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In machine learning, information theory has been recognized as a useful criterion, and sev-

eral algorithms such as ID3 and Prism have been developed.

In these methods, however,

information theory is only used for generating inductively knowledge that is represented in
decision tree or if-then rule, but the issue on knowledge refinement is not considered. More-
over, they are not used for evaluating information of logical expression. This paper discusses
a way of calculating quantitatively information of logical expression and its application for
refining concept clusters discovered from a database. The calculation is based on the model
representation of Multi-Layer Logic (MLL) with the hierarchical structure. Its key feature is
the quantitative evaluation for selecting the best representation of the MLL formula by using
cooperatively a criterion based on information theory (entropy) and domain knowledge.

1. Introduction

In machine learning, information theory has
been recognized as a useful criterion, and sev-
eral algorithms such as ID3 and Prism have
been developed )14, In these methods, how-
ever, information theory is only used for gener-
ating inductively knowledge that is represented
in decision tree or if-then rule, but the issue on
knowledge refinement is not considered. More-
over, they are not used for evaluating informa-
tion of logical expression. On the other hand,
the idea of calculating quantitatively informa-
tion of logical expression has been originally in-
troduced by Ohsuga in his paper®. Although
the issues on knowledge representation were dis-
cussed from an information theoretic view in
that paper, the effective method for an imple-
mentation was not described and some theoret-
ical issues related to the implementation were
not discussed/proved formally.

This paper concentrates on an effective
method of calculating quantitatively informa-
tion of logical expression, some theoretical is-
sues related to the implementation, and its ap-
plication for refining concept clusters discovered
from a database. The calculation is based on
the model representation of Multi-Layer Logic
(MLL) with the hierarchical structure 9-19), Tts
key feature is the quantitative evaluation for se-
lecting the best representation of the MLL for-
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mula by using cooperatively a criterion based
on information theory (entropy) and domain
knowledge. The calculation constitutes a the-
oretical basis of developing Hierarchical Model
Learning (HML) that is a sub-system of our
GLS discovery system for generating, refining,
and managing the knowledge discovered from
databases 19):21).

The remainder of this paper contains a de-
tailed explanation of our method. In Section 2
knowledge representation using MLL is briefly
described as a preparation, and information
of logical expression including a definition and
three theorems is discussed in Section 3. In Sec-
tion 4, an effective algorithm for calculating the
information of the MLL formula is described.
How to refine concept clusters discovered from
a breast cancer database, as an application of
our method, is discussed in Section 5. Lastly,
concluding remarks are given in Section 6.

2. Knowledge Representation in MLL

MLL (Multi-Layer Logic) is a predicate logic
with a syntax that allows some domain(s) of
variable(s) to be the variable(s), which ex-
tends for MSL (Many-Sorted Logic) in the syn-
tax 9):19), This extension in the syntax of MSL
gives a great expressive capability for a predi-
cate logic involving data structure (set, hierar-
chy, power set, etc.), especially in manipulation
of the hierarchical structure.

In MLL, structures can be described as
element-of, power-set-of, component-of, and
product-set-of relations. Other complex oper-
ations can be represented as combinations of
these primary operations. For example, let a
polyhedron as shown in Fig. 1 be defined as a
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set of surfaces s1, Sz, S3, S4, and let surfaces
be defined by a set of the edge lines using the
following structure description,

/* Description of general concepts */

Imake_p *2vertex, *2line, *2surface;

lins_e *2vertex line;

lins_e x2line surface;

lins_e *2surface polyhedron;

/* Description of specific concepts */

lins_e line ll, l2, 13, l4, l5, ls;

lins_e surface $1, $2, S3, S4;

lins_e polyhedron hy;

