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Several scheduling algorithms for preserving the consistency of databases have been pro-
posed. One of such algorithm is Serialization Graph Testing (SGT). Under SGT, a scheduler
maintains a graph called a serialization graph (SG). Database consistency is preserved by
ensuring that the SG is acyclic. The scheduler checks the acyclicity of the SG for every
operation. If the SG comes to contain a cycle, the operation is rejected. It is known that
SGT achieves higher concurrency than other scheduling algorithms. However, it has some
drawbacks. First, operations are forced to wait for a long time so that the acyclicity of the
serialization graph can be checked. Second, a phenomenon called cascading aborts may oc-
cur; that is, one abortion of a transaction may cause other abortions. To deal with the first
drawback of SGT, we focused on the scheduling algorithm called SGT certification. Under
SGT certification, a scheduler checks the acyclicity of the SG only once for each transac-
tion, at its termination. Therefore, all operations are executed immediately, at the cost of
a delay in cycle detection. As regards the second drawback, the scheduling method called
Optimistic Concurrency Control (OCC) avoids cascading aborts by using internal buffer to
defer substantial write operations. However, the consistency checking of OCC differs from
that of SGT, and the concurrency of OCC is not so high. Therefore, we applied this write
deferment approach to SGT certification. We call our algorithm Serialization Graph Testing
with Write Deferring (SGT-WD). In this paper, we present the SGT-WD algorithm and show
its correctness. We also evaluate SGT-WD, SGT, and SGT certification by means of simu-
lations on distributed database systems. The simulation results show that SGT-WD is more
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effective than the others.

1. Introduction

Concurrency control in database systems is
an important problem that has been studied
by many researchers. We have studied the
scheduling algorithm called Serialization Graph
Testing (SGT) and proposed a scheduling al-
gorithm for distributed database systems®)9).
In SGT, a scheduler maintains what is called
a serialization graph (SG) and schedules oper-
ations while ensuring that the SG is acyclic. It
is known that SGT schedulers achieve higher
concurrency of transactions than other types of
schedulers?). However, there are two problems
associated with SGT:

(1) The time required to check the acyclicity
of the serialization graphs tends to be-
come long, and each operation must wait
until the checking is complete.
Executions produced by SGT may cause
the phenomenon called cascading aborts;
that is, one abortion of a transaction may
cause other abortions.

To deal with the first problem, we focused
on a scheduling method called certification?.

(2)
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Under certification, a scheduler permits all op-
erations to execute immediately. When it is
about to schedule a commit operation, it checks
whether the execution that includes the com-
mit operation is consistent. If the execution
is inconsistent, some transactions are aborted.
Since operations are executed immediately, the
processing time of transactions is shorter than
with other types of scheduler. On the other
hand, conflicts cannot be detected until the
transaction is about to commit. A certification
algorithm that uses SGT to check the consis-
tency of executions is called SGT certification.

For the problem of cascading aborts, we
consider a certification algorithm proposed by
Kung and Robinson?), called Optimistic Con-
currency Control (OCC). Though most cer-
tification algorithms (including SGT certifica-
tion) may cause cascading aborts, OCC avoids
them. The unique feature of OCC is that it first
performs write operations to internal buffers,
and the values are then written to the actual
database at the termination of the transaction
that wrote them. Since the values in the buffers
cannot be accessed by other transactions, write
operations are deferred practically. The con-
sistency checking of OCC differs from that of
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SGT, and its concurrency is not so high. We
apply this feature of OCC to SGT certification
and propose a new algorithm. Since, like OCC
it defers substantial write operations, we call it
Serialization Graph Testing with Write Defer-
ring (SGT-WD).

In this paper, we present the SGT-WD al-
gorithm and show its correctness. We consider
that its merits are apparent especially in dis-
tributed database systems that need commu-
nications for scheduling. Therefore, we eval-
uate the performance of SGT-WD, SGT, and
SGT certification by simulations on distributed
database systems.

The paper is organized as follows. In Sec-
tion 2, we briefly present basic definitions. Sec-
tion 3 describes serialization graph testing. In
Section 4, we give an overview of certification
and optimistic concurrency control. Section 5
describes the basic algorithm of SGT-WD. A
correctness proof of SGT-WD appears in Sec-
tion 6. We evaluate the performance of SGT-
WD in Section 7, and our conclusions appear
in Section 8.

