---,ac}, where a9 = z,

a; = hi(z)(i = 1,---,c). Since h(a;) =
h(R*(z)) = h**(z) = aiy for i < ¢, and
a. = h°(z) = £ = ag, moreover h(z) is a
bijective function on Ty, hence T) CT is a
primary permutation set. This contradicts
the condition that T is a primary permuta-
tion set. Similarly, we have h'(z) # h’(z).

Jan. 1997

If h™(z) # z, then there are m elements
besides z in T that are different. This is a

contradiction.
(2) The second step of the proof can be de-
rived from Lemma 4.4 and (1). m]

Lemma 4.4 says that all elements in the
permutation set T form a cycle; that is, its
elements can be represented as ag, - ,@m-1,
where a; = h(ai-1) and a,, = ao.

Lemma 4.5 Let T = {1,---,m} be a per-
mutation set of p, and let h;, and hy be two
consistent permutation functions defined on T
then there is a constant ¢ < m such that for
any € T, ho(z) = h§(x).

Proof.

(1) If T is a primary permutation set for
hy, according to Lemma 4.4, all elements
in T can be represented as a cycle under
the permutation function h;. Let T =
{a,a?,---,a™|a'*! = hi(a)}. Then, for
each z € T, ho(z) = h&™)(z), where c(z)
is the distance between z and he(z) un-
der h;. We now prove that c¢(z) is inde-
pendent of z, that is, a constant. Since
h: and h, are two consistent functions,
hi(ha(x)) = ha(hi(z)) for any z € T. Let
y = hy(z), then hy(ha(z)) = ¥ (2)
and hy(h1(z)) = holy) = V(@) =
hi(ﬂ)*‘l(x)'

Thus we have ¢(z) = ¢(y). This means

that ¢(z) is a constant for all elements z in
T.

(2) If T is not a primary permutation set un-
der h;, let T have two primary permuta-
tion sets under h; without loss of gener-
ality; that is, T} = {a,a2,---,a™}, and
T, = {b,b%,---,b™}. We then have the
following three cases for hy:

e T is a primary permutation set under
hs. This is the case of (1) above.

o T has the same primary permutation
sets under he. Obviously, we can con-
sider every primary permutation set
separately; we then have case (1).

e T has different primary permutation
sets under h,. Then, there exists an
element a € T, such that hs(a) €
T;. For every element z = a'*' €
Ty, ha(hi(a™*!)) = ha(hi*(a)) =
hi+1(h2(a)) €Ts.

However, h;(a**!) € T} may be any
element in Ti; hence, ho maps all ele-
ments in T} to T5. This result is obvi-

Vol. 38 No. 1

ously applicable to T5.

Therefore, T is partitioned into the
same primary permutation sets under
ho as under h;. This contradicts the
assumption. O

Theorem 4.6 Let P € X3. Then, P can be
transformed into a new program @ such that
QeXorQ €,

Proof. Assume that the permutation posi-
tion in perm(P) is p[n — k + 1}, -, p[n], which
is placed at the end of p, and that {e1, -, em,}
is a partition of the rule set of P under 3-
connection. Let e; = {ri,,---,ri, }. Clearly,
for permutation positions, its values can be de-
rived from the trails of application of rules.
We define a new program @Q with a new recur-
sive predicate g where q is obtained by deleting
perm(p) from p and inserting an ID to record
the tuple identifier of the exit relation, and @
is obtained by replacing p by ¢q for each rule r
in P. Then,

p(Xl,"',Xn) M
Q(Xla Tty Xﬂ.—k’ 'ndx, _)1
hnd:z: ((IO(Xn—k+l,] Xn) —))
qO(Xn—k-i-ls e ;Xrn _) P
C.’E’it(Xl,"',Xn,*—), (7)
where hyq; is the composition of a set of per-
mutation functions hq,---,h; that reorder the
position of X,_k+1,-++, X, in go, and “-” is
the tuple identifier of the exit relation.

P € X3; hence, for any permutation function

h; and hj, there is h;(h;) = h;(h;). Hence
hnaz = hndm tee hndzma
where ndz; is a sequence of numbers in
{ila"'aim;}-

This formula means that the index can be re-
placed by mg sub-indexes, each sub-index ndzr;
traces the application of rules in e;. There-
fore, the new predicate ¢ can be replaced
by Q(Xla o ,X‘n—kandzl’ Tt 9ndzm3v _)a while
hndz can be replaced by hnqz, "'hndzma-

LA
For each rule r;; € e;, the new rule r;, in Q
is

q(Ti,Y,ndxl,---,ndx;,-'-,nd:z:ma,-) D —
ai,‘ (TiyAi))
q(Aiy Ya ndxl, e ,’nd(l:i, Tt ’ndzmsj "))

ndz, = ndz;||ij;,
where T; is the vector of arguments in the 3-
dyni, Y = pers(r;;), and “||” means concate-
nation of the index string.
Obviously, program @ is in X; if Y = ¢,