/* Definition of component sets of a specific
object with hierarchical structure */

lins.e hy : surface sy, 82,83, 84;

lins_e sy : line ly,ls,1y;

lins_e 8o : line 1i,l3,15;

lins_e s3 : line [y,l3,lq;

lins_e s4 : line l4,15,ls;

where “ins_e X z1...%,;” means z...%, are

elements of x (i.e., the set-elements relation).
“xx” denotes a power set node whose base set
is x. The base set of the power set is the one
from which the extension of the power set is de-
fined. In other words, a power set is composed
of all subsets of the base set. However, MLL
does not automatically enumerate all elements
of the given power set from the given base set.
“lins_e *x” defines only parts of members of *x
(i.e., a subset of z) by the arguments followed
by lins_e #x. Since *x is itself a set, *(*x) can
also be defined in the same way, denoted by
*2x. In general, *nx denotes the power set of
*(n — 1)x. “lins_e x:a” describes a component
set of x (i.e., a is a discriminator of the com-
ponent set). In addition, “!make_p” is used for
declaring and making power set nodes.

In general, the structure description can be
divided into three parts as shown above. That
is, the description of general concepts, the de-
scription of specific concepts and the definition
of component sets (or IS-A relations) of a spe-
cific object with hierarchical structure. A com-
ponent set can be regarded as an IS-A rela-
tion (i.e., pseudo IS-A). MLL prepares a syn-
tax to discriminate the real IS-A relation and
the pseudo IS-A relation. But it is abbreviated
here (i.e., both of them are called the IS-A hier-
archy in this paper). Figure 2 is an equivalent
graph of the component sets of this specific ob-
ject shown above.

A MLL formula consists of a matrix, prefix,
AND/OR forms, connectors and (&), or (]) and

Fig.1 A polyhedron.

Fig.2 The hierarchical structure of a polyhedron.

not (~). Similar to MSL, a variable in a MLL
formula can have its own domain and can be
explicitly included in the prefix. For example,
by means of the IS-A hierarchy defined above,
we can represent the knowledge “There is some
surface in a polyhedron h; of which the length
of all edge lines is 3” in a MLL formula as fol-
lows,

[3S/hy : surface][VL/S : line]
length(L, 3).

The part inside the brackets [ ] in the head of
a logic formula is called the prefix in the MLL
formula. Here, the domain of variable L is a
variable S, the domain of S is h; for represent-
ing a specific polyhedron. Furthermore, when
the domain set of a variable is finite, the MLL
formula can be expanded according to the fol-
lowing equivalent expressions,

IV X/xp(X)Nx = {z1,Z2,...,%0}
«— p(z1) N p(z2) N ... N p(zn),

BX/xlp(X)Nx ={z1,22,...,Zn}
+— p(x1) Up(z2) U ... Up(zy).

It is called ezpansion function of MLL. This
function is used for extracting from a set the
elements that possess specified properties. It
is syntactically defined by appending “#” af-
ter the variable to be expanded in the prefix of
the MLL formula. For example, let surfaces be
{11, 12,14), (I, 13, 15), (l2, 13, I6), (14, Is, I6) }, then
the formula
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(3 S#/hi1 : surface][V L#/S : line]
length(L, 3).

can be expanded into

(length(ly,3) Nlength(ls, 3) N length(ly, 3))U
(length(ly,3) N length(ls, 3) N length(ls, 3))U
(length(lz, 3) N length(ls, 3) N length(ls, 3))U
(length(ls,3) N length(ls, 3) N length(ls, 3)).

3. Information of Logical Expression

Let us consider a predicate f and let d be a
finite base set. For simplicity, we assume that
f is a single place predicate f(z). It gives a de-
scription on an object in d. Or, in other words,
f(z) classifies all elements in the set d into two
classes: those that satisfy f(z) and those that
do not. In the following, f(z) and f(z) mean
“f(z) : True” and “f(z) : False” respectively
for x € d. Let us define a concept “the state of
d before and after the formula”. It is assumed
that in the prior state, whether f(z) or f(z) is
not clear for any z in d, while, in the posterior
state, either f(z) or f(z) is made clear for some
or all elements in d. Based on the preparation,
we first define the information of MLL.

Definition 1. Information of MLL.

