LB FESES6E CFRI0FRTE) 2EKS

2 R — 2 Rafael K. Morizawa

A Scheduling Method for Asynchronous VLSI System Design

Yoichiro Ueno

Hiroshi Nakamurat ‘Takashi Nanyat

Tokyo Institute of Technology, Graduate School of Information Science and Engineering
tUniversity of Tokyo, Research Center for Advanced Science and Technology

1 Introduction

With the revival of interest in asynchronous systems
there is a need {for methods and tools for the high-level
synthesis tailored for them. Although there are various
methodologies already published that deal with synchro-
nous design, there is not much work developed for the
scheduling of asynchronous VLSI systems. In particular,
we are interested in a methodology to schedule asynchro-
nous pipelines.

In this note we propose a method for scheduling asyn-
chronous VLS] systems, and then show how this method,
together with existing synchronous methodologies can be
used to synthesize asynchronous pipelines.

2 Asynchronous scheduling

Given a data flow graph {DFG), a set of constraints
(performance/area), and a set of libraries of fanctional
modules, the task of scheduling an asynchronous system
is to decide how to place the functional modales so that
they satisfy the constraints, and at the same time trying
to minimize the necessary resources.

In the method we propose here we assume that 2 DFG,
performance consiraints {throughput and latency), and
a set of libraries of functional modules are given. (We
will not consider in this note area/resource constraints.)
An example of a data flow graph is shown in figure 1a.

. )

Figure 1: Data fiow graph example {a), and the cor-
responding ASAP and ALAP schedules to find the time
frames (b).

In general, the problem of pipeline scheduling is to find
where to insert stage latches. An additional difficulty of
asynchronous pipeline scheduling is, besides this, the fact
that time is not discrete, but continuous. This makes dif-
ficult to apply synchronous pipeline scheduling methods
to asynchronous systems. However, we can think of an
asynchronous system as a synchronous system driven by
an extremely high frequency clock. Under this condition,
it is possible to make modifications in a few synchronous
pipeline scheduling methodologies, so that they can be
used in the synthesis of asynchronous pipelines.

The method we propose here takes an “asynchronous”
extension of the Force-Directed scheduling [1] as its base.
We use the concept of time frames introduced in the
Force-Directed scheduling to guide the division of the
data flow graph into pipeline stages, then use:the adap-
ted force-directed scheduling to schedale. If the resultant
schedule does satisfy the given constraints, then the al-
gorithm is over. In the next sections we explain in detail

each of these parts.

3 Definitions

We will first present a few definitions necessary to ex-
plain the adaptations we made in the force-directed sche-
duling algoritkm. It is important to remember that the
adaptation is based on the idea that an asynchronous sys-
tem can be seen as a synchronous system driven by an
extremely high frequency clock. We will call the period
of this high frequency clock as a slot. -

Time frames A time frame is determined by ﬁndmg the
ASAP (as soon as possible} and ALAP (as late s pos-
sible) schedules. It represents the time interval in which
an operation associated to a node of the DFG within
which can be scheduled. In the synchronous version of
the ASAP and ALAP schedules, we assume that all the
operators’ delay is bounded, so that we can cons:der that
all “fit” within a clock period. Here, each operator s pro-
cessing delay is its average delay.

Figure 1b illustrates the ASAP and ALAP schedules
of figure 1a. The time interval T,,, shown in figure 1b is
the time frame of the shaded multiply operation. If we
take the delay values of table 1, Ty, = 13.4 ns.

Distribution graphThe disiribution graph dg of an
operation op is the summation of the probabilities of each
operation of the same type for each slot i of the DFG
and is defined as dgli] = 3, .. 1 pe op P70D[i]. The pro-

bability probli] is calculaied as follows: probi] = :f:;';

Tm”‘ < 1 < Tmu, and pfob[‘} = G Tm;n >1> Tmnz dav
is the average delay of the functional unit that performs
the operation and Tupp is the length of the time frame.

The distribution graph represents the concurrency of an
operation of type op.

Self forceln the original algorithm, the self force is cal-
culated using distribution graphs. In cur modified algo-
rithm the self force s f associated with the assignment of
an operation op within the time interval [t;, t;], is calcu-
lated as sf[ti, 3] = E:*‘;.i[dg{i] x z[i]], where z[i] is the
difference between the valne of dg{i] before and after as-
signing an operation in the time interval. The self force
reflects the effect of assigning a functional module to a
time interval on the overall operation concurrency.

4 Algorithm

The force-directed scheduling is a scheduling algorithm
that uses the concept of self force as a cost function in
order to perform scheduling. The scheduling consists of
systematically {in an top down approach) allocating a re-
source in the given DFG so that to leverage its dg. The
self force provides the information necessary to decide
when to schedule an operation. This part of the algo-
rithm has not been modified in our adapted version.

