4 —128

How to Render 3D Objects

4S—9

in Distributed Virtual Reality Environment

- A Way to Handle Hierarchical Scene Graph Structure in 3D Graphics -

Eric Young-Sang Shim

Nobuhito MIYAUCHI

Hiroshi KOZUKA

Hisao FUKUOKA Yoshiki SHIMOTSUMA
Information Technology R&D Center, Mitsubishi Electric Corporation

1. Introduction

It is necessary to have a 3D renderer to display the
world model in distributed virtual reality
environment. SpVisual, a 3D graphics renderer,
was developed to render 3D world for a
distributed virtual reality environment API called
Spline, a Scaleable Platform for Interactive
Network Environment, that was developed in
Mitsubishi Electric Corp. Spline’s target is a
session level multimedia communication
infrastructure exporting an API on top of which
networked virtual environments can be built by an
application writer who can just focus on the
content of the application without worrying about
communication and synchronisation among users.
In this research, 1 will introduce a relationship
between spVisual and Spline, and more details of
how spVisual handles 3D objects in distributed
virtual reality environment such as how spVisual
handles multiple VRML files, and how scene
graph is differ from the ordinary scene graph.
Also, some enhancements how spVisual make its
rendering performance faster.

2. Scene Graph

Scene graph is an arranged hierarchical internal
structure of 3D graphics nodes, which are more
than just a collection of nodes. 3D graphics
renderer can render its 3D world model by
traversing, modifying, and transforming this scene
graph. Since scene graph is very closed related to
how to render 3D world model, it is necessary to
carefully create a scene graph, and need to
traverse it as efficient as possible so that
traversing the scene graph does not effect the

How to Render 3D Objects in Distributed Virtual Reality
Environment — A way to Handle Hierarchical Scene Graph

Structure in 3D Graphics -

Eric Young-Sang Shim, Nobuhito MIYAUCHI, Hiroshi

KOZUKA, Hisao FUKUOKA, Yoshiki SHIMOTSUMA

Information Technology R&D Center, Mitsubishi Electric Corp.

performance of renderer.

2.1. Multiple VRML File Support

As a 3D graphics renderer, spVisual needed to
support multiple VRML files so that user can
have as many model as they want to have in a
virtual 3D world model without having a huge
VRML file, which allows modularity and
flexibility of VRML files. 3D renderers which are
used in real world these days are supporting only
a single VRML file which could lead application
developers have lack of flexibility of their
application. ~ To overcome these constrains,
spVisual is designed to handle multiple VRML
files by using sub scene graph concept.

2.2. Scene Graph

To support multiple VRML file, spVisual
constructs sub scene graph, which has hierarchy
of each node in a VRML file, within a main scene
graph that is handled a little different than what
usual OpenGL scene graph. SpVisual constructs
a display list for each VRML file, which is
described as a sub scene graph in above
subsection. Then, spVisual connects this sub
scene graph into the scene graph that is the
internal tree structure as its scene graph. Using
this internal tree structure of Spline, there are
some advantages that can be achieved.

There are kinds of advantages as described
following. First, since scene graph has the same
structure as virtual world model in real time,
spVisual can display virtual world without having
its own scene graph, and this allows spVisual very
reliable performance. Second, there are no
overheads, and this will allow spVisunal to save
time and performance to construct, to maintain,
and to remove scene graph. SpVisual loads a
VRML file, and convert it to a sub scene graph,

fEHNE 2 LEsem (ERI0ERE) 2BAR 4—129

called display list. This sub scene graph contains
all hierarchy relationships, transform information,
material information, and texture information in a
VRML file. By connecting this sub scene graph
into Spline’s internal tree structure, spVisual can
have the main scene graph. Since Spline’s
internal tree structure contains hierarchy
relationship and transform information, spVisual
can easily retain scene graph. Also, newer
version of Spline requires locale concept, and
spVisual can be very easily adapted to locale
concept by using Spline’s own structure. Using
this concept of multiple scene graph, I was able to
achieve reliable performance, and very easy to
understand structure of virtual world model.
However, there is a disadvantage of using this
concept that is it might take considerable time and
effort to port this spVisual to other 3D graphics
renderer since the scene graph is very dependent
to Spline’s internal tree structure.

3. Enhancements

There are number of techniques which can make
spVisual fast enough to qualify as a 3D graphics
renderer. One good example could be pre
clipping. OpenGL does the clipping on every 3D
graphics node that was sent to graphics pipeline,
however it takes much calculation cost to clip it
using OpenGL’s method. To avoid this situation,
I tried to clip 3D graphics nodes even before 1
send into pipeline so that I could enhance much
calculation cost. Also, tried to use simplified the
matrix calculation, cross matrix multiplication, for
specific purpose so that I could dramatically
reduce the number of calculations for

transformation of each node that could be many

thousands in some 3D world model cases.

3.1. Pre Clip

As described above, OpenGL does the clipping on
every 3D graphics node that was sent to graphics
pipeline only when the option is on. However, it
takes . much calculation cost. To avoid this
problem, spVisual was needed to find a way to do
pre clipping before it send the 3D graphics node
into pipeline. It was accomplished by checking
the volume of the node. Simply check if a node is
within the rectangular box that contains view
frustum of the camera, and if it is inside of the
rectangular box, called pre clip box, the node is
sent to pipeline to let OpenGL handles the rest of
rendering part. In other hands, if it is not inside of
the pre clip box, just ignore the graphics node, and

keep traversing the scene graph to handle other
graphics nodes. The reason that the rectangular
box for the pre clip box is used is that it is much
efficient than using the pyramid shape view
frustum to pre clip. Since this method is called
pre clip, it does not need to clip every vertex or
every point it is calculating, but using this volume
information, just check if the node is within the
pre clip box or not. After using this concept, I
could accomplish much faster performance,
around 20 to 30 percent.

3.2. Calculation

In 3D graphics, a lot of matrix calculations are
used, and those calculation costs are very
expensive. To reduce the number of calculations,
a dedicated matrix multiplication for transform
was used in spVisual To perform the
transformation, only 3 values out of 16 need to be
multiplied and others are not concerned at all.
Using this fact, spVisual uses the specified
transform multiplication function so that it could
reduce number of calculation dramatically, around
80 percent of calculation cost. This concept
enhanced the performance of spVisual
dramatically as well as pre clip.

4, Conclusion

Among 3D graphics renderer, it is very core thing
to consider if it is reliable, flexible, and high
performance renderer especially for virtual reality
environment. Using multiple scene graph
concepts, as described in Scene Graph section, it
was possible to give application developers the
reliability, and flexibility. Also, using some of
enhancement concepts such as pre clipping and
dedicated calculation method, spVisual was fast
enough to be a 3D graphics renderer for virtual
reality environment, not only reliable and
flexibility.

References

{1] Paul M. Summitt, Mary J. Summitt, “Creating
Coo! 3D Web Worlds with VRML”, IDG Books,
1996.

[2] Mason Woo, Jackie Neider, Tom Davis, “OpenGL
Programming Guide Second Edition”, OpenGL
Architecture Review Board, 1997.

{3] Jed Hartman, Josie Wernecke, “The VRML 2.0
Handbook — Building Moving Worlds on the Web”,
Silicon Graphics, Inc., 1996.

[4] Alan Watt, “3D Computer Graphics — Second
Edition”, Addison — Wesley Publishing Company,
1995.