Let d = {ai,as,...,an} be a finite base
set. The state of d is defined as the conjunc-
tions of either f(a;) or f(a;) for every ele-
ment a; in d. Before the formula is given, the
state of d includes all possibilities of combina-
tions of f(a;) and f(a;), @ = 1,2,...,N such
that S1 : f(a1) A f(az) A ... A f(ay) through
Son : f(a1) A f(a2) A ... A f(an). Let the set
S} be defined as the collection of all possible
prior states, and the set S? be defined as the
collection of all possible posterior states. Thus
St = {S1,...,5~}. When the formula f is
given, the states of some of elements are fixed.
Then S} becomes a subset of S} as shown in
Fig. 3. Furthermore, let their cardinalities be
|S}| and |S%|, and their entropies be defined as
Is;, =log|S}| and Is,, = log|S%| respectively.
Thus, the amount of information of the MLL
formula f can be defined by

K =1Ig51 — Isypo
= log|S}| — log |52 (1)
That is, the difference of Iss and Igys is the

amount of information K with respect to the
predicate symbol f. O

From Eq. (1), we can see that more informa-
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Fig.3 The sets of the prior and the posterior states
of MLL.

tion is obtained by decreasing the posterior en-
tropy Igsss of a MLL formula. Moreover, the
above definition can be easily extended to the
case of n place predicate with n greater than
one?.

Example 1. Assume that we have an IS-A hi-
erarchy shown in Section 2 and a MLL formula
is given in the formal quantifiers Q;,

(@1 S#/hy : surface][Q2 L#/S : line]
length(L, 3),

where Q; (4 = 1,2) denotes either ¥V or 3. Then
d = {li,ls,...,ls} and the different quantifiers
in the prefix of this MLL formula have differ-
ent amounts of information. Furthermore, let
Kg,q, denote the amount of information of a
MLL formula with quantifiers Q;Q3. Before
the formula, the predicate length(l;, 3) is either
true or false for all possible states. Therefore,
S} = 2° and log |S}| = 6. Thus,

(1) [VS#/hy : surface][V L#/S : line]
length(L, 3),
Ky =6—1logl =6;

This formula says that the length of all lines in
all surfaces of a polyhedron h; is 3. That is,
only length(l;,3) A ... Alength(ls,3) is allowed
as a particular state. Thus |S%| = 1.

On the other hand, the formula in case (2)
says that the length of some line in some surface
of a polyhedron h; is 3. That is, this formula
allows every element in S } except length(ly,3)A

... Nlength(ly,3). Thus |S%| = 63.

(2) [BS#/h1: surface][3 L#/S : line]
length(L, 3),
K33 =6 —1log63 = 0.023;

Furthermore, the following formulae say that
the length of some line in all surfaces of a poly-
hedron h; (i.e., case (3)), and the length of all
lines in some surface of a polyhedron h; (i.e.,
case (4)), are 3, respectively. That is, the for-
mulae allow a part of elements in S}, and the
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numbers of possible posterior states become 41
and 23 respectively.

(3) [V S#/hy: surface][3 L#/S : line]
length(L, 3),
Kys = 6 — log 41 = 0.642;

(4) [3S#/h1: surface]lVL#/S : line]
length(L, 3),
Ksy =6 —log 23 = 1.476. O

From this example we can see that

e the MLL formulae with different quanti-
fiers may reveal various different informa-
tion even if the structure is the same. This
is one of two aspects of evaluating the in-
formation of the MLL formula. Another
aspect is that of evaluating a MLL formula
with different structures. This aspect will
be discussed later. .

o the calculation of the posterior states (e.g.,
cases (3) and (4)), in general, is difficult.
Hence, how to develop an effective method
for this calculation is a key problem for
evaluating the information of the MLL for-
mula. For this purpose, we developed three
theorems and the equations based on one of
the theorems (i.e., Theorem 1 and Egs. (9),
(10) and (11) to be described later, and the
calculation for cases (3) and (4) will be de-
scribed in Example 3).

In the rest of the section, we would like to dis-
cuss the theorems based on Definition 1 for eval-
uating effectively the information of the MLL
formula.

Theorem 1. Complement of the posterior car-
dinality of MLL.

The posterior cardinalities of the MLL for-
mulae with contrary quantifiers in their prefixes
are complementary. That is,

|S%lva = |S}] - lsfflav?, (2)
where |S?|v3 is the cardinality for the MLL for-
mula with the form

VY/*d][3 X/Y]f(X),
and |S?|3V? is the cardinality for the MLL for-
mula with the form

BY/xd|VX/Y]~ f(X).

