Object-Based Locking scheme for Distributed Replicas *

3 A a - 3

Kyouji Hasegawa and Makoto Takizawa †
Tokyo Denki University ‡
Email {kyo, taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed systems are composed of multiple objects. Each object supports more abstract operations than the low-level read and write operations. The objects are replicated to increase the performance, reliability, and availability. We propose a novel object-based locking (OBL) method based on the abstract operations, where objects are first locked in weaker modes and finally locked in modes of operations. The coterie method [1] is used to lock the replicas. Here, the number of the replicas locked is decided based on the access frequency and the strength of the lock mode. If two operations do not conflict, the subsets of the replicas locked by the operation do not intersect even if the operation change the replicas. We propose a version vector to identify the newest replica in the subset of the replicas locked.

2 Replicated Objects

A distributed system is composed of multiple objects o_1, \ldots, o_n which are cooperating by exchanging messages in the communication network. The communication network supports every pair of objects o_i and o_j with a reliable, bidirectional channel $\langle o_i, o_j \rangle$.

Each object o_i supports a set τ_i of operations $op_{i1}, \ldots, op_{il_i}$ for manipulating o_i . o_i is encapsulated so that o_i can be manipulated only through the operations supported by o_i . Let op(s) denote a state obtained by applying op to a state s of o_i . An operation op_{ij} is compatible with op_{ik} iff $op_{ij} \circ op_{ik}$ (s_i) = $op_{ik} \circ op_{ij}$ (s_i) for every state s_i of o_j . op_{ij} conflicts with op_{ik} unless op_{ij} is compatible with op_{ik} . If op_{ij} conflicts with op_{ik} , the state obtained by computing op_{ij} and op_{ik} is independent of the computation order. If some operations conflicting with op_i are being computed on o_i , op_i has to wait until the operations complete. The interleaved and parallel computation of operations has to be serializable.

On receipt of the request op_i , o_i is locked in an lock mode $\mu(op_i)$ in order to make the computation serializable. Here, let M_i be a set of lock modes of o_i . Dlock and Wlock denote the lock modes of Deposit and Withdraw of the bank object B_i , respectively. Dlock and Wlock are compatible. After computing op_i , the lock $\mu(op_i)$ of o_i is released. Here, let $C_i(m)$ be a set of modes with which m conflicts in o_i , i.e. $C_i(m) = \{m' \mid m' \text{ conflicts with } m\}$. In this paper, we assume that the compatibility relation among the modes are symmetric. Hence, m is in $C_i(m')$ for every m in $C_i(m)$. Suppose that an object o_i is locked in a mode m and op_i would be computed on o_i . If $\mu(op_i)$ is compatible with m, op_i can be started to be computed on o_i . Otherwise, op_i has to wait until the lock of the mode m is released.

In order to increase the reliability, availability, and

performance, an object o_i is replicated in a collection $\{o_i^1, \ldots, o_i^{r_i}\}$ $(r_i \geq 1)$ of replicas, where o_i^j is a replica of o_i . Each o_i^j supports the same data and operations as the other replicas. Let $R(o_i)$ be $\{o_i^1, \ldots, o_i^{r_i}\}$.

3 Object-Based Locking

3.1 Weighted lock modes

The replicas of o_i are locked in a mode $\mu(op_i)$ in M_i before op_i is computed on o_i . If o_i is locked by modes conflicting with $\mu(op_i)$, op_i has to block. The more modes conflicting with $\mu(op_i)$, the larger probability op_i blocks.

[Definition] For every pair of m_1 and m_2 in M_i , m_1 is more restricted than m_2 iff $C_i(m_1) \supseteq C_i(m_2)$.

Some m_1 may be more frequently used than m_2 . Let $\varphi(m)$ be the usage frequency of a mode m. The frequencies of the modes in o_i are normalized to be $\sum_{m \in M_i} \varphi(m) = 1$. The weighted strength $||C_i(m)||$ of m is defined to be $\sum_{m' \in C_i(m)} \varphi(m')$ (≤ 1).

[Definition] For every pair of m_1 and m_2 in M_i , m_1 is stronger than m_2 $(m_1 \succeq m_2)$ iff $m_1 \in C_i(m_2)$, $m_2 \in C_i(m_1)$, and $||C_i(m_1)|| \ge ||C_i(m_2)||$. \square

Let op_1 and op_2 be operations of modes m_1 and m_2 in an object o_i , respectively. Let us consider a blocking probability that op_i waits for the release of the lock conflicting with op_i . If $||C_i(m_1)|| \ge ||C_i(m_2)||$, op_1 has a higher blocking probability than op_2 . The modes in M_i are partially ordered by the strength relation " \preceq ".

3.2 Locking protocol

In this paper, we discuss an object-based locking (OBL) where the replicas are first locked in a mode $\nu(op_i)$ weaker than $\mu(op_i)$ and finally locked in $\mu(op_i)$ $(\nu(op_i) \leq \mu(op_i))$. $\nu(op_i)$ may not be the weakest, i.e. not minimal and $\mu(op_i)$ may not be the strongest, i.e. not maximal. If op_i is used more frequently, $\nu(op_i)$ can get stronger. In addition, the number $Q(op_{ij})$ of the replicas in R_i depends on the strength of op_i . That is, more transactions can commit than the traditional read and write modes.

