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pu-Head Form Proofs with at Most
Two Formulas in the Succedent*

KEN-ETSU FUJITAt

We investigate a special form of cut-free proofs in classical propositional logic, which we
call u-head form proofs. The number of formula occurrences on the right side of sequents can
characterize the distinction between classical systems and intuitionistic systems. From the
existence of p-head form proofs for arbitrary classical propositional theorems, it is derived that
at most two occurrences on the right side of sequents are enough to prove them. Moreover,
the notion of p-head form proofs reveals some interesting and intimate connections between
classical logic and intuitionistic logic. As a corollary, the g-head form proofs can be embedded
into intuitionistic proofs, a fact well-known as Glivenko’s Theorem. The notion of y-head form
proofs separates a proof into a classical part and an intuitionistic part characterized by the
disjunction property. Further, this notion can be naturally extended to proofs of a restricted
LK, which we call an L' K system. Although the L' K proof is also classical, it contains an
intuitionistic proof with a non-trivial form, which satisfies the disjunction property. The L'K
system has the cut-elimination property. We can find some analogy between two pairs of
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sequent calculi (LJ,L'J) and (L' K, LK).

1. Introduction

In sequent calculi, we can usually distinguish
classical systems and intuitionistic systems by
a cardinal restriction on the right-hand side
of the sequent®:19 . This paper reveals that
at most two formula occurrences on the right-
hand side are enough to prove arbitrary the-
orems in classical propositional logic. To ver-
ify this, we introduce a notion of u-head form
proofs. A simple example of y-head form proofs
of Peirce’s law is given below. The following
proof! will be called a p-head form proof of
((A > B) D A) D A with an invariant A, and
proof2 a p-head form proof with an invariant
((A D B) D> A) D A. In p-head form proofs,
the right-hand side of each sequent is such that
every occurrence on the right side, except for
at most one occurrence, is the same as the in-
variant throughout the proof. From proof1, one
can easily obtain -4 — (A D> B) D A) D A
in LJ, and - ((A D B) D A) D A,Ain LK
without (— ¢). In proof?, the right contraction
rule is applied only at the end, and the proof is
translated into a proof of =(((A D B) D A) D
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A) - ((ADB)D> A) D Ain LJ, which is a
consequence of Glivenko’s theorem.
proofl: A A
e A )
SAA58 ) asa
(ADB)DA—- A A
(= ¢)
(ADB)DA- A (=
-+ (A>DB)DA)DA
r00f2:
proof A= A

(ADB)DAA— A
A—-((ADB)DA)DA
(= w)
A—-((ADB)DA)DAB (=)
—-((ADB)DA)DAADB A— A
(ADB)DA—=((ADB)DA)DAA
—+({(ADB)DA)DA((ADB)DA)DA
—{((ADB)DA)DA
The key notion of invariants shows how to apply
the right contraction rules, and it gives a simple
embedding into intuitionistic logic.
Definition 1 (u-Head Form Proofs)
A p-head form proof of I' — B with an invari-
ant A is defined as a proof of I' — B such that
(1) the succedent of every sequent in the proof,
if not nil, consists only of A except for at most
one occurrence; and
(2) in the application of the right logical rules
(- =), the parameters in the succedent part, if
any appear, consist only of A.

(w —)
(=2)




1074 Transactions of Information Processing Society of Japan

Let ©[A(™), B] be a sequence consisting of n oc-
currences of A, where n > 0, and of at most one
occurrence of B, where B is distinct from A. A
p-head form proof of I' — ©[A(™) B] is simi-
larly defined with the invariant A. A u-head
form proof of I' - A with an invariant A is
called a p-head form proof of I' — A. &

According to the definition, the right-hand
side of each sequent of y-head form proofs con-
sists of at most two kinds of formulae, such that
some formulae are the same as the invariant and
another (at most one occurrence) can be dis-
tinct from it. Every LJ proof can be regarded
as a p-head form proof with empty invariants.

The existence of p-head form proofs is im-
portant not only in formal logic but also in
programming based on the notion of proofs-
as-programs.  The notion of p-head form
proofs makes it possible to construct a binary-
conclusion natural deduction system that does
not adopt the double-negation elimination rule.
The system is a natural extension of intuition-
istic natural deduction NJ with at most two
consequences 3). Moreover, p-head form proofs
are useful for embedding classical proofs into
intuitionistic proofs®, and Glivenko’s theorem
is easily obtained as one of the by-products.