Furthermore, if the possibilities of f(X) and
~ f(X) are equiprobable, then

|S%va = 53 — |52]av. (3)
Proof. When the domain sets are finite and
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without loss of generality, let an IS-A hierarchy
be defined as

lins.e xd dy, da, ..., dp;

lins_e dy ai, @2, ..., 4,
lins_e dy as, a3, as,-..., a;;
lins_e d,, as, as, as,..., Qk;

where elements a1, a2, as,as in a1, az,...ay are
“tangled” elements (i.e., one a; can belong to
more than one d;). And let a MLL formula
with the prefix V3 be

VY/*d][3 X/Y]f(X).

Let the probability P([Q1 Y/  d][Q2 X/Y]
f(X)) be Pg,q,, and let f(a;) be simply repre-
sented as b;. Based on Definition 1, the poste-
rior probability of this MLL formula is

Pv§|=P((b1Ub2U...Ubl)
ﬂ(b1Ub3Ub5U...Ubj)
ﬂ...n(bQUb3Ub5...Ubk)).

And let P(~ formula) be P(formula), then
because

Pys=P((byUbyU...UH)N
(by UbgUbs U...Uby)
N...N (b UbsUbs...Ubg))
=Pb UbyU...UD
UB  Ubs Ubs U...Ub;
U...UbUbsUbs U...Ubg)
=P((biNbaN...NY)
Uy Nb3NbsN...Nby)
U...U(BNb3NbsN...Nbg))
= Pav_, (4)
Py3+Pya= PR3+ Py =1.
Furthermore, if the probabilities of P(f(X))
and P(~ f(X)) are equiprobable, then because
Pys=P(BNnbaN...NH)
Uy NbsNdsN...Nby)
U...U(baNbsNbsN...Nb))
=P((bynbaN...Nb)
U(by Nz Nbs N ...Nbj)
U...U(baNbsNbsN...Nbg))
= Pav, (5)

Py3+ Pys = Py3+ Pay = 1.

Thus, since the posterior cardinalities for the
MLL formulae with the prefixes V3 and 3V are
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|S3lva = P x H (6)

|S?|av = Pav x H (7)
respectively, where H is the maximal number of
possible elements and H is also the prior cardi-
nality (ie., [S}| = H),

'S}?clvg = Pv3 x H

and

=(1—Pav) x H
=H - PE!V}— x H
= 1S} — |S%]av

and if the probabilities of P(f(X)) and P(~
f(X)) are equiprobable, then

|Sj2c|v3 =P xH
= (1 — Pav) x H
= |Sjlc| - |S?|3V O
By the same method stated above, we can
also prove
|S?33 = |S}| = |SF|wv.
Furthermore, since
K =log|S}| —log|S7]
=logH —logP x H

=loe s w

1
= IOg _]51 (8)

and based on Theorem 1, we can calculate the
information of the MLL formula by

1
=log ——— 9
Kyz = log I~ Pav, (9)
or
Kys = log (10)
1-Pay
for the formula with quantifiers V3, and
1
K3y =log 5— (11)

for the formula, \xarifthv quantifiers V.

In order to calculate Psy, the following
Eq. (12) is used if there are “tangled” elements
among sub-sets of the base set of an IS-A hier-
archy (e.g., the calculation of Eq. (4) or (5)),

P(Cl UeaU...Uep_1 Uen)
n
:ZP(ei)— Z P(eiﬂej)
i=1

1<i<j<n
+ Z P(eiﬂejﬂek)-...
1<i<j<n
+ (“1)n—1p(€1 NeaN...N en),
(12)
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else Eq. (13) is used.
Ple;UeaU...Uey—1Uey)

=1-~PlegUesU...Uey.1Uey)
=1-Pe;NexN...NEy_1 NE,).
(13)
From Egs. (9), (10) and (11), we can further
see another aspect of evaluating the information
of the MLL formula, that is, a MLL formula
with different structures may also reveal various
different information.

