MR L Es6E (FRULOFRIY) 2EAS

3—477

Quality-based Flexible Distributed Systems *

5G-—-8

Tetsuo Kanezuka and Makoto Takizawa !

Tokyo Denki University }
e-mail{kane, taki}@takilab.k dendai.ac.jp

1 Introduction

This paper discusses how to make a distributed ob-
ject system flexible so as to satisfy the application’s
requirement in the change of the system environment.
Each object supports other objects with quality of ser-
vice (QoS). The change of the system is modeled to be
the change of not only types of service but also QoS
supported by the objects. We discuss equivalency and
compatibility relations among the operations with re-
spect to QoS. By using the QoS-based relations, we
newly discuss a QoS-based compensating way to re-
cover the object from the less qualified state. Finally,
we discuss QoS-based replication of objects to make
required QoS available even if some replicas get less
qualified. Here, the replicas are not necessarily the
same.

2 Systemn Model

2.1 System configuration

A system is composed of multiple objects, oy, ...,
0,. The objects communicate with other objects by
the reliable network. Each object o; is an encapsula-
tion of the data structure and a collection of abstract
operations op;;, - - -, 0Py, . 0; can be manipulated only
through opy1, ..., opi,. Operations change the state
of o; and output some data as the responses. Let
op;;(s;) denote a state of o; obtained by applying op;;
to a state s; of o;. [opi;(si)] denotes the view of s; by
opij, i-e. the response data obtained by op;{s:). opi;
o op;x means that op;; is computed after op;;.

2.2 Quality of service (QoS)

Each object o; supports applications with service.
The service can be obtained by issuing the operations
supported by o,. Each type of service is character-
ized by parameters like level of resolution, number
of frames, and number of colors. Quality of service
%QOS) supported by o; is given by the parameters.

ven if two objects o; and o; support the same types
of service, they may provide different levels of QoS.

The scheme of QoS is given a tuple of attributes
(a1, ..., am) where each attribute a; shows a param-
eter. Let dom(a;) be a domain of a;, i.e. a set of
possible values to be taken by a;. A QoS instance ¢
of the scheme (a;, ... @) is given in a tuple of values,
ie. {v, ..., v) € dom(a;) X ... x dom(am). Let
ai(g) show v; in g. The values in dom(a;) are par-
tially ordered by a precedence relation < C dom{a;)?.
A value v, precedes v, {v; > vq) in dom{a;) if vy shows
better QoS than v,. For example, 120 x 100 [pixels}
=< 160 x 120 [pixels] for the resolution attribute. Let
¢ and g, show QoS instances of the scheme (a,, ...,
am). Let A be a subset (b1, ..., bs) of (a1, ..., @m)
where b € {a;, ..., am} and k < m. A projection
[gla of g on A is {ws, ..., wx) where w; = b;(q) for1

*RRTERLL-ERLOBBIORAT A

@ WX AR R
IRRERKR

=1, ..., k. A QoS instance q, of a scheme A, par-
tially dominates g, of A, iff a(q) > a(qg;) for every
attribute a in A; N Ay. q subsumes ¢ (@1 2 q2) iff
q partially dominates g, and A; 2 A;. Let Q bea
set of QoS instances. q; U g2 and gy N ¢; show a least
upper bound (lub) and a greatest lower bound (gib) of
q1 and ¢; in Q@ on =, respectively. :

2.3 Multimedia objects

In this paper, we consider multimedia objects. QoS
of an object o; has two aspects: state QoS, i.e. QoS
obtained from the state s; and operation QoS, i.e. QoS
supported through the operations of 0;. For example,
let us consider a video object video with a display op-
eration as shown in Figure 1. A state s; of o; supports
video data of 30 fps, which is a state QoS Q(s;). How-
ever, display can display the view [display(s;)] of the
video data from s; only at 20 fps. This is an operation

QoS Q({display(s:)])-
Q(s:)

video data

Q(opi;) request

. ———
display
20 fps -

response (20 ps)
Q[ops;(s:)])

Figure 1: QoS of video object.

Let s; denote a state of o; and op;; be an operation
supported by o;,. Let Q(s;) denote the state QoS of
s; of 0;. Let Q(op,;) denote QoS supported by op;;.
QoS of o; can be viewed through the operation of o;.
Here, let Q([opi;{s:)]) denote QoS viewed by applying
op:; to the state s;. Let (s;) denote {{opir(s:)], .-
[opi, (8:)]), i.e. view of s;. Q({s;}) is defined to be a
tuple {(Q([opir (:)]), .- ., Qlopir,(8:)))), i-e. operation

0S. Q({s;}) shows QoS of o; which the users can view
through the operations.
 Q((s:)) subsumes Q({s;)) (Q((s:)) 2 Q(s;)))
iff there is some operation op;; in o; such that
Q([opir(s:)]) = Q(lopik(s;)]) for every opix in o;.

Suppose op;; inserts some data d;; to the state s;
of 0;. If @(s;) < Q(di;), di; can be added to s;. We
consider case that Q(s;) > Q{(di;) [Figure 2(1)]. If
QoS of d;; is worse than s;, d;; cannot be inserted in
s;. However, users can get service from o; through
the operations of o;. If QoS of d;; viewed through

an operation op;; subsumes Q(s;), the users have no
problem even if d;; is inserted in s; [Figure 2(2)].

opi;
GO -G <

Qs:) Qi) Qsi) Qopi;
(1) (2)
Figure 2: QoS viewed through operations.

user

)

3—478

3 QoS-Related Operations

We discuss how operations opy, ..., op; supported
by an object o are related with respect to QoS.