2. Preliminaries

2.1 Transactions and Histories

A transaction is an execution of a program
that manipulates a database. In other words,
a transaction is a partial ordered set of opera-
tions including database manipulations. With-
out loss of generality, we can assume that trans-
actions never read data items written by them-
selves. Moreover, we assume that each transac-
tion never reads (or writes) any data item more
than once. Two operations of different trans-
actions are said to conflict if they both operate
on a same data item and at least one of them
is a Write.

A concurrent execution of transactions is ex-
pressed as a partial ordered set of operations
called a history. A history indicates the or-
der in which transaction operations were exe-
cuted relatively to each other. Since some of
these operations may be executed concurrently,
a history is defined as a partial ordered set of
executed operations. For a history H, <p de-
notes the ordering relation of H. A transaction
T; is said to be active in H if T; is started and
neither committed nor aborted in H. A history
that expresses a serial execution of transactions
is called a serial history.

2.2 Serializability

We use the property called serializability as
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Fig.1 An example of a serialization graph.

a criterion for the consistency of histories. In-
tuitively speaking, for a history H, if there is a
serial history H; that contains the same opera-
tions as H and the relative order of all pairs of
conflict operations in H and H, are the same,
then H is called serializable (SR). The strict
definition is given in Bernstein, et al. 2.

3. Serialization Graph Testing

3.1 Serialization Graph

The serializability of a history can be deter-
mined by analyzing a graph, called a serializa-
tion graph (SG), derived from the history.

Definition 1: For a history H, the serial-
ization graph SG(H) = (V,E) is a directed
graph such that
V = {T; | T; is a transaction that is already
started and is not aborted in H}
E = {(T3,T;) | there exist conflicting opera-
tions o; € T; and o; € T such that o; <y oj,

where T3,T; € V'}. |
Figure 1 shows an example of a serialization
graph.

If the order of operations in each transaction
is preserved in a history H, then the following
theorem holds ?):

Theorem 1: A history H is SR iff SG(H)
is acyclic. m]

3.2 Serialization Graph Testing

SGT uses a serialization graph in order to ver-
ify the serializability of concurrent execution of
transactions. In SGT, a scheduler maintains an
SG throughout the execution of transactions.
The scheduler behaves as follows. At first, the
SG is empty (and of course acyclic). The sched-
uler receives an operation o of a transaction 7.
If a node for T does not yet exist in the SG,
then the scheduler first adds the node to the
SG. Then, it adds an edge from every T} to T,
where T} includes a previously scheduled op-
eration that conflicts with o. If the SG is still
acyclic, then the scheduler can accept o and can
schedule it immediately. Otherwise, the sched-
uler aborts T" and deletes 7" and all edges inci-
dent with 7' from the SG. The aborted trans-
action T will restart later.

In order to detect conflicts of transactions,
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for each transaction T', the SGT scheduler must
maintain the sets of data items that have been
respectively read and written by I'. These
sets are called the readset and writeset of T.
For a transaction T', we define readset(7T") and
writeset(T") as follows.
readset(T): the set of data items that have
been read by T'
writeset(T): the set of data items that have
been written by T
When an operation o of a transaction T reads
(writes) a data item z, « is added to readset(T)
(writeset(T')). For a transaction T; such
that z € writeset(T;) (x € readset(T;) U
writeset(T;)), an edge from T; to T is added
to the SG.

The SGT scheduler must delete nodes and
edges for committed transactions that are al-
ready unnecessary for scheduling, in order to
avoid increasing the size of the SG. However,
the details of the method for deleting unneces-
sary nodes from the SG are beyond the scope
of this paper.

A precise description of SGT is omitted in
this paper. For details, see Bernstein, et al. ?).

The major advantage of SGT is that its
consistency checking is based strictly on the
definition of serializability. Therefore, it
achieves higher concurrency than other schedul-
ing algorithms?. Most proposed schedul-
ing algorithm are based on Two-Phase Lock-
ing (2PL)38)~"10) or Timestamp Ordering
(TO)Y. Their concurrency is not so high as
that of SGT.