Theorem 2. The equivalence of information
of MLL.

In the case of the IS-A hierarchy, it is possi-
ble to refine a hierarchical structure by defining
new intermediate nodes. Then the prefix se-
quence becomes longer. If the same quantifiers
appeared in succession in the prefix of a MLL
formula such as

(1-1) [@ X™ 1 /s][F3 X2/ X" Y.,
[ X?/X°|[3 X/ X2 (XY,

(2-1) [Q X" /s][V X"‘2/X”—1] .
[V X2/ X3V X1/ X2 f(X1),

then they can be respectively regarded as
(1-2) [QY/s][3 X/Y]f(X),
(2-2) [QY/s][V X/Y]f(X),

when calculating their information.

Proof. We would like to prove Theorem 2, only
prove the information of the formulae (1-1), (1-
2) and (2-1), (2-2),

Ka-1)=Ku-2) and K1) = Ka_g).

Furthermore, based on Eq. (8), only prove their
probabilities

Pg3.3=PFp3 and Pgy.y = Pyy.

Without loss of generality, let the prefix of a
MLL formula involves n same quantifiers ap-
peared in succession, and let the base set d in-
volves M elements. It is clear that

P53, .3, =Pa3,.3, ,=...=P33=P;
oM _ 1
Pyv,.v, =Py, v,y =...= Py =Py
1
= 2_M.

Based on this, the following equalities also hold,
Pya,3,..3, = Py3,3,..3,_,
=...= Py3z = Py3,
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Pay,v,..v, = Paviv,..v,._4
=...= Payy = Pay. ]
Theorem 2 shows the equivalence of informa-
tion of MLL with the same quantifiers appeared
in succession in the prefix of a formula. It can
be used for convenience in the calculation.

Theorem 3.
MLL.

Let K4 and Kp denote respectively the
amounts of information of the MLL formulae A
and B with different quantifiers, and let A = B
denote that if A is true then B is true, we have

IF A= B, THEN K4 > Kp.
Proof. Assume this is not true. Then there
must be some B such that A = B and ~ (K4 >
Kp)or A= Band K4 < Kp. By Definition 1,
we have K4 = Ig,, — Is,,. Without loss of
generality, let Is,, = Isy,. Then K4 < Kp is
equivalent with Is,, > Is,, or S% > S%. This
means that there is some posterior state which
is included in S% but S%, for which A is true
but B is not true This is contradlctlon m]

Information of Tautology of

It is possible to evaluate the amounts of in-
formation of the MLL formulae with the differ-
ent sequence of quantifiers in the prefix. For
example, let the quantifiers set of the MLL for-
mulae Q = {Q11Q27Q3}’ and Q’i (1:1’2’3) de-
notes either V or 3. Based on this, we define a
state graph of quantifiers of the MLL formulae
as shown in Fig. 4, and let d be a finite base
set for presenting an IS-A hierarchy and let f
be a predicate. Thus, Fig. 4 denotes all different
combination of quantifiers of the MLL formula,

[Q: 2/d%]|Q2 Y/ Z][Qs X/Y]f(X).
And a partially ordered set of Q is (Power(Q),
Q), i.e,
Power(Q)
= {VWV, Vv3,V3V, 3w,
V34, 3vd, 33v, 333}
Thus, we can see that Fig. 4 is just its Hasse di-

agram presented a lattice structure. Therefore,
the cover relation of Power(Q) is

covPower(Q)

= {(333,33v), (333, 3v3),

(333,v33), (33V, IW),

(33v, Vav), (3v3, 3wy),

(3v3, W3, (V33,V3Iv),

(V33, YV3), (IVV, YW),

(VAV, W), (WV3,YWV) }.

Based on this, let (B, A) denote any cover
relation in covPower(Q). Thus, based on The-
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Level4

/l\

Level3
Level2
Levell 333

Fig.4 A state space of quantifiers of MLL.

