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A Multi-phase Process for Discovering, Managing, and Refining
Strong Functional Relationships Hidden in Databases

NING ZHONG! and SETSUO OHSUGA'!

Functional relationships are important regularities hidden in databases. Since erroneous
data can be a significant problem in real-world databases and the contents of most databases
are ever changing, functional relationships that can be discovered from databases are usually
strong ones that hold qualitatively for the collected data. Moreover, the discovery process is
a multi-phase process based on incipient hypothesis generation, evaluation, management, and
refinement. In this process, it is necessary to perform multi-aspect intelligent data analysis
and multi-level conceptual abstraction and learning by combining Al techniques with statis-
tical methods in multiple learning phases. This paper describes a multi-phase process for
discovering, managing, and refining strong functional relationships hidden in databases.

1. Introduction

Knowledge discovery in databases (KDD) is
becoming an important topic in artificial intel-
ligence and is attracting the attention of lead-
ing database researchers?). The purpose of
KDD is to elicit knowledge (i.e., rules and reg-
ularities among attributes) from raw data in
databases. Functional relationships are impor-
tant regularities hidden in databases. Since er-
roneous data can be a significant problem in
real-world databases (i.e., data in databases are
generally uncertain and incomplete) and the
contents of most databases are ever changing
(i-e., data in databases are often deleted, added,
or updated), functional relationships that can
be discovered in databases are usually strong
ones that hold qualitatively for the collected
data8)12)18).17)  Moreover, the discovery pro-
cess is a multi-phase process based on incipi-
ent hypothesis generation, evaluation, manage-
ment, and refinement, as shown in Fig.1. In
this process, it is necessary to perform multi-
aspect intelligent data analysis and multi-level
conceptual abstraction and learning in multiple
learning phases 16):18),

In previous related work on machine discov-
ery, many researchers have investigated the dis-
covery of laws from scientific experimental data.
Bacon, Fahrenheit and Abacus are well-known
systems 3)-7)8) that use machine-learning meth-
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ods to discover scientific (numeric) laws from
scientific (numeric) data in the domains of
physics and chemistry. Their main advantage
is that data-driven heuristics can be used to
discover a wider class of numeric laws. These
systems have led to some successes, and pro-

‘vide a good background for our work. However,

their object is only scientific (numeric) data,
their capabilities for handling more uncertain
data and their search control are weaker, they
cannot be integrated with the knowledge-driven
method, they cannot handle changes in data,
and they do not address management and re-
finement. Moreover, their capability for discov-
ery is also limited. For example, it is difficult to
discover approximate quadratic functions such
as Y = ag + a1 X + a2 X? + ¢ from a database.

We argue that the multi-phase process is
an important methodology for knowledge dis-
covery in databases. That is, a KDD pro-
cess is usually a multi-phase process, which in-
volves data preparation, preprocessing, search
for hypothesis generation, knowledge evalua-
tion, representation, refinement, and manage-
ment. Furthermore, the process may repeat
at different intervals when new/updated data
come. Although the process-centered view has
recently been accepted by many researchers in
the KDD community, few KDD systems pro-
vide the capabilities that a more complete pro-
cess should possess?). This paper describes a
multi-phase process for discovering, managing,
and refining strong functional relationships hid-
den in databases. In a sense, the KDD pro-
cess described in this paper can be regarded as
a demonstration of the process-centered KDD
methodology that extends the Bacon system
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The process of knowledge discovery in
databases.

and its several successors to support qualitative
and quantitative discovery, as well as to handle
more uncertain data and changes in data 3)7)8).
The key point of this extension is to enhance the
capability of processing uncertainty systemati-
cally by extending heuristic search and search
control, as well as combining Al techniques with
statistical methods in the KDD process based
on generation, evaluation, management, and re-
finement.

In the following sections, we will describe in
detail the KDD process. The description will
include how to generate and evaluate strong
functional relationships by cooperatively us-
ing heuristic search and regression analysis,
how to represent the discovered strong func-
tional relationships as deductive rules and sets
of data showing the errors of these rules in a
knowledge-base, and how to manage and refine
these rules by using quantitative inheritance,
meta-reasoning, and so on. Finally, we offer
some concluding remarks and discuss our fu-
ture work.