The original force directed scheduling as defined in [1}
is targeted at synthesizing non-pipelined designs. Howe-
ver, with an extension to the algorithm presented in the
same paper it can be easily adapted o the scheduling of
pipelines. The extension proposed in [1] consists of divi-

1-—-189



1-—190

ding the distribution graph of the given DFG in pieces of
the same length of the stage’s latency and placing them
horizontally. Then, perform the force-directed scheduling
of the resultant graph.

In our adapted version, we try to divide the time frame
into pieces of the same length of the data initiation inter-
val (this value can be obtained from the required throug-
hput). The cut pieces correspond to pipeline stages and
latches are inserted between them. However, differently
from the original algorithm, where there was no need to
recalculate the distribution graph after dividing it, there
are cases when this is necessary in the asynchronous ver-
sion. Figure 2 shows an example of a cut.

The reason for recalculation is that, when dividing the
original distribution graph, there may be an operation’s
distribution graph that will not entirely fit into one di-
vision, i.e., into one stage. When this happens, the so-
lution is to cut the distribution graph to divide into two
{or more) parts, and to distribute these parts over the
other parts of the distribution graph. We follow the next
guidelines to make the cuts.

1. I the over extended part of the time frame is smaller
than the average delay of the correspondent opera-
tor, then this part is cut off.

2. If the over extended part of the time frame is larger
than the average delay of the correspondent opera-
tor, then it is left without modification.

Summarizing, below are the steps of the proposed pi-
peline scheduling.

1. Find the time frames.

2. Find the critical path of the data flow graph.

3. Divide the time frame found in step 1 guided by the
critical path and according to the given constraints.
Calculate the distribution graphs from the new time
frame.

4. Perform the force-directed scheduling.

5. If the resultant schedule satisfies the given cons-
traints, then end the algorithm.

5 Example

Here we perform the pipeline scheduling of the DFG
shown in figure la. The available functional modules
are shown in table 1. The performance constraints are
a minimum data initiation interval of 14 ns. The time
frames of the DFG are shown in figure 1b. The critical
path of the DFG is the chain of the following operations:
multiply, multiply, subtract, subtract. Step 3 is shown in
figure 2. Figure 3a shows the dg of the multiply opera-
tion, and figure 3b shows the schedule. The box’s length
in the figure corresponds to the average delay of the ope-
rator indicated inside the box. Boxes with the same color
indicate that the same functional module was used.

module | average delay (ns)

subtracter 4.0

multiplier 6.7
Table 1: Average delay of functional modules used to
synthesize the pipelined design of figure 1.

Stage 1 has average latency of 13.4 ns and stage 2 has
average latency of 8 ns. Although this satisfies the gi-
ven constraints, we note that the “average” latency of
the individual stages differ in almost 25%. In complex
pipelined data paths, a great dispersion in the latencies

time g time
{a)

(b

Figure 2: Time frame of the DFG of figure 1a before (a),
and after (b) the time frame’s cut.

|
|

time time
(a)
Figure 3: The dg of the multiply operation (a), and the
obtained schedule (b).

of the stages may have negative effects in its overall per-
formance {2).

Also, when actually simulating the data path of fi-
gure 3b, we have noticed that the resultant average la-
tency of each stage is Jower than the predicted. Further
simulations indicated that the sum of the average delay
of functional modules composing a data path’s critical
path is always greater than the actual data path’s cri-
tical path average latency. This discrepancy may also
prevent us finding a better design.

6 Conclusion

We have presented a methodology that uses existing
synchronous scheduling methodologies, adapted to asy-
nchronous VLSI system synthesis. The principle used
to adapt the algorithm is that an asynchronous system
can be seen as a synchronous system driven by a high
frequency clock.

This approach allow the designer the possibility of
using existing methodologies to synthesize asynchronous
VLSI systems. However, as shown in section 5, it may
not always produce a good asynchronous design. Further
study of the two points raised in section 5 is necessary.
Also it is necessary to develop methods to intelligently
choose functional modules from the libraries, since an
unfortunate selection of operators can make the design
impossible to satisfy the given constraints.

This work was supporied in part by the Minis-
try of ESSC under Grant-in-aid for Scientific research
No. (B)09480049 and by STARC.

References

{1] Pierre G. Paulin and John P. Knight. Force-
directed scheduling for the behavioral synthesis of
ASIC’s. IEEFE Transactions on Computer-Aided De-
sign, Vol. 8, No. 6, pp. 661-679, June 1989.

{2] David Kearney and Neil W. Bermann. Performance
evaluation of asynchronous logic pipelines with data
dependant processing delays. In Asynchronous De-
sign Methodologies, pp. 4-13. IEEE Computer Sodi-
ety Press, May 1995.



