3—262

Information Flow Control in Object-based Systems *

3Aa—14

Masashi Yasuda, Takayuki Tachikawa, and Makoto Takizawa !

Tokyo Denki University ?
Email {masa, tachi, taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed applications are modeled in an object-
based model like CORBA [1]. Here, the system is a
collection of objects. Each object is an encapsulation
of more abstract data structure and operations than
read and write. The objects are manipulated only
through operations supported by themselves. The ac-
cess rules are defined based on the operation types.
It is essential to discuss the purpose of s to access
o by t. The purpose-oriented model [2] is proposed
where an access rule shows for what each subject s
manipulates an object o by an operation t of o so as
to keep the information flow legal. The purpose of s
to access o by t is modeled to be what operation u
of s invokes t to manipulate o. That is, the purpose-
oriented access rule is specified in a form (s : u, o: ).
In the object-based system, on receipt of a request
op from an object o0y, an object 0, computes op and
then sends back the response of op to 0,. Here, if the
request and the response carry data, the data in o,
and o; is exchanged among o; and 0;. Furthermore,
the operations are nested in the object-based system.
Even if each purpose-oriented rule between a pair of
objects satisfies the information flow relation, some
data in one object may illegally flow to another ob-
ject through the nested invocation of operations. In
this paper, we discuss what the information flow is le-
gal in the nested invocations in the purpose-oriented
model of the object-based system.

2 Purpose-Oriented Model
First, we define secure objects.

[Definition] An object o; is secure iff

(1) o; can be only accessed through the operations
supported by o;,

(2) no operation of o; malfunctions, and

(3) a pair of operations op; and op; can exchange
data only through the state of 0;. O

If data d flowing from an object o, to another o; is

neither derived from o; nor stored in o, it is meaning-

less to consider the information flow from o; to o;. If

data derived from o; is stored in o;, the data may flow

out to other objects. We assume that every object is

secure.

In the access control model, an access rule
(s,0i,0p;) means that a subject s manipulates an ob-
ject o; through an operation op;. In order to make
the system secure, it is important to consider a pur-
pose for which s manipulates o; by t; in addition to
discussing whether s can manipulate o; by ¢;. Sup-
pose o; manipulates o;; by invoking an operation op;;
of o;;. Here, the purpose of o; for manipulating 0;;
is modeled to show which operation in o; invokes op;;
of 0;;. Hence, the access rule is written in a form
(0; : opi, 0;; : op;;) in the purpose-oriented model.

AT P RFLILBV 2 ABRARE
Y4WE 8%, T HAT, &R &
‘HREMAY

op; shows the purpose for which o; manipulates o;;
by op.;. Here, o; and o,; are named parent and child
objects of the access rule, respectively.
[Purpose-oriented (PO) rule] The access rule {o; :
op:, 0i; : op;;) means that o; can manipulate 0ij
through an operation op;; invoked by op; of 0;. O

3 Information Flow

We discuss what purpose-oriented rules are allowed
to be specified from the information flow point of
view.

3.1 Computation model

Each object o computes an operation op on receipt
of a request op. o creates a thread of op named an
instance of op. op may invoke operations op,...,op
where each op; is computed on an object o;. There are
synchronous and asynchronous ways for op to invoke
op;. In the synchronous invocation, op waits for the
completion of op;. In the asynchronous one, op does
not wait for the completion of op;, i.e. op; is computed
independently of op. Furthermore, there are serial
and parallel invocations. In the serial invocation, op
serially invokes opy,...,0p;, i.e. op invokes op; after the
completion of op;_;. Hence, the information carried
by the response of op,_; may flow to op;. On the other
hand, op invokes op;, ..., op; in parallel. Each op; is
computed on o, independently of another op;. This
means that the information carried by the response of
op; does not flow to op; while flowing to op.

The invocations of op;,.. .,op; by op are represented
in an ordered invocation tree. In the invocation tree,
each branch (op — op;) shows that op invokes op;.
In addition, op,,...,op; are partially ordered. If op;
is invoked before op;, op; precedes op; (op, — op;).
For example, suppose a user serially invokes two op-
erations op; and op;. op; invokes op;; and op;3 in
parallel after op;;. “—” shows the computation or-
der of the operations. We assume that no operation
instance appears multiple times in the tree.

In the object-based system, the operations are in-
voked in the nested manner. Suppose an object o
invokes an operation op; in o,. op; further invokes op-
erations op;y,...,op;;, where each opi; is in 0;;. op;
in o; communicates with o and o;; while exchanging
data with o.

3.2 Invocation graph

An invocation graph is introduced to show the in-
formation flow relation among operations. Each node
indicates an operation. There are request (Q) and
response (S) edges. If an operation op; of an object
o; invokes op; of o;, there is a Q edge from op; to op;
denoted by a straight arrow line, i.e. a connection be-
tween (3 of op; and a; of op;. There are the following
points to be discussed on the Q edge ;

1) whether or not op; sends data in o; to op;, and
/4 P;
(2) whether or not op, changes the state of o;.

op; sends a request message op, without data to o,
and op; does not change o;. There is no information



ERNEFLFES6E CERI0EHY) 2EAR

3—1263

flow from o; to 0;. The second (2) is QON. op; sends
a request op; witix data to o; but op; does not change
o;. Although some data is derived from o, the data
does not flow to o;. The third (3) is QNI op; changes
o; while op, does not send data to o;. Some data flows
into o; but the data does not flow out from o;. The
last {4) is named QOI. Here, op; sends data to o; and
op; changes o;. Some data in o; flows to o,.