2. Generation and Evaluation

In order to find strong functional rela-
tionships in databases, we extended and re-
vised the heuristic search method developed in
Bacon)®) by using the process of gener-
ation and ewvaluation shown in Fig.1, in
which Qualitative Mathematics in qualitative
reasoning ®)%), heuristic search, domain/meta-
knowledge, and statistical methods are used co-
operatively.

2.1 Generation by Heuristic Search

Here, we first define several concepts and
terms, and then describe how to generate the
hypothetical functional relationships.

Definition 1. Monotonicity between two at-
tributes.
We say that there is monotonicity between
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the attributes X; and X; if X7 increases or
decreases as Xy increases.
Let X5 g X denote that there is mono-

tonicity between X; and X, and X7 gcoé X7
denote that there is no monotonicity between
X7 and X;. O

Definition 2.
tribute.

Let qualitative values in an attribute be
ranges of values in this attribute that are gener-
ated by using landmark®, domain knowledge,
or other some method.

Let [X;] denote the qualitative values in the
attribute X;. O
Definition 3. Sets in an attribute.

Let sets in an attribute be groups of data in
this attribute corresponding to qualitative val-
ues in another attribute.

Let {X s} denote the sets that correspond to
the qualitative values [X;] in the attribute X ;.

. O

Qualitative values in an at-

Definition 4. Contradictory values.

We say that contradictory values are values
that destroy the monotonicity between the at-
tributes Xy and X, or between the qualitative
values [X;] and the sets {X;};. O

Definition 5. Probability of contradictory val-
ues.

Let the probability of contradictory values be
the ratio of the number of contradictory values
to the total number of data in an attribute. O

Definition 6. Approximate monotonicity be-
tween two attributes.

We say that there is approzimate monotonic-
ity between two attributes if the probability of
contradictory values is smaller than the thresh-
old value.

Let X;gX; denote that there is approxi-
mate monotonicity between the attributes X
and X, and let [X;] x¢o {X,}s denote that
there is approximate monotonicity between the
qualitative values [X;] and the sets {X;};. O

On the basis of these definitions, we have
developed several heuristics for finding strong
functional relationships'®). Here, as an exam-
ple, we would like to describe how to execute

one of these heuristics,
not

o If X; xXQ X7, but XIdCQXJ or [X[] d(Q
{X;}1, then hypothesize that there is a
strong functional relationship between X;
and X ;.

When this heuristic is called, it is executed by
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the following method:

First, define the qualitative values [X}]
for the attribute X7, and form the sets
{X s} for the attribute X;

Then, evaluate the uncertainty of con-
tradictory values that destroy the mono-
tonicity between the qualitative values
[X1] and the sets {Xs}r;

If the probability of contradictory values
is smaller than the threshold value, then
hypothesize that there is a strong func-
tional relationship between X; and X ;.

Example 1. By using the heuristic stated
above for a sample database of information on
stars'3), which consists of several attributes
such as the cluster designations of stars, their
V magnitude, color indexes B-V and U-B, ef-
fective temperature, luminosity, mass, and so
on, as shown in Table 1, we can find several
strong functional relationships between the at-
tribute effTemp and some other attributes such
as luminosity, and the color indexes B-V and
U-B in the clusters by the following steps:

Step 1: From our general knowledge of as-
tronomy, we know that in comparison with field
stars, members of an open cluster are more suit-
able objects for such calculations, because of
the homogeneous chemical composition in the
clusters and the reliability of luminosity and
temperatures determined from the cluster UBV
data!®. Hence, we assume that (1) a user
wants to investigate whether there are some
functional relationships between the attribute
effTemp and some other attributes such as the

Table 1 DB: stars.
cl. | v-Mag. | B-V U-B effT. | lum.
1 13.18 0.30 | —0.33 | 4.19 | 2.19
1 14.62 0.34 0.12 4.02 1.32
1 14.37 0.67 | —0.06 | 3.87 | 1.11
2 12:22 0..83 0.48 4.02 2.41
2 12.22 0.83 0.48 4.02 | 2.41

2 13.65 0.76 | —0.09 | 4.23 2.12

9.27 | 017 | 0.0 | 3.95 | 2.37
997 | 017 | 010 | 395 | 2.37
6 10.04 0.52 0.03 3.83 1.90

S

11 12.98 1.62 1.63 3.83 | 2.54
11 12.98 1.62 1.63 3.83 | 2.54
11 14.44 0.84 0.16 4.18 | 2.40
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luminosity and the color indexes B-V and U-B
in the clusters; and (2) the user provided back-
ground knowledge for defining the qualitative
values of effTemp:

leffTemp]; = [5.0 ~ 4.5]

[effTempla = (4.5 ~ 4.0]

[effTemp]z = (4.0 ~ 3.5]

[effTemply = (3.5 ~ 3.0].
That is, these qualitative values are used as the
criterion for controlling the search for the strong

functional relationships.