Decomposable Programs Revised 87

otherwise @ is in . The partition is also
{e1,-,ems}, and e = {r;,-- “3Tim, }» but
ndx; is added to the recursive predicate g; as its
dynamic position. That is, the program @ can
be decomposed into m3 subprograms in which
Q: = {r“, 3T, } (@ = 1,---,m3) is defined
as follows:

r;J : q,-(T,-,nd:v.:-, =) : —a;, (T, Ai),
q:(A;, ndzx;, ——),ndz; = ndz;||i;. (8)
The recursive predicate g in Eq. (7) is
q(Tla Tty Tmsandx7 _) L
X2 (¢:i(Ti, ndz;, —)),
ndz = ndz,|| - - ||ndzm,. (9)

Therefore, P is decomposable. (m]

We now consider how to compute the indexes
in the equations. Although the coding method
proposed in the counting method !) is available,
it is possible, in this case, to simplify the eval-
uation of the indexes by using the properties of
permutation.

Assume that hl is not an identity function,
and that h; = h (1 =2,---,m). d;is called
the distance between h; a.nd hl, or “distance”
for short. Conmder the subprogram Q; that
includes the rules {ru, -+,7; }. Assume that
the sub-index ndz; that records the trace of ap-
plication of rules in Q; is j;,---,jr. Then

hnaz; = hj, - hy,
Im
= hill .. hi,.,:.

(hdx)ll) (hdm.')lmi
(Z’"' (d;.1;))

hmod(zg";,w,-.t,-).c)

1 ’
where l; is the number of rules r;; that appear
in the sub-index ndz;, and c is a constant de-
fined by Lemma 4.5. Therefore we can simplify
the rules in Eq. (8) as follows:

T, L qi(Ti I, =) : —ai (Ty, Ay),
(Iz"(Aiali’_)a
I, = mod(I; + dj,c).
Similarly,
hnda: = hndzl te hndzm3
- hmod(E 3 (count;),c)
where count; = mod(z (djl),e), 1 =1,
-+, Mm3.

Equation (9) can be simplified as follows:

88 Transactions of Information Processing Society of Japan

q(Tla tet ’TmaaIr —) :_Mms (Qi(Tith _)a

i=1
I = mod(Zi%, (I3), ¢).

Example 4.7 Consider the following pro-
gram P, which contains a permutation set:

ro: p(X,Y,Z,UV,W): -
o(X,Y,Z,U,V,W)
r:p(X,Y,Z,U,V,W): —a(X, A),
p(A,Y,Z,U,V,W)
ry: p(X,Y,Z,U,V,W): -b(Y, B),
»(X,B,Z,V,W,U)
r3:p(X,Y,Z,UV,W): —c(Z,C),
p(X,Y,C,W,U,V).

{e1 = {r1},e2 = {r2},es = {r3}} is the par-
tition of P under 3-connectivity. The permu-
tation position set is {4,5,6}. Let h; be the
permutation function for rule r; (i = 1,2,3);
then

hl(4) =4, h1(5) =9, hl(ﬁ) =6
ha(4) =6, ha(5) =4, ha(6) =5
h3(4) =5, h3(5) =6, hs(6)=4.

Therefore, we have h; = h3, and hs = h%;
that is, d; = 3,d2 = 1, and d3 = 2. Moreover,
¢ = 3. Hence the decomposed subprograms are

Dl : ql(X’Oa —) : —q(X’ Y: Zv Ua V) Wa _)
QI(Xa Il) —') : —G(X, A)7q1(A>Ila _)
D2 : Q2(Ya 0’ —) : _q(X’Ya Zv Ua V: W, —)
Q2(Y, I;, _) : _b(Y)B)’ Q2(B’I2, _—)1
I, = mod(Iy + 1,3)
D3 :q3(2,0,—): —¢(X,Y,Z,U,V,W,—)
05(2,13,-) : —(Z,C),a5(C, Is, -),
I; = mod(Is + 2,3)
and
Q(X7Y7 ZaI7 _) : —(h(X, Ila _)7q2(Y7 127 _)’
Q3(Z, 13’ _)1
I =mod(I, + Iz + I3,3).
The final result is
p(X7Y7 Z,U7V1W) : "q(vav ZaI’_)a
q(I,U,V,W,-)
¢0(0,U,V,W, =) : —exit(X,Y, Z,U,V,W,-)
w(1,U,V,W,=): —ezit(X,Y, Z,V,W,U, -)
0(2,U,V,W,-): —ezit(X,Y, Z,W,U,V, -).