‘orem 3, we have Kp < K4 in which the the

formulae B, A satisfy (B, A). Furthermore, ac-
cording to Eq. (8), then Kp < K4 is equivalent
with Pg > Py, ie.,

P333 > Paay
P333 > Pavs
Ps33 > Ryss

Pyya > Pyyy.
Example 2. According to Theorem 3, because

IV S#/poly : surface][V L#/S : line]
length(L,3) D

IV S# /poly : sur face][3 L#/S : line]
length(L, 3),

Kyy > Ky3. O

In general, we can create a state graph of
quantifiers of the MLL formula for learning its
quantifiers. The state graph as shown in Fig.4
is the one in which the number of quantifiers
is equal to 3. This state graph is divided into
four levels. The uppermost level is with the
most information.

4. An Algorithm

Based on the definition and theorems stated
above, we developed an effective algorithm for
calculating the information of the MLL for-
mula. At first, let us only consider how to cal-
culate the amounts of information of the MLL
formulae with the prefixes YV, V3, 4V or 33.
That is,

o If we would like to calculate the amounts
of information of the MLL formulae with
the prefixes VV, V3, 3V and 33, only calcu-
late V and 3V according to Theorem 1 and
Theorem 2. And the calculation for 3V is
in Eq. (11).

o If the quantifiers in the MLL prefix either
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W, V4, 3V or 33 can be used, select YV
according to Theorem 3.

Furthermore, Eq.(12) or (13) can be easily
used for calculating the probability of the sum
of “tangled” or dependent elements. That is, if
we calculate the amount of information of the
MLL formula with the prefix V3, then

step 1 : Calculate the probability of the MLL
formula with the prefix 3V, Py or Pav, in
Eq. (12) or Eq. (13) according to whether there
are “tangled” elements among sub-sets of the
base set of an IS-A hierarchy.

step 2 : Calculate the amount of information
K in Eq.(9) or (10).

Example 3. We would like to use cases (3)
and (4) described in Example 1 as an exam-
ple of using this algorithm and let length(l;, 3)
be simply represented as b;. Thus, if we would
like to calculate the amounts of information of
the MLL formulae with the prefixes V3 (i.e.,
case (3)) and 3V (i.e., case (4)), then first, cal-
culate the probability of the MLL formula with
the prefix 3V in Eq. (12). That is,
Pay = P((by Nby Nby) U (by Nbg Nbs) U
(bs N b3 N ) U (bg N bs N bg)) = ?
Next, calculate the amounts of information of
the MLL formulae with the prefixes V3 and 3V
in Egs. (10) and (11), respectively. That is,

= 0.642.

1
Kys =log 1= Pay

1
ng = log -ﬁ—- = 1.476. ]

Although mostagpplications only need to con-
sider formulae with 2 alternating quantifiers or
the same quantifiers appeared in succession '),
we now discuss how to extend the above al-
gorithm for processing more than 2 alternat-
ing quantifiers like V3, VIV, etc. This exten-
sion can be easily done because we can expand
an expression of probability corresponding to a
complex sequence of quantifiers of a MLL for-
mula into a simpler form (i.e., the same form as
3V), so that Eq. (12) can be used for calculating
its probability. We describe it by the following
example.

Example 4. If we would like to calculate the
amount of information of the following MLL
formula with the prefix V3V and the IS-A hi-
erarchy shown in Fig. 5,

[V Z/+2d|[3Y/Z][V X/Y]f(X),
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*2d

at a2 a3 a4

Fig.5 A sample IS-A hierarchy to describe the more
complex MLL prefix.

then first, write out the expression of probabil-
ity corresponding to the MLL formula as fol-
lows,

Py = P(((Ll Nag U a3) N a4).
Then expand this expression into a simpler form
as follows,

Pygy = P((a1 Nag U a3) n a4)
= P((a1 n as n 0,4) U ((13 n (14)).
That is, this is the same form as 3V. Thus,

Eq.(12) can be used for calculating its prob-
ability. A calculated result is

5
Pyay = P((a1 Naz Nag)U(azNay)) = o
and

Kyay = log = 1.678. O

Pyzy
5. Knowledge Refinement

There are many possible applications for this
method described in Sections 3 and 4. For ex-
ample, this method can be applied for refin-
ing concept clusters discovered from a database
such as the breast cancer database®-19). We
argue that the refinement for the discov-
ered knowledge is an important function in
knowledge discovery and data mining sys-
tems'®). Here refinement means acquiring
a more accurate knowledge (hypothesis) from
a coarse knowledge (hypothesis) according to
data change and/or the domain knowledge.

