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1 Circuit-Switched
Routing

Fixed

The circuit-switched fixed-routing model has
been adopted for some parallel computer sys-
tems, such as iPSC-2 and iPSC-860 by Intel,
NCUBE/10 by nCUBE, and Symult 2010 by
Ametek [5]. In this model, a fixed path is ded-
icated to every source-destination pair and data
is pipelined through the path. Once a fixed path
is established for a source-destination pair, the
path exclusively uses all the edges that it tra-
verses and no other fixed path that uses one of
those same edges can be established simultane-
ously. Therefore, if multiple source-destination
pairs wish to communicate simultaneously, the
fixed paths dedicated to those source-destination
pairs must be edge-disjoint.

Let G be a graph representing a network, and
let V(G) and E(G) denote the vertex set and
edge set of G, respectively. A routingpon Gisa
mapping from the set of all ordered pairs of ver-
tices in G to the set of all paths in G such that
p([u,v]) is a path connecting  and ». A com-
munication request on G is a set of ordered pairs
of vertices in G. If {u,v] is in a communication
request, u is called the source and v the desti-
nation of the pair. A communication request on
G is called a partial permutation if each vertex
appears in the request at most once as a source
and at most once as a destination. A permuta-
tion is a partial permutation with |V(G)| source-
destination pairs.

Let G be a graph with routing p. For a source-
destination pair {u,v], p([u,v]) is called a fixed
path dedicated to {u,v]. A scheduling for a per-
mutation 7 is a decomposition of 7 into par-
tial permutations such that the fixed paths dedi-
cated to the source-destination pairs in each par-
tial permutation are edge-disjoint. The size of a
scheduling is the number of partial permutations
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in the decomposition. Let o(r,p,G) be the min-
imum size of a scheduling for a permutation 7 on
a graph G with routing p. Define that

U(p,G) =
o(G) =

mgxo(rr,p,G), and

mgn a{p,G).

Since the impact of vertex conflict and path
length is negligible in circuit-switched fixed-
routing networks as mentioned by Bokhari(l],
o(G) is the dominant factor for the communi-
cation overhead in circuit-switched fixed-routing
network G. Therefore, designing a routing p
that attains ¢(G) and finding a scheduling with
size o(p,G) are fundamental problems to mini-
mize the communication overhead when realizing
a permutation on a circuit-switched fixed-routing
network G. The problems were first considered
by Youssef [5]. Among other results, it is shown
in [5] that 0(G) = O(v/N) if G is a 2-dimensional
square mesh with N vertices.

2 Upper Bound for Product
Graphs

The mesh is a typical example of product graphs,
many of which have emerged as attractive inter-
connection graphs for large multiprocessor sys-
tems. The product of two graphs G and H, de-
noted by G x H, is the graph defined as follows:

V(G x H)
E(G x H)

V(G) x V(H);
{({w, o], [y 0]l (u, ') € E(G)}
O{([u, 2], [w, oD (v,%') € E(H)}.

We can show the following upper bound for prod- '
uct graphs.

i

Theorem 1 Let G; and G, be Ny- and N;-
vertezr graphs with p; and p; edge-disjoint span-
ning trees, respectively. Then,

o(Gy X G3) < max{[Ni/p],[Na/m]}-
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The theorem is proved by exhibiting a routing
p and an O(N log ;) time scheduling algorithm
that attains

a(p,Gr X G3) < max{[Ny/p1],[N2/p21},
[V(G1 x Ga)| = N1 x N

where NV =

3 General Lower Bound

On the other hand, we have the following general
lower bound.

Theorem 2 For any N -vertex graph G,
= QVN/A(G)),

where A(G) is the mazimum vertex degree of G.

Kaklamanis, Krizanc, and Tsantilas [3] showed
that for any N-vertex graph G and any packet-
switched oblivious routing p on G, there exists a
permutation 7 such that p requires Q(v/N /A(G))
steps to realize 7. Since the lower bound is de-
rived from an estimate of the edge congestion, the
same lower bound can be derived for the circuit-
switched fixed routing by a slight modification of
argument.

4 Tight Bounds
Product Graphs

for Some

From the theorems above, we can derive tight
bounds for some product graphs. We denote the
N-vertex path and cycle by Py and Cy, respec-
tively, and let JIL,Gi = Gy x G2 X -+ x Gy.
Ry(k) = TIL, Pi is the d-dimensional k-sided
mesh, Dg(k) = [I&,Ck is the d-dimensional
k-sided torus, and @, [Ti<y P2 is the n-
dimensional cube. We can show the following
tight bounds.

Theorem 3

7(Qn) = O(VN/logN)
V(@Qn)l = 27
o(Dg(k)) =

where N =
O(vVN/d)

[V (Du(k))| = k4

o(R4(k)) = O(VN/d)

V(Ra(k))| = k. i

if d is even where N =

if d is even where N =

The lower bounds can be derived from Theorem
2 and the fact that A(Q,) = n and A(Dg(k)) =
A(R4(k)) = 2d.

The upper bounds can be derived from Theo-
rem 1 as follows. We first observe that

Qn = an/Z] XQLn/ZJ)
Da(k) = Dgjy(k) x Dyja(k), and
Ry(k) = Ryp(k) x Rysy(k).

We also observe that @, is n-edge-connected,
Dy(k) is 2d-edge-connected, and Rq(k) is d-
edge-connected. Since it is well-known that an
m-edge-connected graph has [(m - 1)/2] edge-
disjoint spanning trees [2, 4], we have the desired
upper bounds.
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