In constructive programming, the Curry-
Howard isomorphism 11 is known as an im-
portant notion for extracting correct programs
from constructive proofs of logical specifica-
tions. The isomorphism has been extended to
proofs of classical logic by Griffin 7, Murthy 1),
etc. On the basis of our results in this pa-
per, p-head form proofs can also be inter-
preted computationally as exception-handling
programs along the line of de Groote?), and we
can successfully use a strict fragment of his sys-
tem. For each classical theorem A, there always
exists an M L-like program of the type A, which
contains at most one exception handling ®).

The name of u-head form proofs comes from
Parigot’s Ap-calculus'®. In terms of Au-
calculus, p-head form proofs can be coded as
a form of pa.M for some term M such that u-
free variables in M are only « or 6, where «
is the name of an invariant, and § is a special
name of L.

We investigate the statement that if ' — B
in the propositional fragment of LK, then for
some A there exists a cut-free p-head form proof
of I' =& B with the invariant A. This paper will
show that the statement is valid, and that the
consequence B itself can be a witness for the
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invariant. Since we do not use Glivenko’s theo-
rem, which is derived as a corollary, we first con-
sider the problem of calculating truth tables of
classical theorems in intuitionistic logic*. The
formula ((A D B) D A) D A is a classical the-
orem. However, A - ((A D B) D A) D A
and ~A = ((A D B) D A) D A are intuition-
istically derivable. Clearly, then A — ((4 D
B) D A) D A is also derivable in intuition-
istic logic, where A denotes a sequence A, B;
A,-B; A, B or ~A,~B. In the appendix, we
prove that if I' = A classically, then T, A — A
intuitionistically for any A obtained by literals
using all the distinct propositional letters in T
and A**. In the second step, the calculation
of truth tables is completed in LK, using cut
rules. The cut-elimination process would lead
to a cut-free p-head form proof of A. There-
fore, we prove that the cut elimination theorem
for u-head form proofs holds where a restricted
LK is used such that at most two formula oc-
currences appear on the right-hand side of the
sequent. As a corollary, u-head form proofs can
be embedded into intuitionistic proofs, a fact
well-known as Glivenko’s theorem. Moreover,
the notion of p-head form proofs separates a
proof into a classical part and an intuitionistic
part characterized by the disjunction property.

2. LK|, System and Cut-Elimination

In this section, we prove the existence of p-
head form proofs of the same conclusion for
arbitrary propositional theorems. The follow-
ing discussion (Theorem 1) is also available for
the propositional fragment of LK. However,
we define the restricted system LK |y which has
at most two formula occurrences on the right-
hand side of each sequent. It is proved that the
system is cut-free for pu-head form proofs.

{Axioms)
A— A
(Structural Rules)
CToABY™ T54p (W
C,C,'—+ A, B R I'—>A4,A ( )
Cro4B 7 T54

* Professor Hiroakira Ono explained this problem.
** From the referee’s report I have learnt that a simple
proof of the statement: “if - Ain LK,then A — A
in LJ” can be derived by “A — AV —A in LJ”
without the use of Glivenko’s theorem.
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I‘,C,D,II—)A,B( ) I'— As, Ay (= )
T,D,C.II— A4,B \° " TS 4,4,
I'»AB B AC
ILVII—AC
(Logical Rules)
C,I' - A B
CADT - A,B
D,T > A B
CADT — AB
' - A,B I‘—)A,C( A)
TS ABAC

C,'-A,B DT - AB

{cut)

(/\ -—‘)1)

(/\ —)2)

VDTS AB V™)
I'— AB y ro4c
rs4asve Y TSaBve 2

I'-AB CJII— AD
BoCTroosAD O
B,I' = A,C
T4 B5C ()

r—+AB B,I' - A
BroA 7 545500
The above rules, except for (axioms), become
intuitionistic rules when all the occurrences of
A on the right side are nil. Except for (axioms),
some of the occurrences on the right-hand side
can be nil. In (cut) rules, an occurrence of B
that is to be deleted is called a cut-formula.
The cut-formula must be literal, i.e., either an
atomic formula or a negation of an atom. We
define a p-head form proof of ' — A,B in
LK), as in Definition 1.