Step 2: Since there is a nominal attribute
called clusters that can be used for forming
clusters, sets are formed by using the qualita-
tive values [effTemp| defined in Step 1 for every
cluster. For example, sets can be formed for the
luminosity attribute of cluster; and clusterg as
follows:

{luminosity}y_., = {}

{luminosity}a_,, = {1.07,1.1,1.16,1.32,1.39,1.41, ...,

3.18,3.29,3.39,3.48,4.08,4.33}

{luminosity}s_,, = {1.04,1.06,1.11,1.13,1.14,1.15,. . .,

1.4,1.41,1.5,1.52,1.58,1.66,1.73}

{luminosity}s_c, = {}

{luminosity}i_ g = {4.15,4.49,4.52,4.64,4.7}

{luminosity}a_.,= {2.85,3.11,3.18,3.22,3.29,3.3,. . .,

3.94,4.04,4.05,4.1,4.18,4.3,4.32,4.6}

{luminosity}s_., = {2.07,2.16,2.29,.. .,

2.49,2.59,3.24,3.3}

{luminosity}ta_cg= {}.

Step 3: Evaluate the uncertainty of contra-
dictory values. That is, calculate their prob-
abilities. For example, the probability of the
contradictory values between {luminosity}s_.,

and {luminosity}s_., for cluster; is 0.097.

Step 4: If the probabilities of the contra-
dictory values are smaller than the threshold
value, then hypothesize that there are strong
functional relationships between the attribute
eff Temp and some other attributes such as the
luminosity, and the color indexes B-V and U-B
for some clusters:

eff Temp &q luminosity, and effTemp, luminosity €
clustery, clusters, clustery, clusters, clustery, clusters,
clusteryg, clusteryy and clusteryp;

eff Temp &g B-V, and effTemp, B-V € clustery,
clustersy, clustersg, clustery, clusters, clustery, and
clusteryo;

eff Temp &q U-B, and effTemp, U-B € clustery,
clustery, clusters, clustery, clusters, clustery, clustersg,
clusteryg, clusteryy and clusteryy. [m]

These hypothetical functional relationships
are first stored in a model-base by using quali-
tative equations '®), and then evaluated by the
statistical methods to be given in Section 2.2.

2.2 Evaluation by Regression Analysis

In general, regression analysis is a statistical
method for finding a structural characteristic
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(also called a structural relation, i.e., a kind
of approximate functional relationship repre-
sented by the regression model) hidden in the
data, which allows the value of the objective
variable to be predicted or inferred from the
values of descriptive variables. Furthermore, a
structural characteristic is a strong functional
relationship if it was qualitatively inferred by
means of the heuristics given in Section 2.1.
Thus, strong functional relationships are finally
represented as regression models, so that they
can be easily managed and refined 7).

In our application, the main goals of evalua-
tion by regression analysis are to find the opti-
mal regression model (i.e., the best structural
characteristic) among variables that have a hy-
pothetical linear (or quadratic) functional rela-
tionship and simultaneously detect to the error
of that model. If it is inferred that there is
a linear (or quadratic) functional relationship
between X; and X; by using the heuristics as
stated in Section 2.1, then let ¥ = X; be an
objective variable, X ; be a descriptive variable,
and ¢ be the error (or the residual) that is nor-
mally distributed with a mean of zero and a
variance of o2. The number of descriptive vari-
ables can be more than one. For evaluation of
the hypothetical functional relationships, three
methods of regression analyses, multiple regres-
sion (MR), polynomial regression (PR), and
auto-regression (AR), are provided in our sys-
tem.