Suppose that a transaction T invokes an operation op_{it} on o_i . First, some number of the replicas in $R(o_i)$ are locked in a mode $\nu(op_{it})$ which is not stronger than $\mu(op_{it})$. Let $q(op_{it}) (\leq r_i)$ be the number of the replicas locked by op_{it} before op_{it} is computed. Unless all of $q(op_{it})$ replicas can be locked, op_{it} is aborted. If all of $q(op_{it})$ replicas could be locked, op_{it} is computed on the replicas as presented before. When T would commit, some number $Q(op_{it})$ of the replicas are locked in $\mu(op_{it})$. $q(op_{it}) \leq Q(op_{it})$ and $\nu(op_{it}) \preceq \mu(op_{it})$.

We discuss how to decide the numbers $q(op_{it})$ and $Q(op_{it})$ of the replicas to be locked and the lock mode $\nu(op_{it})$. The more replicas are locked, the more communication and computation are required. Hence, the more frequently op_{it} is invoked, the fewer replicas are

^{*}分散レブリカのためのオブジェクトペースロック方式

[†]長谷川 享二, 滝沢 誠

東京電機大学

locked. $q(op_{it})$ and $Q(op_{it})$ are decided depending on the probability that op_{it} conflicts with other operations of o_i . There are the following constraints on q and Q:

(1) If $\mu(op_{it})$ conflicts with $\mu(op_{iu})$, $Q(op_{it}) + Q(op_{iu}) > r_i$ and $Q(op_{it}) + \nu(op_{iu}) > r_i$.

(2) $Q(op_{it}) \geq Q(op_{iu})$ iff $||C_i(op_{it})|| \geq ||C_i(op_{iu})||$.

Here, suppose that op_{it} locks Q_{it} replicas in $R(o_i) = \{o_i^1, \ldots, o_i^{r_i}\}$. Suppose that two operations op_{it} and op_{iu} are invoked and conflict in o_i . The probability that both op_{it} and op_{iu} can lock the replicas is given $1 - [Q_{it} \cdot \varphi(op_{it}) / r_i] [Q_{iu} \cdot \varphi(op_{iu}) / r_i]$. $C_i(op_{it})$ is a set of operations conflicting with op_{it} in o_i . Here, the probability $P(op_{it})$ that op_{it} can lock Q_{it} replicas is $1 - \prod_{op_{iu} \in C_i(op_{it})} [Q_{iu} \cdot \varphi(op_{iu}) / r_i]$. $Q(op_{it})$ can be decided so that $P_2(op_{it})$ is the minimum.

3.3 Version vector

We introduce a version vector to identify the newest replica in a set of replicas locked. Each replica o_i^h has a version vector $V_{it}^h = (V_{it}^h, \ldots, V_{it_i}^h)$. Each V_{it}^h shows the version of o_i^h with respect to an operation op_{it} of o_i . V_{it}^h is a tuple (v_{it}^h, b_{it}^h) . v_{it}^h is a version number of o_i^h with respect to op_{it} . v_{it}^h is incremented by one each time op_{it} is computed an o_i^h and op_{it} is a changing operation. b_{it}^h is a bit map $(b_{it}^{h1}, \ldots, b_{it}^{hri})$ showing to which replica op_{it} is issued. b_{it}^{hk} is 1 if op_{it} is issued to o_i^k , otherwise 0 $(k = 1, \ldots, r_i)$ [Figure 1].

$$V_{i}^{I} = \langle v_{il_{1}}^{I}, v_{il_{2}}^{I}, \cdots, v_{il_{m}}^{I} \rangle, \cdots, V_{i}^{n} = \langle v_{il_{1}}^{n}, v_{il_{2}}^{n}, \cdots, v_{il_{m}}^{n} \rangle$$

$$v_{il}^{h} = \langle v_{i} \langle b_{1}, \cdots, b_{n} \rangle \rangle$$

Figure 1: Version Vector.

We discuss relations among the version vectors. Let b^h and b^k be bit maps for o_i^h and o_i^k , respectively. b^h is included in b^k ($b^h \subseteq b^k$) iff $b^{kj} = 1$ if $b^{hj} = 1$ for $j = 1, \ldots, r_i$. $b^h \cup b^k$ shows $\langle b^1, \ldots, b^{r_i} \rangle$ where $b^j = 1$ if $b^{hj} = b^{kj} = 1$, otherwise 0 for $j = 1, \ldots, r_i$.

- $V_{it}^h \leq V_{it}^k$ iff $v_{it}^h \leq v_{it}^k$ and $b_{it}^h \subseteq b_{it}^k$.
- $V_i^h \leq V_i^k$ iff $V_{ii}^h \leq V_{ii}^k$ for every operation op_{ii} .