Theorem 1 (LK|, Is Cut-Free for

p-Head Form Proofs)

If there are cut-free p-head form proofs of I' —
A,B and B,II — A,C with an invariant A,
respectively, in LK, where B is literal, then
there is a cut-free p-head form proof of I', 1T —
A, C with the invariant A in LK|,.

Proof. A rule that infers I',II" —» A, C from
S1:I'=>©and Sy : II -+ A,C is called a (mix)
rule. Here, the sequences © and II contain com-
mon occurrences called m-formulae. The se-
quence © consists of at most two occurrences,
namely, the occurrence A (invariant) and the
m-formula, where the m-formula must be lit-
eral. The sequence II’ denotes IT minus all the
m-formulae. When S3 is of the form II — C,
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where the occurrence C' can be nil, (mix) is de-
fined to derive I',II" — ©",C.

The grade v of a formula is defined as the
number of logical connectives contained in the
formula. The left rank p; of a formula B occur-
ring on the right side of a sequent S is defined
as the maximal number of consecutive sequents
such that S is the lowest of them and that B oc-
curs on the right side in all of them. The right
rank p, of a formula is defined similarly. The
rank p of an m-formula is the sum of p; and p,
of the m-formula.

We prove this theorem by the usual double
induction on 7 and p of an m-formula in the
lowest (mix) rule, where the m-formula must
be literal. Further, we have to check that the
invariant must be unchanged even after (mix)
elimination. O

Remarks 1 Inthe LK|; system, (mix) and
(cut) are equivalent.

Corollary 1 (Existence of u-Head

Form Proofs)
If we have I' =+ A in the propositional fragment
of LK, then there exists a cut-free u-head form
proof of I' — A in the propositional LK.

Proof. Tt is remarked that every LJ proof
without (cut) can be considered as an LK|,
proof, and that every LK|s proof can be re-
garded as an LK proof. According to the ap-
pendix, for any AL we obtainI', AL, — Ain LJ,
which is cut-free by the cut-elimination theorem
of LJ and also a p-head form proof. Assume
that there exist n kinds of propositional letters
inI" and A, and let them be Ay, --, A,,. Then
there are 2" possibilities of AL. Among them
there exist 2”1 pairs of sequences such that
—A;,A; and Ay, A; for some A; consisting of
Aj, where 2 < j<mnand1<i<2" ' Apply
the cut rule in LK/, for all the 2"~ pairs of
I'VA; - A -A; and T, -4, A; = A to obtain
I'A; - A. Hence, 2" — 1 applications of the
cut rules lead to a p-head form proof of ' — A4,
and all the cut rules can be removed by Theo-
rem 1. O

Remarks 2 Since we can also obtain a ver-
sion of Theorem 1 with respect to the propo-
sitional LK instead of LK|s, we can delay ap-
plying the right contraction rules until the end
in the case of y-head form proofs in LK, where
the right contraction rule is applied only on the
invariant of the u-head form proof.

The following form of statements be-
tween two sequent calculi CL and IL,
which we call Key-Lemmal (CL,IL) and
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Key-Lemma2 (IL,CL), respectively, plays an
important role in our discussion.

Definition 2 (Key-Lemmal(CL,IL))
Let CL and IL be sequent calculi. Let
O[A(™ B] be a sequence consisting of n occur-
rences of A, where n > 0, and of at most one
occurrence of B, where B is distinct from A.
The proposition Key-Lemmal (CL,IL) is de-
fined as the statement that if there is a p-head
form proof of T — O[A™), B] with an invariant
A in CL, then we have I',~A — B in IL. <

In the case of empty invariants, we intend
that the conclusion of the statement denotes
that there is a proof of ' = B in IL.

Definition 3 (Key-Lemma2(IL,CL))
Let IL and CL be sequent calculi. Let I'/=A
be a sequence I' minus all —A’s. The propo-
sition Key-Lemma?2 (IL,CL) is defined as the
statement that if we have I' - B in IL, then
CL has a p-head form proof of T'/-A — A, B
with an tnvariant A.

If ' contains no —A, it is intended that
CL has a p-head form proof of I' — B
with empty invariants. From the definition,
a p-head form proof of I' — B with empty
invariants in LK is identified with an LJ
proof. We prove Key-Lemmal (LK,LJ) and
Key-Lemma2 (LJ,LK) by induction on the
derivation.