However, it usually does not mean that the
optimal regression model can be obtained by
increasing the number of descriptive variables.
Although it may cause a decrease in the vari-
ance, it may also decrease the stability of the
regression model. Hence, it is very important to
select the most effective set of descriptive vari-
ables in order to obtain the optimal model. For
this purpose, we need a criterion. A criterion
called the Akaike Information Criterion (AIC),
introduced by Akaike for evaluating the accu-
racy of prediction, can be used to select the best
model V). Tt is defined as follows:

AIC
= —2 x (Mazimum Likelihood of Model)
+2 x (Numbers of Parameters of Model).

Among all combinations of potential descrip-
tive variables, the model that produces the
smallest AIC value is the best one. That is, we
select the model with both better stability and
smaller variance as the structural characteristic
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Table 2 The structural characteristics discovered in
the star database.

Clusters Polynomial regression models
1 Y =483+ 0.08Xym +¢€
3 Y =5.072 — 0.183X 1y + 0.044X2  +¢

Y =4.987+0.337Xp_, — 02X  +¢
Y = 4.673 4 0.677Xp_, — 0.23X2  +¢

Table 3 The 02 and AIC values of the discovered
structural characteristics shown in Table 2.

Clusters o2 AIC
1 0.0183 | —140.303
3 0.0125 | —170.801
1 0.0139 | —173.207
2 0.0285 | —105.978

discovered by AIC.

Example 2. We can evaluate the hypothe-
sized strong functional relationships found by
using the heuristic search described in Exam-
ple 1, and select the best ones as the structural
characteristics by using regression analysis and
AIC. Tables 2 and 3 show a part of the results.
In Table 2, Y is effective temperature, Xy, is
luminosity and Xy, is B-V. O

The process described in this section leads
from qualitative to quantitative discovery
through the cooperative use of heuristic search
and statistical methods.  Although regres-
sion analysis can both generate and evaluate
functional relationships, it has several limita-
tions '%). On the other hand, if we use only AI
techniques such as heuristic search, the prob-
lem of handling more uncertain data cannot be
solved satisfactorily. Hence, we try to combine
both types of technique, so that we can

e Use heuristics, domain knowledge, and so
on for search control. Thus, the search for
generation of functional relationships are
not blind but heuristic;

e Conduct qualitative analysis to determine
whether there are strong functional rela-
tionships.

Sometimes, if an approximate functional rela-
tionship has a larger error that is only gener-
ated and evaluated by regression analysis, this
does not mean that the relationship should be
rejected, but that there may be an interesting
approximate regularity for some users.
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3. Management and Refinement

Since the discovered structural characteris-
tics are finally denoted by regression models,
as stated in Section 2.2, the management and
refinement of the structural characteristics are
essentially those of regression models that are
represented -as deductive rules and sets of data
for showing the errors of those rules. This sec-
tion will describe in detail the management and
refinement of the structural characteristics.

3.1 Inheritance Inference on Regres-

sion Models
Inheritance inference on regression models is
a central task in managing and refining struc-
tural characteristics discovered in databases.
Inheritance inference is used to find matches
with models for situations similar to those un-
der study, in order to obtain a starting model
for analysis. A good starting model can save
a user much time, and effective inference can
also save storage space by eliminating the need
to save similar models. Here, we would like
to describe two kinds of inheritance inferences,
downward and upward®17), which can be
mainly used for three purposes:
e Inferring the model for representing the
structure of a sample data set when only
a sub-set of this data set is known or used.

e Inferring the varying degree of a model
when the sample data set is partly updated
(added/deleted).

¢ Refining and managing a family of regres-

sion models.

It is important that inheritances are quanti-
fied for their utility. That is, the strength of
the inheritance inference is quantified, or the
inherited numeric parameters are themselves
quantified. These quantizations assume that
the data sets in a database are like simple ran-
dom samples with respect to one another. Al-
though exact values and bounds derived from
inheritance cannot be argued, estimates, which
are the most common type of statistical inher-
itance, can be roughly quantified as to our cer-
tainty about the value derived. From a statis-
tical point of view, this means finding standard
errors of estimates in using statistics of related
sets. If we can approximate the relationship
between a target and a related set as a sam-
pling process in either directions, we can use
sampling theory for this 24,

Theorem 1. If the mean of the set is approx-
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imately a mean of the superset, then the level
of approximation has a standard error of

r=oyt -+ (1)

where n is the size of the set, N is the size of
the superset, and ¢ is the standard deviation of
the set or the superset.