On the other hand, SGT has some disadvan-
tages. First, it takes time to check the acyclic-
ity of the serialization graph. The time needed
for the checking tends to be long, especially in
distributed database systems®. In such sys-
tems, intersite communications are needed for
the checking, because the serialization graph
has a global structure. Each operation must
wait until the checking is complete. Therefore,
the processing time of transactions may become
too long. We define the processing time of a
transaction 7' as the time between the start of T’
and the commit of T' (some abortions/restarts
of T may be included). Second, there is a prob-
lem of cascading aborts. For example, consider
two transactions 77 and 7. Suppose that Ty
has read a data item already written by T5. If
T is aborted for some reason, then all its ef-
fects must also be wiped out. Of course T7,
which read a data item written by T, must
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be aborted and restarted. The phenomenon
whereby aborting one transaction triggers fur-
ther abortions is called cascading aborts?). Ex-
ecutions produced by SGT may cause cascading
aborts.

4. Certification

4.1 Overview of Certification

To overcome the drawbacks of SGT, we fo-
cused on a scheduling method called certifica-
tion.

Under many scheduling algorithms, every
time a scheduler receives an operation, the
scheduler decides whether to accept, reject, or
delay the operation. Under certification, a
scheduler immediately schedules each operation
it receives. From time to time, it checks to see
what it has done. If it concludes that all is well,
then it continues scheduling. If it detects that it
has inappropriately scheduled conflicting oper-
ations, then it aborts some transactions. In this
way, operations are aggressively scheduled un-
der certification, in the hope that no conflicts
will occur. Therefore, the processing time of
transactions is shorter than in other scheduling
algorithms.

On the other hand, operations are scheduled
even if they cause loss of consistency; this is not
detected until the explicit check, which is usu-
ally done at the end of the transaction. There-
fore, if conflicts occur frequently, the process-
ing time of transactions may be much longer
for certification than for other types of schedul-
ing algorithm. Most certification algorithms
are constructed as variants of conventional al-
gorithms such as 2PL, TO, and SGT?. As
in most scheduling algorithms, the executions
produced by such certification algorithms may
cause cascading aborts. However, there is an-
other type of certification algorithm, called
Optimistic Concurrency Control (OCC), that
avoids cascading aborts.

4.2 Optimistic Concurrency Control

OCC was proposed by Kung and Robin-
son?. Like other certification schedulers, an
OCC scheduler aggressively schedules opera-
tions. The unique feature of OCC is that it de-
fers substantial write operations by using inter-
nal buffers. In OCC, an execution of a transac-
tion T is divided into the following three phases:
Read phase: In this phase, all read opera-

tions are executed immediately, and are
completely unrestricted. All write opera-
tions take place in internal buffers that can-
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not be accessed by other transactions.

Validation phase: In this phase, a check
is performed to determine whether the
changes made by T will cause inconsistency
in the database. If not, the validation is
successful; otherwise, it fails.

Write phase: In this phase, the values in in-
ternal buffers are written into the actual
database. At this time, the modification
made by T become effective. T' commits at
the end of the phase.

A transaction T first enters the read phase.
When T is about to execute a commit oper-
ation, it enters the validation phase. If the
validation succeeds, T' enters the write phase
and is committed. Otherwise, T' is aborted and
restarted.

In OCC, in order to verify that serializabil-
ity is preserved, the scheduler explicitly assigns
each transaction a unique integer called trans-
action number (i) during the course of its ex-
ecution. The meaning of transaction numbers
in validations is as follows: there must exist
a serially equivalent execution in which trans-
action T; comes before transaction T; when-
ever t(1) < t(j). Transaction numbers are as-
signed at the end of the read phase. In the
validation phase, the validation condition is
checked. readset(T) and writeset(T) are de-
fined as in Section 3.2. For each transaction
T; with transaction number ¢(j), and for all T;
with t(¢) < ¢(j); one of the following three con-
ditions must hold.

o T completes its write phase before T} starts

its read phase.

o writeset(T;) Nreadset(T;) is empty and T;
completes its write phase before T starts
its write phase.

o writeset(T;) N (readset(T;) Uwriteset(T}))
is empty and 7; completes its read phase
before T; completes its read phase.

If none of above three conditions hold for some

T;, the validation of T} fails. For more details,

see Kung and Robinson ).

As above, OCC checks the consistency ac-
cording to overlapping of concurrent execu-
tions. The concurrency of transactions under
OCC is not so high as under SGT.