Lemma 1 Key-Lemmal (LK, LJ) holds.

Proof. Base cases:

1-1. B — B in LK, where B is not the invari-
ant:

The axiom itself is justified.

1-2. A— Ain LK, where A is the invariant:

A= A
A, —A— .
Step cases:
2-1. Case of {(— —), where the principal formula
is not the invariant:
We have the pu-head form proof with the invari-
ant A

(= =), (e =)

B,T — O[A™ nil|

) (=)
I' - ©[A"™,-B] .
From the induction hypothesis, the LJ proof is

tai
obtained as BT, ~A -

]._‘,—vA—) -B. (—> _‘)
2-2. Case of (— ), where the principal formula
is the invariant:
Let A be —A’. The assumption gives
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A" T — O[A™) il

-3
I — 0[AM™+D nil] . )
The induction hypothesis provides the LJ proof

A T, -A—
ToAs -4 )
—\A,r, -A— (_‘ _>)
T, —~A = . (e’c —))
The remaining cases of logical rules and struc-
tural rules are justified similarly. ]
Remarks 3 According to the above proof,
we obtain a cut-free LJ proof of I',~-4A — B
from a cut-free p-head form proof of ' —
O[A™), B] with an invariant A.
Lemma 2 Key-Lemma2(LJ, LK) holds.
Proof. Base cases:
1-1. B = B in LJ where B # - A:
The axiom itself can be regarded as a p-head
form proof with empty invariant.
1-2. =A—-Ain LJ:
We can derive the pu-head form proof with the
invariant A in LK such that

A=A
—)A,—'A.

(=)

Step cases:
2-1. Case of (— —), where the side formula is
not the form —A, and I" contains no —A4:
The assumption

B, T —

-8 7
itself is the required result.
2-2. Case of (— =), where the side formula is
not the form —A, and I" contains —A:
The induction hypothesis gives the y-head form
proof with the invariant A such that

B, P/—!A — A

/A5 A-B. 7
2-3. Case of (— =), where the side formula is
the form —A, and T" contains no - A:
The assumption itself is the required proof of
I' - ——A.
2-4. Case of (— —), where the side formula is
the form —A, and T" contains —A:
From the induction hypothesis, we have the u-
head form proof with the invariant A

T / -A— A (_) )
T/~A— A,—4. "
3-1. Case of (= =), where the side formula is
the form A, and I" contains no —A:
The assumption gives the LJ proof
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r—- 4
'ﬂA,P-} .
From the LJ proof of ' — A, we obtain the
p-head form proof with the invariant A such
that

(= =)

r— A
I‘——?AA (= w)
T5a. (7Y

The other cases of (= —) follow a similar pat-
tern. The cases of the remaining logical rules
and structural rules can also be confirmed. O

Remarks 4 Following the above proof, we
obtain a cut-free p-head form proof of I'/=A —
A, B with an invariant A from a cut-free LJ
proof of I' = B.

Corollary 2 (Glivenko’s Theorem)

For any n > 0, if we have ' — A,,... A,
in the propositional fragment of LK, then
T,~A;,...,mA, = in LJ.

Proof. From Corollary 1, there exists a cut-
free p-head form proof of I',—-A4,,..., A, —
A, in LK. Hence, I',-A;,...,-A, — in LJ is
derived from Key-Lemmal (LK,LJ). i

Remarks 5 On the other hand, Glivenko’s
theorem directly derives the existence of u-head
form proofs from Key-Lemma2 (LJ,LK).

Corollary 3 (Cut-Elimination)

If there is a p-head form proof of ' —
O[A™ B] in LK with an invariant A, where
n > 0, then there is a cut-free y-head form proof
of I' =+ A, B with the same invariant A.

Proof. From Key-Lemmal (LK,LJ), the
cut-elimination theorem of LJ, and Key-
Lemma2 (LJ,LK). i

Let W A be a formula connected by disjunc-
tions for all formulae in a sequence A.

Corollary 4 Ifwehavel’ - A in LK, then
there is a cut-free and right-contraction-free p-
head form proof of I' - W A,---, W A with an
invariant W A in LK.