If $b_{it}^h \cap b_{it}^k \neq \phi$, there is no ordering between V_{it}^h and V_{it}^k even if $v_{it}^h \leq v_{it}^k$ or $v_{it}^k \leq v_{it}^h$. In a subset N of replicas of o_i $(N \subseteq R(o_i)), V_i^h$ is maximal iff there is no version vector V_i^k of o_i^k in N such that $V_i^k \geq V_i^h$.

We define a following operation \cup for a pair of vector elements V_{it}^h and V_{it}^k on op_{it} :

$$\bullet \ V_{it}^h \cup V_{it}^k = \left\{ \begin{array}{l} V_{it}^k \ \ \text{if} \quad V_{it}^h \leq V_{it}^k. \\ V_{it}^h \ \ \text{if} \quad V_{it}^h \geq V_{it}^k. \\ \langle v_{it}^h \ + \ v_{it}^k, \ b_{it}^h \cup b_{it}^k \rangle \end{array} \right. \text{ otherwise}.$$

 $\bullet \ V_i^h \cup V_i^k = \langle V_{i1}^h \cup V_{i1}^k, \ldots, V_{il_i}^h \cup V_{il_i}^k \rangle.$

[Definition] A version vector V_i^h is equivalent with V_i^k $(V_i^h \equiv V_i^k)$ iff $V_{iv}^h = V_{iv}^k$ for every changing operation op_{iv} conflicting with every pair of compatible operations op_{it} and op_{iu} . \Box

If V_i^h and V_i^k are equivalent, o_i^h and o_i^k can get the

same state by computing compatible operations which are not computed on the replicas.

We discuss a locking protocol by using the version vector. Here, suppose that op_{it} is issued to an object o_i . Here, let Q_{it} show a quorum number of op_{it} , and N_{it} be a set of replicas to be locked by op_{it} . o_i^h has an operation $\log l_{it}^h$ for each changing operation op_{it} . The instances of op_{it} computed on o_i^h are stored in l_{it}^h . [Locking protocol] op_{it} is issued to every replica in N_{it} .

- (1) All the replicas in N_{it} are locked in a mode $\mu(op_{it})$. Unless succeeded in locking the replicas, op_{it} aborts.
- (2) One replica o_i^h is selected in N_{it} where $V_i^h = \bigcup \{ V_i^h \mid o_i^h \in N_{it} \}$. If such a replica is not found, one maximal replica o_i^h is selected in N_{it} .
- (3) If V_i^h is not maximum in N_{it}, v_{iu} of operations op_{iu} computed on o_i^h are obtained from the log l_{iu}^h in o_i^h if b_{iu}^h ∩ b_{iu}^h = φ and v_{iu} ≠ 0. The operation computed on o_i^h for every o_i^h in N_{it}.
- (4) op_{it} is computed on o_i^h .
- (5) If op_{it} is a changing operation, o^k_i sends the state and V^h_i to every other replica o^k_i in N_{it}. On receipt of the state, o^k_i changes the state by itself and V^k_i := V^h_i.
- (6) For every version element $V_{it}^h = \langle v_{it}^h, b_{it}^h \rangle$, $v_{it}^{hj} := 0$ for $j = 1, ..., r_i$ if $b_{it}^h = \langle 1, ..., 1 \rangle$. All operations in l_{it}^h are removed.
- (7) o_i^h sends a reply of op_{it} back. \square

When every bit b_{it}^{hj} gets 1, i.e. $b_{it}^{h} = \langle 1, ..., 1 \rangle$, the version number v_{it}^{h} and the bit map b_{it}^{h} are initialized. Thus, v_{it}^{h} shows how many instances of op_{it} are computed on o_{i}^{t} .

[Proposition] For every changing operation op_{it} , $b_{it}^h = b_{it}^k$ and $v_{it}^h = v_{it}^k$ if $b_{it}^h \cap b_{it}^k \neq \phi$. \square

If $b_{it}^h \cap b_{it}^k = \phi$ and $v_{it}^h > 0$ or $v_{it}^k > 0$ for a changing operation op_{it} , a sequence s^h of instances of op_{it} computed on o_i^h is different from a sequence s^k in o_i^k . s^h and s^k include v_{it}^h and v_{it}^k instances of op_{it} , respectively. In order for o_i^h and o_i^k to be consistent, the sequences s^k and s^h are required to be computed on o_i^h and o_i^k , respectively.

The following properties hold.

[Theorem] For every operation op_{it} , \cup { $V_i^k \mid o_i^k \in N_{it}$ } $\geq V_i^h$ for every replica o_i^h . \square This theorem means that there is at least one newest replica in an intersection of N_{it} and N_{iu} for every pair of conflicting operations op_{it} and op_{iu} .

4 Concluding Remark

This paper has discussed the object-based locking (OBL) protocol on the replicas of the objects. The objects support more abstract operations than the traditional read and write operations.

References

[1] Garcia-Molina, H., and Barbara, D., "How to assign votes in a distributed system," Journal of ACM, Vol 32, No.4, pp. 841-860, 1985.