Theorem 1 shows that the strength of inher-
itance is stronger the closer in size the two sets
are. Sample theory also says that the standard
deviation of the set will be approximately the
standard deviation of the superset when n is
not too small. Eq.(1) can be used as a cri-
terion for selecting the best inheritance when
there are more regression models that can be se-
lected. That is, among all potential inheritance
models, the one that produces the smallest 7
value is the best model. However, Eq. (1) is not
suitable for evaluating the strength of the in-
heritance between a set and its superset. This
is because it is difficult to give the threshold
value for distinguishing meaningful inheritance
in advance. Fortunately, if we know the stan-
dard deviations of both a set and its superset,
F distribution can be used for quantifying eval-
uation.

Definition 7. We say there is a stronger in-
heritance relationship between a set and its su-
perset if

2
F:%SFa(nl_lan2_1)a (2)
03
where o2 relates to the set with larger variance
between a set and its superset, n; and ny are
the sizes of the sets with o? and 02 respectively,
and « is either 0.05 or 0.01. O
Eq.(2) is called an F distribution with the
degrees of freedom d.f. = (n1-1, no-1). This
question is that of whether o?/0% is too far
from 1 to be explained by chance. Note that,
unlike a comparison between two means, which
is phrased in terms of the difference pu; — pso,
a comparison between variances is formulated
by using the ratio o?/02. This is because a
sampling distribution that is instrumental to
the present inference situation involves the vari-
ances 0% and o2 only through the ratio.

Example 3. Inheritance inference can be used
for managing/refining the structural character-
istic when the sample data in a database are
partly updated (deleted/added). To describe
downward inheritance, every cluster of the star
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database is divided into group-1 as a set for
fundamental data, as shown in Table 1, and
group-1-sub as a subset of group-1 obtained by
deleting some data from group-1 for its varia-
tion. Let the size of group-1 for cluster; be
126 and its variance be 0.0183, and the size
of group-1-sub for cluster; be 116 and its vari-
ance be 0.0173. Thus, using Eq. (2), we obtain
F =1.058 < Fp05(125,115) ~ 1.25.

Example 4. We again use the star database
as an example for describing upward inheri-
tance. Every cluster of the database is di-
vided into group-1 as a set for fundamental
data, and group-1-sup as a superset of group-
1 obtained by adding some data to group-1
for its variation. Let the size of group-1 for
cluster; be 126 and its variance be 0.0183, and
the size of group-1-sup be 146 and its vari-
ance be 0.0313. Thus, using Eq. (2), we obtain
F =171 > Fy 05(145,125) ~ 1.25.

3.2 Knowledge Representation

This section describes a method of knowledge
representation based on the expansion capabil-
ity of multi-layer logic 1911, That is, when the
domain set of a variable is finite, a formula of
multi-layer logic can be expanded according to
the following equivalent expressions:

VvV X/x]p(X)Nx = {z1,22,...,%,}
> p(z1) Np(x2) N ...Np(zy),

A X/x]p(X)Nx ={x1,Z2,...,2n}
— p(z1)Up(z2) U...Up(zy,).

This capability is used for extracting from a set
the elements that possess specified properties.
It is syntactically defined by appending “#” af-
ter the variable to be expanded in the prefix
of the multi-layer logic formula. The following
Rule-1 is an example of using the expansion
capability:

Rule-1: /* the rule for inferring the effective tempera-
ture of stars from the luminosity of stars */
lins_e clusters 1, 3; /* use clusters 1, 3 */
lins_e variance 0.0183, 0.0125; /* the variances of the
regression models belonging to a family */
lins_e ai-pr-1-0 4.83, 5.072; /* the coefficient AQ */
lins_e ai-pr-1-1 0.08, -0.183; /* the coefficient Al */
lins_e ai-pr-1-2 0, 0.044; /* the coefficient A2 */
[V X-luminosity, Y-effTemp/float] [V Mode,Check-N /int]
[V AO+#/ai-pr-1-0] [V Al#/ai-pr-1-1] [V A2#/ai-pr-1-2]
/* declare the domains of variables */
(| (p-stars Mode Check-N Y-effTemp X-luminosity)
/* infer the effTemp from the luminosity */
~($pr 2 Y-effTemp A0 X-luminosity Al A2)
/* infer the effective temperature by the PR model */
~($scope_kb rule-set3)
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/* transfer to the world: rule-set3 */