Corollary 5 (Disjunction Property)

Let T consist of Harrop formulae. If there is a
p-head form proof of I' = A, By V By with an
invariant A in LK, then there is a p-head form
proof of either I' = A, B, or ' = A, By with
the same invariant A.

Proof. From Key-Lemmal (LK ,LJ), the
disjunction property of LJ, and Key-Lemma?2
(LJ,LK). |

Remarks 6
According to Key-Lemmal (LK,LJ), we can
decide which subformulae of the given theorem
cannot be an invariant of the p~-head form proof.
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For instance, invariants of u-head form proofs
of Peirce’s law, among the subformulae of the

theorem, to which (— ¢) can be applied, are A
and ((A D B) D A) D A itself.

3. Notion of u-Head Form Proofs

Along the lines of Maehara’s L'J 9, the no-
tion of p-head form proofs is naturally extended
to obtain the following L'K proofs. We de-
fine a sequent calculus system, which we call
L’'K. The inference rules of L' K are the same
as those of LK except for the critical inferences.
The inferences of (— —) and (—D) are allowed
only when the parameters in the succedent part
consist only of the same occurrences, which will
also be called invariants of the proof. Let I" and
A denote finite sequences of formulae, and let
©O[A] denote a sequence consisting only of A, in-
cluding nil. In the applications of (—2)** and
(— —)**, the occurrence of A in O[A4] is called
an invariant.

(Axioms)
B—-B
(Stru(I::curakRules) F oA
..—)

Broa®>) Foap oW
B,B,T — A T > A,B,B .
BroA 7 Toap (P9

I‘l, C,B,F2 - A

[LB.CT,5A )
F—)Al,C,B,Ag
T5A, BCA, 9
I‘1~—)A1,B B,FQ—)A2 ¢
Ty o AR, )
(Logical Rules)

I'->AB
—\B,I‘—)A

B,T' — 0[4]
I' —» ©[4],-B
B,,F——)A
Bi AB, T A
= A B F‘—)A,Bg(
I' -+ A,B; ABs
B,I' A By;,I' > A
B, VB, = A
F—)A,Bi
I' 5> A,B; VB,

(=) (=)

(A =)

= A)

(v —)

(——) Vi)
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Fl e d Al,B C,Fg — A,

B DO, I, Ty = Ay, Ay

B,T' = 0[4],C "
TS e, B0 )

Definition 4 (Maehara’s L'J) The intu-
itionistic sequent calculus of Maehara’s L'J is
redefined as L' K with empty invariants. <

With respect to L' J, the following theorem is
well-known 9):19),

Theorem 2
(DT - Ain L'J if and only if ' — W A¥ in
LJ.

(2) The L'J system has the cut-elimination
property.

Definition 5 (L'K Proof with

Invariants ®)
An I’K proof of ' —+ A with invariants ® is
defined as a proof of I' — A obtained by the
above system L'K, in which every invariant in
the proof is in the set ®. o
Definition 6 (L”K Proof with
Invariant {A})
An L"K proof of I' = A with an invariant {A}
is defined as an L'K proof of ' — A with the
invariant {A} such that the principal formula
of (— ¢)* is the invariant A. <o

Remarks 7 If I' - A in L'K with invari-
ants ®; and &, C ®,, then " = A in L'K with
invariants ®;. Every L”K proof becomes an
L'K proof.

The definitions of Key-Lemmal and Key-
Lemma?2 are naturally extended to the case of
a set of invariants. For a set ® and a sequence
A, a sequence A/® is defined as the sequence
obtained by deleting all elements in @ from A.
A sequence —® denotes the sequence consist-
ing of negated formulae in ®. The following
Key-Lemmata are proved by induction on the
derivation.

Lemma 3 (Key-Lemmal(L'K, L'J))
Key-Lemmal ('K, L' J) holds. That is, if we
have I' —+ A with invariants ® in L'K, then
T,-& — A/®in L'J.

Lemma 4 (Key-Lemmal(L"K, LJ))
Key-Lemmal (L" K, LJ) holds. That is, if we
have I' =+ A in L"K with an invariant {A},
then I',-A — W (A/A) in LJ.

Lemma 5 (Key-Lemma2(L'J, L'K))
Key-Lemma2 (L' J, L' K) holds.

Lemma 6 (Key-Lemma2(LJ, L"K))
Key-Lemma2 (LJ,L"K) holds.