Next, let us consider the response {S) edges which
show information flow carried by the responses from
0; to 0;. The S edges are indicated by dotted arrow
line. There are the following points to be discussed
on the S edges ;

1) whether or not op; sends data in o0; to op;, and
f] f) P
{2) whether or not op; changes the state of o,.

The first type {1) is referred to as SNN, where no in-
formation flow from o; to o;. The second (2) is SNO,
where op; sends o; the response with data derived
from o;, but op; does not change o;. The third (3) is
SIN. op; changes o; but op; sends the response with-
out data to o;. The fourth (4) is SIO. Here, op; sends
back the response with data derived from o; to o; and
op; changes o;. That is, data in o; flows to o;.

3.3 Flow graph
The nested invocation is represented in an invo-
cation tree as presented in the previous subsection.

Here, suppose that an operation op; invokes op; in an

invocation tree T. There are a Q edge Q.; from the

parent op; to the child op; and an S edge Si; from
op; to op;. Thus, each branch between op; and op;
represents a couple of @;; and S;; edges between op;
and op,. Here, let root (T') denote a root of the tree

T. In order to analyze the information flow among

the operations, a flow graph F is obtained from the

invocation tree T by the following procedure.

[Construction of flow graph]

(1) Each node in F indicates an operation of T.

(2) For each node opy connected to the parent by
QNI or QOI edge in T, a path P from root (T)
to opy is obtained. For each node op, in P, there
is a directed edge op, — 0pg in F if there is a
QON or QOI edge from op, to a child node in P
[Figure 1 (1)].

(3) For each node op, in T, op., — op., if op;, and
op., are descendents of op, in T, which are in-
cluded in different subtrees of op,, op., has an
SNO or SIO edge with the parent of op.,, and
op., has a QNI or QOI edge with the parent of
0p., and op., precedes op, in T [Figure 1 (2)].

(4) op1 — ops if opy — op; — ops [Figure 1 (3)}.

Let us consider a leaf node op; in the invocation
tree T. A leaf node does not invoke other operations.

If op; is invoked with some data and sends back the

response, op; may forward the input data carried by

the request to the parent of op;. Therefore, we have
to consider the following additional rules for each leaf
node op;.

(5) For each node op; connected to the parent by an
SNO or SIO edge in T, a path P from root (T) to
op; is obtained. For each node opy in P, there is
a directed edge op; — opy in F if there is an SIN
?r }SIO edge from a child node to opy [Figure 1

4)].

(6) For each leaf node op;, a path P from root (T) to

op; is obtained. For every node op, in P, op, -

op; if op, is connected with the child in a2 QON
or QOI edge. For each node op, in P, thereis a
directed edge op; --> opy in F if opg is connected
to the child in an SIN or SIO edge. For each node
op, in P, there is a directed edge op, — opq if
1) op, - op; or op, — op; and (2} op; ---» opa
Figure 1 (5)?.

(7) For each node op; which is connected to the par-
ent in SNO or SIO edge, a path P from root (T')
to op; is obtained. If op; in P is connected to the
child in QNI or QOI and SIO or SIN edge, op; —
op; [Figure 1 (6)]. O ,.

Ol

i4)

Figure 1: Directed edges.
3.4 Access rules

The flow graph shows the possible information flow
to occur if the operations are invoked according to the
purpose-oriented rules. Each purpose-oriented access
rule (o; : op;, o; : op;) is allowed to be specified if the
rule satisfies the information flow relation among the
objects. The directed edge — between op; and op; is
legal in F if the following rule is satisfied.

Even if an access rule {o; : op;, ox : opx) is spec-
ified, op, cannot invoke op; if op; and op; are not
legally related to the information flow relation. Here,
{0; : op;, o; : op;} is allowed to be specified if all the
directed ed]ges incident to and from op; and op; are
legal.

4 Concluding Remarks

In the distributed systems, objects support more
abstract operations than read and write. In the pur-
pose-oriented access control model [2], it is discussed
why an object manipulates other objects while the
mandatory model discusses if each subject can access
an object by an operation. In addition, the opera-
tions of the objects are nested. The access rules have
to satisfy the information flow relation among objects.
In this paper, we have discussed how to validate the
purpose-oriented access rules.

References
[1] Object Management Group Inc., ¥ The Common
Object Request Broker : Architecture and Spec-
ification,” Rev. 2.1, 1997.

[2] Tachikawa, T., Yasuda, M., and Takizawa, M.,
“A Purpose-oriented Access Control Model in
Object-based Systems,” Trans. of IPSJ, Vol. 38
No. 11, pp. 2362-2369, 1997.