3.1 Equivalency

First, we discuss equivalent relations among oper-
ations op; and op; supported by o. op; is equivalent
with op; iff op(s) = op;(s) and [opi(s)] = [op;(s)] for
every state s of o [Figure 3(1)]. That is, op; and op;
not only output the same data but also change o to
the same state.
[Definition] op; is QoS-equivalent with op; iff

Q{opi(s))) = Q({op;(s)}) for every state s of an ob-
ject o. O

That is, op o op;(s) and op o op;(s) support the same
view for every operation op [Figure 3(2)(]. op; is QoS-
equivalent with op; if Q((opi(s))) = Q({op;(s))).

op; oPi { 81
s s s Q{s1)) = Q({s2))
W 1 \op_, $2 N

(1) equivalency (2) QoS-equivalency

Figure 3: Equivalent operations.
3.2 Compatibility

Next, we discuss in which order two operations op;
and op; supported by the object o can be computed
in order to keep the state of o consistent. According
to the traditional theory, op; conflicts with op; if the
result obtained by computing op; after op; is different
from op; after op;. op; is compatible with op; unless
op; conflicts with op;.

We now define a QoS-compatible relation among
the operations op; and op;.

[Definition] op; is QoS-compatibility with op; iff

Q({op; © op;(s))) = Q({op; o op(s))) for every state
s of an object 0.0

4 Compensation

In multimedia applications, there is a case that
users undo the work done, for example, to redesign
movies. One way to undo the work is to compute
some operations to remove the effect done by the op-
erations computed. op; is a compensating operation
of op; if op; o op;(s) = s for every state s of an object
o [1}. Let op; denote a compensating operation of op;.
Let s’ be a state obtained by computing op; on a state
s of o, i.e. s’ = op;(s). Here, o can be rolled back to
s if op; is computed on s’. For example, append is a
compensating operation of delete. A pair of states s
and s’ of o may be considered to be equivalent from
the application point of view even if s and s’ are not
the same.

Here, suppose a state s; is obtained by applying
an operation op; to a state s of an object 0. Let us
consider how to roll the object o back to s from s,.
One way is to compute the compensating operation
op; of op; on s; since op; o 0p,; (s) = s [Figure 4(1)].
Here, suppose there exists an operation op; such that
op; o op;(s) = sz where s # s; but Q({s2)) = Q((s)).
3 is not the same as s. However, s; is QoS-equivalent
with s [Figure 4(2)].

[Definition] op; is QoS-compensating operation of

op: iff Q((op: © opy(s))) = Q((s)) for every state s
of an object 0. O op:

Opi
S - Sy S 82 |l opP; S1

op;
Q((s)) = Q((s2))

(2) QoS-compensation

(1) compensation

Figure 4: Compensating operation.

5 QoS-Based Replication

The system is composed of multiple objects oy, .. .,
0,. In the traditional systems, objects are replicated
in order to increase the reliability, availability, and
performance. The applications would like to use ob-
Jects which support QoS required by the applications.

First, suppose that an application would like to get
some snapshot [op;;(s;)] from a state s; of an object
o; by an operation op;;. o; has to support the ap-
plication with not only [opi;(s;)] which satisfies the
qualification specified in op;; but also enough QoS
Q([opi;(s;)]). Here, let R denote the application’s re-
quirement QoS of the snapshot which the application
would like to derive from the object. If there exists
some object o; supporting an operation op;; such that
R € Q({op:;{s;)]), the application can access o; to de-
rive the snapshot data by using op;;.

For example, suppose there are three objects 0y, 0g,
and o5 where Q([op(s1)]) C R, O(lopa(sn)]) 2 B ancd
Q([op3(s3)]) 2 R. 03 or 03 can be manipulated by the
applications because they satisfy R. If Q([op2(s2)]) 2
Q([ops(s3)]), 02 is selected to be accessed.

Suppose there are two objects o, and o, which
support operations op; and op,, respectively. Sup-
pose that an application is accessing o; though op;.
If 0, is faulty or o; cannot support QoS subsuming
RoS R, the application can no longer use 0;. Here, if
Q([op2(s2)]) 2 R for a state s; of 03, the application
can access 0, on behalf of o;.

[Definition] An object o, is a QoS-based replica of o;
ff there is one operation op; and state s; of o; such
that Q([op;(s;)]) 2 Q(Jop:i(s;)]) for every operation
op; and state s; of o;.

Here, if Q([op;(s;)]) = Q([op:(s;)]) for every op; and
s; of 0j, 0; 1s a QoS- replica of o;. Even
if two objects 0, and o; support the same data and
operations. o, and o; are not QoS-based full replica
unless they do not support the same QoS.

6 Concluding Remarks

This paper has discussed how to make the dis-
tributed system flexible with respect to QoS sup-
ported by the objects. We have discussed the novel
equivalent and compatible relations among the opera-
tions on the basis of QoS. We have also discussed the
compensating method to undo the work done with re-
spect to QoS. We have also discussed the QoS-based
replication to support required QoS in the QoS change
of objects.

References

(1] Korth, H. F., Levy, E., and Silberschalz, A., “A
Formal Approach to Recovery by Compensating
transactions,” Proc. of the VLDB, 1990, pp.95-
106.