(>—=)

* W A is a disjunction of the formulae in A.
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Corollary 6 I' — A in LK if and only if
I' > W A in LK with an invariant W A.
With respect to LK and L'K, the same corol-
lary holds.

Proof. If-part: From Corollary 2, we obtain
I, WA — in LJ. Then by Key-Lemma2
(LJ,L"K), I' - W A with an invariant W A
is derived in L”K. The only-if part is trivial.

O

Remarks 8 According to Corollary 6, a
classical theorem itself can be an invariant of
the proof.

Corollary 7 (Cut-Elimination)

If we have I' = A in L'K with an invariant
{A}, then there is a cut-free proof of I' — A, A
with the same invariant {A} in L'K.

With respect to L"K, the same corollary on
cut-elimination holds.

Proof. From Key-Lemmal (L'K,L'J), the
cut-elimination property of L'J, and Key-
Lemma2 (L' J,L'K). O

Corollary 8 If we have I' - A in LK,
then there is a cut-free and right-contraction-
free proof of ' =+ W A, -- -, W A with an invari-
ant WA in L'K.

Proof. From Corollaries 6 and 7. a

Corollary 9 (Disjunction Property)

Let I' consist of Harrop formulae. If we have
' By,--+,B, in 'K with an invariant {A},
where n > 0, then for some i, ' — B;, A with
the invariant {A} in L'K, where 1 <4 < n.

Proof. From Key-Lemmal (L'K,L'J), the
disjunction property of LJ', and Key-Lemma2

(L'J,L'K). a
4. Discussion and Concluding Re-
marks

We have shown that there exists a special
form of cut-free proofs for arbitrary classical
propositional theorems, which we call p-head
form proofs. In the p-head form proof of I' —
A, the right-hand side of each sequent consists
of the same occurrences as the conclusion A ex-
cept for at most one occurrence. From the exis-
tence of pu-head form proofs, we can derive the
well-known Glivenko’s theorem. Moreover, in
order to prove classical propositional theorems,
it is enough to consider a sequent calculus that
has at most two occurrences on the right-hand
side, such as LK. The cut-rules in LK|; have
the restriction such that the cut-formula must
be literal. Otherwise, although the cut-rules
can be removed, invariants would not be closed
under the cut elimination. For instance, con-
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sider the following LK | proof with an invariant
A D B, where p; > 2, p, = 1 and the m-formula
is A D B which is distinct from C and is not in

r: AT—-ADB,B

'+AD>DB,ADB ADBII->C

T'I-C.

The above can be transformed into a mix-free
proof of the same sequent, but the invariant
becomes C. On the other hand, when the
right premiss of the (mix) rule is derived from
B,1I; — C and II; — A, where IT = II;,II,,
the above can be transformed into a mix-free
proof of I} 11 —+ A D B,C with the same in-
variant A O B. The cut-elimination property of
Corollary 3 is obtained in this sense (see Corol-
lary 3 in the case n of 0).

A binary-conclusion natural deduction sys-
tem corresponding to LKz is discussed in Fu-
jita®). The resulting system is a natural ex-
tension of NJ with at most two consequences.
In Fujita®®), proofs of classical substructural
logics are defined in terms of the restricted Au-
terms. The proofs of four classical substruc-
tural logics are embedded into those of intu-
itionistic logic via p-head form proofs. Fur-
ther, a direct translation from arbitrary classi-
cal propositional proofs to p-head form proofs
is given according to Glivenko’s theorem.

Herbrand’s theorem can be regarded as a re-
duction of predicate logic to propositional logic,
which might play an important role in an ex-
tension of the notion of p-head form proofs
to predicate logics. Let B(zi,---,z,) be a
quantifier-free formula, and m be a fixed posi-
tive integer. Then it is decidable whether there
exist terms ¢;; where 1 < j < n such that
Vit, B(ti1, -, tin) is tautologous. By Her-
brand’s theorem, this leads to a contradiction
of the fact that predicate logic is undecidable.
This observation would mean that the num-
ber m of B such that 3z -+ x,.B(z1, -, Zy)
implies that \/.-, B(ta, --,t) cannot be
bounded recursively ), and that p-head form
proofs might be impossible in predicate logic.
However, the existence of p-head form proofs
can be deduced from Glivenko’s theorem. In
turn, Kuroda’s modified version of Glivenko’s
theorem of predicate logic makes it possible to
extend the notion, with some restrictions, to
predicate logic. The modified Glivenko’s theo-
rem shows that if we have I —+ A in LK, then
I*,-A* — in LJ, where A* is defined as fol-
lows:

(mix)
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1) A* is A for an atomic formula A;
2) (mA)*is mA*;  (3) (A1 A Ag)* is AT A AS;
4) (A1 V Ax)* is AY v AS;
5) (A1 D Ao)* is AY D A%;
6) (VQZA)* is V{L‘.ﬂ—'A*;

7

From the LJ proof of I'™*,—A* —, we obtain a
p-head form proof of I'™* — A* in LK, using the
following lemma:

Lemma 7 Key-Lemma2 (LJ,LK) holds
for predicate logic.

Proof. By induction on the derivation. a

The above discussion on the existence of p-
head form proofs has the following abstract
structure:

Let Ly, Lo, and L3 be sequent calculi.

(1) Key-Lemma2 (L1, Lo) holds.

(2) T — Ain Lj, then ¢(T"), =(4) — in L,
via an embedding v of L3 into L;.

From (1) and (2), there is a p-head form proof
of Y(I') = ¢¥(A) in Lo if T' — A in Ls.

According to the abstract structure, an-
other extension to classical propositional
modal logic S4'3'%) can be considered by
Key-Lemma?2 (154,54) and an embedding
from S4 to 1545 (the intuitionistic fragment
of 54).

Since p-head form proofs are classical proofs
and have strong connections to intuitionistic
proofs, it would be interesting to investigate
the notion of u-head form proofs in intermedi-
ate logics, such as M H 7 since the predicate
logic M H satisfies Glivenko’s theorem.
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Appendix: Calculating Truth Tables in
Intuitionistic Logic

To solve the problem of calculating truth ta-
bles in intuitionistic logic, we use the method
of tableau proofs in classical propositional logic
and intuitionistic propositional logic***.

We refer to Nerode and Shore!?) the defini-
tions of and some results on tableau proofs,
except for the following two lemmata. The
tableau procedure starts with some signed
proposition, FA, as the root of the tree, and
analyzes it into its components (successors) to
check whether any analysis leads to a contradic-
tion, that is, whether both T'B and F' B appear
on any path of the tree for some proposition B,
in which case there is no counter-model. It is
then concluded that we have refuted the nega-
tion of the original assumption A, and so have
a tableau proof of A.

We define a classical atomic tableaux (Fig. 1)
as a binary tree labelled T' or F. A finite
tableau for classical propositional logic, which
is a binary tree labelled with signed (T or F)
propositions (entries), is defined as follows:

(1) All atomic tableaux are finite tableaux.

(2) If 7 is a finite tableau, P is a path on the
7, E is an entry of 7 occurring on P, and 7’ is
obtained from 7 by adding the unique atomic
tableau with the root entry E to 7 at the end
of the path P, then 7’ is also a finite tableau.
If 79,...,7n,... is a sequence of finite tableaux
such that for each n > 0, 7,41 is constructed
from 7, by an application of the above (2), then
T = UT, is a tableau.

Let 7 be a tableau, P be a path on the 7, and
E be an entry occurring on P. E is reduced on
P if either the entry E contains no logical con-
nectives; or E is applied by the atomic tableau
with the root E, and any immediate successor
of F is also reduced on P. P is contradictory
if both TA and FA are on P for some propo-
sition A. P is reduced if every entry on P is
reduced on P. 7 is contradictory if every path
through 7 is contradictory. A tableau proof for
classical propositional logic of a proposition A4
is a contradictory tableau with the root entry
FA.

It is proved in Nerode and Shore '?) that if A
is tableau-provable then it is valid (soundness),

#*%% See also the footnote in the introduction.
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TA FA T(AA B)

(A is atomic) ‘
TA
TB

T(AV B) F(AvV B)

TA TB FA
FB
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VN |
FA FB FA TA
T(A D B) F(A> B)
VN
TB TA
i

Fig.1 Classical atomic tableaux.

and that if A is valid then it is tableau provable
(completeness).

A tableau proof of A from a set of proposi-
tions I" (premisses) is obtained as an extension
of putting T'B at the end of every path for every
BinT.