Although many systems for knowledge dis-
covery and data mining such as INLEN, Forty-
Niner, EXPLORA and KDW have been pro-
posed 36013):23) " fow of them have addressed
the capability of refining the discovered knowl-
edge. In the traditional machine learning com-
munity, information theory, as stated in Sec-
tion 1, is only used for generating inductively
knowledge that is represented in decision tree
or if-then rule, but the issue on knowledge re-
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finement is not considered. On the other hand,
the systems based on Bayes’ rule such as COB-
WEB perform incremental conceptual cluster-
ing?. COBWEB constructs the clusters by
examining training examples one at a time.
Therefore, it can update its partial definitions
of the boundaries of concept clusters when new
instances become available, without being able
to review the old data from which those partial
definitions were formed. Although COBWEB
as an incremental method has the capability of
knowledge refinement, it is not used for evaluat-
ing information of logical expression, it can only
represent the concept hierarchies with disjunc-
tive relationship, and it cannot represent the
concept hierarchies with “tangled” elements (or
multi-categorization). Hence, in the rest of the
section, we would like to discuss a knowledge re-
finement method, in which the issues and dis-
advantages of COBWEB stated above can be
solved /overcame systematically, as an applica-
tion of the method described in Sections 3 and
4.

The process of knowledge refinement in our
method can be divided into two main stages.
The first stage is that of representing the con-
cept clusters as the MLL formulae with hierar-
chical models. For example, the concept clus-
ter, which is discovered from a breast cancer
database* and describes the conditions of be-
nign cancer,

clump-t: 1, 4, 2, 6.
u-cell-size: 1, 3, 2, 9.
u-cell-shape: 2, 1, 4.
s-e-cell-size: 1.
bare-nuclei: 0, 3, 8.
bland-chromatin: 1, 3, 4.
mitoses: 2,

can be represented by the hierarchical model as
shown in Fig. 6 and the following MLL formula:

/* The rule for diagnosing breast cancer */
[V Y# /benign:symptom][3 X#/Y]

* Each tuple in this database corresponds to one pa-
tient and values of 10 attributes are given for each
patient. The domain of every attribute is given by
the sets of 9 quantized values that are classified as
a case of benign or malignant cancer, resulting from
clinical examinations related to this disease. Al-
though many clustering methods can be used for our
purpose, we would like to use the clustering method
described in Ref.20). This method can automati-
cally analyze and delete the irrelevant data for clus-
tering, which is a kind of noisy data and cannot be
used to differentiate different clusters.

Apr. 1997

benign

bland—chromaun
bare-nuclei

AN

Fig.6 The hierarchical model of group 1.

¢ u-cell-size s-e-cell-size
u-cell-shape

AN N

14261329 4 1

clump-

p-breast-cancer(Y, X).

The rule reads “if the symptoms recorded in the
set-elements relations about benign are satisfied,
then the breast cancer is benign.”.

Thus, there are two important jobs in
this stage. The first is hierarchical modeling.
Where, the process of representing a concept
cluster by an IS-A hierarchy (i.e., the hierarchi-
cal model represented by the set-elements re-
lation in MLL, and Fig.6 is an example of its
equivalent graph) is called hierarchical model-
ing. Another job is that of selecting quantifiers
in the MLL prefix. Since both of the quanti-
fiers V and 3 can be used for the conditions be-
longing to different attributes, both of the MLL
prefixes,

(1) [3Y+#/benign:symptom][q X#/Y]
and
(2) [VY+#/benign:symptom]|[3 X#/Y],

can be used for representing the acquired con-
cept clusters. Where, we can see that if the
MLL formula with the prefix (2) is true then
the one with the prefix (1) is true, that is,

[V Y#/benign:symptom]|[3 X#/Y]
p-breast-cancer(Y X) =

[3 Y+#/benign:symptom]|[3 X#/Y]
p-breast-cancer(Y X),

from Theorem 3 stated in Section 3.1, we know
that the amount of information of the MLL for-
mula with the prefix (2) is larger than the one
with the prefix (1). Therefore, the prefix (2) is
selected for representing the concept clusters.