5. Related Work and Conclusions

In this paper, we have extended the decom-
posable program classes proposed by Wang, et
al.”) in two aspects:

(1) Extracting semi-persistent positions from

dynamic positions. In Wang, et al.’s def-
inition, persistent positions contain only

Jan. 1997

those semi-persistent positions in which the
variables are bounded with a value by the
query. The reason for this is that the
shared variables in such positions can be
replaced by the bound values of Q. There-
fore, their method for program decomposi-
tion is query-dependent. In contrast, our
method is query-independent. It treats
semi-persistent positions as an independent
class.

(2) Extracting permutation positions from
dynamic positions. By introducing a spe-
cial indexing technique based on the prop-
erties of permutation positions, our method
can separate permutation variables so as to
reduce the arity of recursive predicates. In
contrast, Wang, et al.’s method treats all
permutation positions in same way as gen-
eral dynamic positions.

As in Wang, et al.’s method, queries can be
decomposed into subqueries on subprograms,
and thus magic rewriting, a powerful query op-
timization technique in recursive program pro-
cessing, can also be applied to our decomposed
programs without any changes being required.

Although ¥, and X3 are currently the two
largest known decomposable program classes,
it is still unknown whether there are any larger
decomposable program classes. Further inves-
tigation is necessary.

Acknowledgments The work is supported
in part by The Hori Information Science Pro-
motion Foundation.

References

1) Beeri, C. and Ramakrishnan, R.: On the
Power of Magic, Proc. 6th ACM SIGACT-
SIGMOD-SIGART Symp. Principles of Database
Systems (PODS), pp.269-283 (1987).

2) Naughton, J.: One-Sided Recursions, Proc.
6th ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems (PODS),
pp.340-348 (1987).

3) Naughton, J.: Compiling Separable Recur-
sions, Proc. 7th ACM SIGACT-SIGMOD-
SIGART Symp. Principles of Database Systems
(PODS), pp.312-319 (1988).

4) Naughton, J., Ramakrishnan, R., Sagiv, Y.
and Ullman, J.D.: Efficient Evaluation of
Right-, Left-, and Mixed-Linear Rules, Proc.
ACM SIGMOD Int. Conf. on Management of
Data, pp.235-242 (1989).

5) Naughton, J., Ramakrishnan, R., Sagiv, Y.
and Ullman, J.D.: Argument Reduction by Fac-
toring, Proc. 15th Int. Conf.on Very Large Data

Vol. 38 No. 1

Bases, pp.173-182 (1989).

6) Ullman, J.D.: Principles of Database and
Knowledge-Base Systems, Volll, Computer
Science Press (1989).

7) Wang, K., Zhang, W. and Chou, S.C.: Decom-
position of Magic Rewriting, JACM, Vol.42,
No.2, pp-329-381 (1995).

(Received May 7, 1996)
(Accepted October 1, 1996)

Xiaoyong Du received the
B.S. degree in computational
mathematics from Hangzhou
University, Zhejing, China in
1983, and the M.E. degree in in-
formation and computer science
from the People’s University of
Chma., Beijing, in 1988. From 1989 to 1992,
he was a lecturer in the Institute of Data and
Knowledge Engineering at the People’s Univer-
sity of China. He is now a Ph.D. candidate in
the Department of Intelligence and Computer
Science at the Nagoya Institute of Technology,
Nagoya, Japan. His current research interests
include databases and artificial intelligence. He
is a member of the IPSJ.

Decomposable Programs Revised 89

Zhibin Liu Zhibin Liu re-
ceived the B.E. degree in com-
puter science and technology
from Tianjin University, Tian-
jin, China in 1985, and the M.E.
degree in information and com-
puter science from the People’s
Umver51ty of China, Beijing, China in 1988.
From 1990 to 1992 he was a lecturer of the
Department of Computer Science and Technol-
ogy at Tianjin University. From 1992 to 1995,
he was a lecturer in the Department of Com-
puter Science and Technology at Beijing Poly-
technic University. He is now pursuing the Doc-
tor of Engineering degree at the Nagoya Insti-
tute of Technology, Nagoya, Japan. His cur-
rent research interests include algorithm design
and analysis, deductive databases, database in-
tegration and heterogeneous database systems.

Naohiro Ishii received the
B.E. and M.E., and Doctor of
Engineering degrees in electrical
and communication engineering
from Tohoku University, Sendai,
o in 1963, 1965, and 1968, respec-

- tively. From 1968 to 1974 he was
at the School of Medicine in Tohoku University,
where he worked on information processing in
the central nervous system. Since 1975 he has
been with the Nagoya Institute of Technology,
where he is a professor in the Department of
Electrical and Computer Engineering. His cur-
rent research interests include databases, soft-
ware engineering, algorithm design and anal-
ysis, nonlinear analysis of neural network and
artificial intelligence. He is a member of the
IPSJ, IEICE, ACM, and IEEE.