~(storeInfor Mode Check-N pr Y-effTemp X-
luminosity)
/* store the inferred result and the variable */

)-

Rule-1 is represented as a multi-layer logic
formula in the If-Then form and a data set
called variance to show the errors. Ordi-
nary If-Then rules are represented in the form
A1&Ay ... A, — B, but are written as (| (B
~A; YAy ... ~AR)) in our system by using
the knowledge-based system KAUS!. Rule-
1 reads “The effective temperature of stars can
be inferred from their luminosity by the polyno-
mial regression model. Also, the effective tem-
perature inferred will be saved for future use
together with the luminosity.” On the other
hand, “lins_.e x z; ...z,;” means that z; ...z,
are elements of x. This is the syntax used to
represent the “set-element” relation in KAUS.
In particular, we see that in Rule-1, the sym-
bol “#” denoting the expansion capability is
used in the prefix of the multi-layer logic for-
mula (i.e., [V AO#/ai-pr-1-0] ...) and the re-
gression coeflicients are recorded in the sets ai-
pr-1-0 ~ ai-pr-1-2. This is a kind of model
representation. That is, by means of the ex-
pansion capability, only the elements of sets
are modified, but the multi-layer logic formula
(rule) is not generally changed when the refine-
ment (or generalization) is done. For exam-
ple, if the regression coefficients are changed
(added/updated; e.g., if the regression coeffi-
cients of the model obtained from clusters are
added), then only the values in the sets ai-
pr-1-0 ~ ai-pr-1-2 and variance are changed
(added/updated).

3.3 Management

In our system, a rule chain and an inheritance
graph corresponding to a family of regression
models are used for management. By means of
them, the following jobs can be done:

e Regression models discovered from data-
bases are first stored in the rule chain, and
then are refined by using the method to be
described in Section 3.4.

e The time and history of regression models
are represented and managed; that is, the
rule chains for storing regression models are
dynamically generated as time goes on, in
order to record the evolution process of re-
gression models.

o A suitable regression model is selected from
a family of regression models by using the
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Fig.2 An inheritance graph for a family of
regression models and operations on it.

method described in Zhong and Ohsuga 7).

e The inheritance graph of regression mod-
els is dynamically generated, in order to
describe the relationship among regression
models.

The rule chain of regression models is defined
by set-element relationships and the multi-layer
logic formulae. The rule chain and the inher-
itance graph are managed by using a meta-
knowledge level.

Figure 2 shows the structure of the inher-
itance graphs and some operations on them.
That is, reg-up, reg-model, reg-down, and so on
shown in Fig. 2 denote several regression models
belonging to a family with inheritance relation-
ship. Three knowledge-bases, meta-ctl, ref-kb
and gen-kb, which are divided into two knowl-
edge levels, meta-level and object-level, are re-
spectively used for controlling and performing
different operations. A further example of the
operations for refinement can be found in Ex-
ample 5 in Section 3.4.

3.4 Refinement

On the basis of the preparation stated above,
the method of refining the structural character-
istics can be roughly described as follows:

e If structural characteristics (regression
models) were discovered, then store them
first as rules such as Rule-1 in Section 3.2,
in the dynamic worlds of a knowledge-base
in the order in which they were discovered.

o If there are two or more regression models,
then apply meta-reasoning to the worlds in
which the discovered regression models are
stored, in order to find their inheritance re-
lationship.

o If there are two or more true results
of meta-reasoning, and their answers are
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nearly the same, then evaluate the strength
of inheritance among them.

— If there are more than two regression
models for several sets and their super-
set, then first use Eq. (1) to select the
best model from the ones correspond-
ing to the sets, and use Eq. (2) to evalu-
ate the strength of inheritance between
the selected best model and the model
corresponding to its superset.

— If there are only regression models cor-
responding to sibling sets or two mod-
els for a set and its superset, then use
Eq. (2) to evaluate the strength of in-
heritance between them.