Lemma 8 If 7 is a tableau proof of A from
T", where every path on the tableau proof is re-
duced, then for every path P on 7 there exists
a propositional letter B in A or in some propo-
sition of I" such that both TB and F'B are on
P.

Proof. By induction on the structure of A. O

We define an intuitionistic atomic tableau
(Fig. 2)'? as a binary tree labelled with signed
forcing assertions, that is, Tp; A or F¢; B for
propositions A and B, where p and ¢ are in R
of a partially ordered set (>, R). In the figure,
any ¢ > p means that we choose any g that
appears in an entry and has already been de-
clared greater than or equal to p in >. Some
new g > p means that we choose a ¢ not ap-
pearing in 7 and that it is larger than p in >.
We define an intuitionistic tableau as follows:
(1) Each atomic tableau 7 is an intuitionistic
tableau.

(2) If 7 is a finite intuitionistic tableau, P is a
path on 7, F is an entry of 7 occurring on P,
and 7’ is obtained from 7 by adjoining an in-
tuitionistic atomic tableau with the root entry
E to 7 at the end of the path P, then the 7’ is
also an intuitionistic tableau.

(3) If 79,...,Tn,--. is a sequence of finite intu-
itionistic tableau such that 7,,; is constructed
from 7, by an application of the above (2) for
every m, then 7 = U7, is also an intuitionistic
tableau.

Let 7 be an intuitionistic tableau, P be a
path in 7, and F be an entry on the P. E
is reduced on P if either the entry E contains
no logical connectives; or E is applied by the
atomic tableau with the root E, and any im-
mediate successor of E is also reduced on P. P
is contradictory if both T'p; A and F'p; A are on
P for some p and A. P is reduced if every en-
try on P is reduced on P. 7 is contradictory if
every path through 7 is contradictory. Let ¢ be
in R. 7 is an intuitionistic proof of A if 7 is a
finite contradictory intuitionistic tableau with
its root labelled with F'¢; A.

It is proved in Nerode and Shore'?) that if
there is an intuitionistic tableau proof of A,
then A is intuitionistically valid (soundness),
and that if A is intuitionistically valid then it
has an intuitionistic tableau proof (complete-
ness).

An intuitionistic tableau proof of A from a
set of propositions I' (premisses) is similarly ob-
tained by putting T'¢; B at the end of every
path P for every B in T

For proposition A and premisses I', we define
AL as a set consisting of literals obtained by
using all the distinct propositional letters in A
and T

Lemma 9 If A is classically provable from
the set of assumptions I', then A is intuition-
istically provable from the set of assumptions
I'U AL for any AL.

Proof. Suppose, to generate a contradiction,
that A is not intuitionistically provable from
' U AL for some AL. Then there is an intu-
itionistic tableau 7’ of A from the premisses
of I', A such that some path P’ of 7’ is not
contradictory and that every path on 7’ is re-
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Tp, A Fp A Tp(AAB)  Fp(AAB) Tp; (—4) Fp; (~4)
Tq; A Tp’; A Fp;A Fp;B Fg; A Tq; A
for -any q Z N \ for any for some
(4 1s atomic) Tp; B q>p new g > p
Tp;(AV B) Fp;(AV B) Tp;(AD B) Fp;(AD B)
Tp;A Tp;B Fp; A Fg; A Tg¢B Tg; A for some
FI‘); B forany ¢ > p " new q > p
Fig.2 Intuitionistic atomic tableaux.

duced. Removing all possible worlds (elements
in >) from 7' gives a classical tableau proof 7"
of A from the premisses of I, Al;. From Lemma
8, for each path P” of 7" there is a proposi-
tional letter Ay in AL} such that both T'A; and
F Ay are on P"”. Hence, also on the path P’ of
7', both Tpy; Ay, and Fpo; Ay exist for some p;
and ps such that P’ is not contradictory. How-
ever, from the assumption, Al; contains either
Ay or = Ay, and thus both cases of T'¢; A, and
T¢; Ay, lead to a contradiction on P’. |

Now let I' be a sequence, and let Ag be a
sequence consisting of literals obtained by using
all the distinct propositional letters in A and I'.
From Lemma 9, if we have I’ =+ A in LK, then
F,Ag — Ain LJ for any AL.
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