The second stage is that of refining the hi-
erarchical models by using domain knowledge
and/or when new concept clusters are discov-
ered along with data change in a database. This
is to select automatically a best (or more re-
fined) hierarchical model from more hierarchi-
cal models belonging to a family.

For example, when another concept cluster
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! N bland-chromatin
u-cell-size s-e-cell-size i )
clump-t u-cell-shape bare-nuclei mitoses
I 2 61329 2 1 4 0 3 8 13 4 2

Fig.7 A HM in which group 2 of data was added.

as shown in Fig. 7 is discovered along with the
adding of data in the breast cancer database, we
can calculate the amounts of their information
based on the MLL prefix,

[V Y# /benign:symptom|[3 X#/Y],

for selecting the better one from two hierarchi-
cal models shown in Figs.6 and 7 by the algo-
rithm stated in Section 4. Since the result of
the calculaticn is

Ky = 2.864 > K,y = 2.764,

the hierarchical model shown in Fig.7 is se-
lected. That is, learning is to select a hierar-
chical model with more information.

Furthermore, since experts can bring domain
knowledge to bear while refinement, the hier-
archical model can be also refined by using co-
operatively domain knowledge and informative
evaluation. For example, if the following do-
main knowledge,

lins_e uniformity u-cell-size, u-cell-shape;

lins_e cell u-cell-size, u-cell-shape, s-e-cell-size;

lins_e nuclei bare-nuclei, normal-nucleoli, mitoses;

lins_e other clump-t, bland-chromatin;

is used, then a more refined hierarchical model
as shown in Fig. 8 can be acquired. That is, do-
main knowledge is used for conceptual abstrac-
tion (generalization). Here, the lowest leaves of
the hierarchical model are only observable val-
ues that are collected in a database. The other
values are called abstract values, and the second
lowest leaves of the hierarchical model are called
the lowest level of abstract values. However,
abstract values can be “tangled” (i.e., a value
can belong to more than one abstract value in
a higher level as shown in Fig. 8).

The prefix of the MLL formula with the hier-
archical model as shown in Fig.8 can be repre-
sented into

[V Z# /benign:symptom|[V Y#/Z][3 X#/Y].

Since there are the same quantifiers appeared
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benign
uniformity cell nuclei other
u-cell-shape ) bare-nuclei clump-t
u-cell-size s-e-cell-size mitoses  bland-chromatin
1329 214 1 038 2 126 134

Fig.8 A hierarchical model used domain knowledge.

in succession in the prefix of this formula, the
amount of information of this formula with the
hierarchical model shown in Fig. 8 is the same
with the one shown in Fig. 7 (according to The-
orem 2). Therefore, the hierarchical model
shown in Fig.8, in which group 2 of data was
added and conceptual abstraction was done, is
selected as a more refined one. Here, learning
is to select the best hierarchical model by using
cooperatively domain knowledge and informa-
tive evaluation.

6. Concluding Remarks

We presented a way of calculating quantita-
tively information of logical expression and its
application for knowledge refinement. It can be
considered as a typical method in which infor-
mation theory is used as a criterion for learning
knowledge. It is based on the model represen-
tation of MLL.

The method described in this paper consti-
tutes a theoretical basis of developing HML
that is a sub-system of our GLS discovery
system for generating, refining and managing
the knowledge discovered from databases 19):21).
Furthermore, we would like to emphasize that
the method described in this paper is only used
as a learning phase in multiple learning phases
of our GLS discovery system, the results of
the knowledge refinement are not the final ones
in the discovery process, and can be further
used in the next learning phase for acquiring
more high-level knowledge. How to acquire
more high-level knowledge from the discovered
concept clusters, which are represented as the
MLL formulae with hierarchical models, is a
further research subject. This involves a new

sub-system of GLS that is being developed by
us 2%,
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