— If Eq.(2) holds and the regression
model discovered later has a smaller
variance, store the coefficients and the
variance value of the regression model
discovered later, and delete the coef-
ficients and the variance value of the
older regression model. Then delete
the rule discovered later (i.e., delete
the multi-layer logic formula and the
sets in which the coefficients and the
variance value are stored), and create
or revise the inheritance graph of the
regression model’s family and the cor-
responding rule chain.

e If there are two or more true results of
meta-reasoning, but their answers are dif-
ferent, then generalize the rules stored in
the dynamic worlds (i.e., merge the multi-
layer logic formulae and the sets in which
the coefficients and the variance value are
recorded), and create or revise the inheri-
tance graph of the regression model’s fam-
ily and the corresponding rule chain.

e If there are not two or more true results
of meta-reasoning, then the rules stored in
the dynamic worlds are not modified.

Example 5. After the above refinement has
been carried out for the cases described in Ex-
amples 3 and 4, Rule-1 is changed into the fol-
lowing Rule-2:
Rule-2: /* the rule for inferring the effective tempera-
ture of stars from their luminosity */
lins.e clusters 1-sub, 1l-sup, 3; /* use a subset and
superset of cluster-1, and cluster-3 */
lins_e variance 0.0173, 0.0313, 0.0125; /* the variances
of the regression models belonging to a family */
linse ai-pr-1-0 4.856, 4.673, 5.072;

/* the coefficient A0 */

lins_e ai-pr-1-1 0.075, -0.0235, -0.183;
/* the coeficient Al */
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lins_e ai-pr-1-2 0, 0.2116, 0.044;
/* the coefficient A2 */
[V X-luminosity, Y-effTemp/float] [V Mode,Check-N/int]
[V AO#/ai-pr-1-0][V Al#/ai-pr-1-1] [V A2# /ai-pr-1-2}
(| (p-stars Mode Check-N Y-effTemp X-luminosity)
~($pr 2 Y-eff Temp A0 X-luminosity Al A2)
~($scope_kb rule-set3)
~(storelnfor Mode Check-N pr Y-effTemp X-
luminosity)

).

In the above rule, the parts in bold type are
the ones that have been revised. That is, we
see that the regression model for group-1 is
replaced by the one for group-I-sub, because
there is a stronger inheritance relationship be-
tween them and the variance of the regression
model for group-1-sub is smaller than the one
for group-1. The regression model for group-
1-sup is added because there is not a stronger
inheritance relationship between the regression
models for group-1-sup and group-1-sub. In this
case, the corresponding inheritance graph for
cluster; is as follows:

lins_e *reg-inheritance-graph-clusterl rl, r2; /* rl, r2
are reg-models in the inheritance-graph for clusterl */
lins_e rl reg-model, reg-down; /* rl is the downward
inheritance model of the reg-model */

lins_e r2 reg-model, reg-up; /* r2 is the upward inheri-
tance model of the reg-model */.

4. Concluding Remarks

We have presented a multi-phase process
for discovering, managing, and refining strong
functional relationships hidden in databases.
That is, we have described a more complete
KDD process based on incipient hypothesis gen-
eration, evaluation, management, and refine-
ment. We support qualitative/quantitative dis-
covery, handle more uncertain data and changes
in data, and control the discovery process by
combining Al techniques with statistical meth-
ods in multiple learning phases. The KDD pro-
cess described in this paper is the basic one that
is executed in our GLS discovery system 16):18),

Here, we would like to stress that although
this paper has shown how to combine several
Al techniques with statistical methods in a
KDD process with multiple learning phases, its
aim is not to create a complete description of
all elemental techniques that should be used
in the process, since this would require much
more space than is available here. In fact, we
have developed a systematic method for dis-
covering functional relationships in databases
by combining attribute calculation, in which a
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model base and heuristic search are used coop-
eratively, with regression analysis!®). In this
method, non-linear functions can be also gen-
erated if multiple regression is used, although
in this paper we only described the case in
which polynomial regression is used, because
non-linear functional relationships can be trans-
formed into linear ones by attribute calculation
before using multiple regression. Since the issue
lies beyond the scope of this paper, we would
like to describe it in detail in another paper.

Several issues remain to be investigated. Cur-
rently, the capabilities for management and
refinement in our system involve mainly one
of two main aspects, namely, how to man-
age and refine strong functional relationships
discovered after the data in a database have
been updated (added/deleted). Another im-
portant aspect of management and refinement
is how to acquire higher-level knowledge from
several strong functional relationships discov-
ered in databases. The development of this as-
pect is a further extension of the KDD process
described in this paper, for which need to use
more domain knowledge.
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