OCC has two principal merits. First, oper-
ations are scheduled immediately. Second, a
transaction can be aborted easily. Write op-
erations are executed on the actual database
only when the transaction commits. Therefore,
when a transaction aborts, there are no data
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items modified by the transaction. Accordingly,
no more abortions are caused by the abortion.
That is, all executions produced by OCC are
guaranteed not to cause cascading aborts. We
call such executions cascadeless. ‘It is also said
that the executions avoid cascading aborts. The
drawback of OCC is that, like other certification
algorithms, it may cause many abortions when
conflicts of transactions occur frequently.

5. Algorithm

5.1 The SGT-WD Algorithm

We apply the OCC approach to SGT and pro-
pose a new algorithm that overcomes the dis-
advantages of SGT. The important points are
as follows:

e All operations are scheduled immediately
and they are validated later. Therefore, the
processing time of transactions is shorter
than that of noncertification algorithms.

e Write operations are deferred until the val-
idation is complete. As a result, executions
produced by this algorithm are cascadeless.

We call our algorithm Serialization Graph Test-
ing with Write Deferring (SGT-WD). We give
the basic SGT-WD algorithm in Table 1. Like
OCC, SGT-WD divides the execution of a
transaction into three phases.

5.2 Using a Locking Scheme

Under scheduling algorithms using the SGT

approach, when a transaction 1" reads or writes
a data item z, the following processes are exe-
cuted:

e Fdges are added to the SG.

o 1 is added to readset(T) (writeset(T)).

o z is read from (written to) the actual
database.

If the above processes are interleaved with other
conflicting operations, the SG may contradict
with SG(H). For example, suppose that a
transaction 77 tries to write a data item zx.
writeset(T}) has been updated, but the value of
z has not been written into the actual database
when another transaction 5 reads z. The edge
from Ty to T3 is then added to the SG according
to writeset(T1). However, T» reads the value
of the “old” z that has not been updated by
Ti. The edge from Ty to T5 contradicts with
the fact that 75 reads z before T writes it.
To avoid such a case, we use a locking scheme.
Before accessing a data item z, the readlock
(writelock) of z is held by o to prohibit the ex-
ecution of operations that conflict with o (line
2 of read phase and line 2 of validation phase).
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Table 1 The basic SGT-WD algorithm.

when a transaction 7 is in the read phase
1 if a read operation read(z) is received
set the readlock of z to T’
for each T; such that x € writeset(T;)
add an edge T; — T to the SG
add z to readset(T)
read z from the database
release the readlock of z -
if a write operation write(z) is received
store z to an internal buffer
(do not add edges to the SG here)
10 if a commit operation commit is received
11 T enters the validation phase
when T is in the validation phase
1 for each z; which is stored in internal buffers by
T.
2 set the writelock of z; to T’
3 for each T; such that x; € readset(T;) U
writeset(T;)
4 add an edge T; — T to the SG
add z; to writeset(T)
6 check the SG to determine whether there is a cy-
cle
7 if there is a cycle then
8 remove the node T and incident edges from
the SG
9 abort and restart T’
10 else
11 T enters the write phase
when T is in the write phase
1 for each x; stored in internal buffers by T'
2 write z; to the actual database
3 release the writelock of z;
4 commit T

Nelfie JREN Jle NG I S UN N
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Then, the above processes are executed. The
lock is released when o finishes reading (writ-
ing) z. The locking scheme used here is dif-
ferent from that used in 2PL. Under 2PL, the
lock of a data item z is held by a transaction
T when T accesses z, and is not released until
T holds all the locks that are needed. Thus,
the locking time depends on the internal pro-
cessing of transactions. In the case of long-lived
transactions, the locking time may be very long.
On the other hand, under SGT-WD, the lock is
held during the SG updating and the data ac-
cessing. The locking time is independent of the
internal processing of transactions. Therefore,
the influence of our locking scheme on the con-
currency of transactions is much smaller than
that of 2PL.

6. Correctness

In this section, we show the correctness of
SGT-WD. In the case of the usual SGT, The-
orem 1 gives the correctness of the algorithm.
SGT-WD also uses the serialization graph for
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scheduling operations. Since an SGT-WD
scheduler defers write operations of a transac-
tion, the execution order of operations differs
from the original transaction. Therefore, Theo-
rem 1 does not hold immediately for SGT-WD.

Definition 2: For each transaction 7} in H,
a write-deferred transaction T? is a transac-
tion such that

e It has the same set of operations as T;.

e Its read operations are executed in the

same order as those of T;.

e Its write operations are executed after the

last read operation.

e It writes the same values to data items as

T;.
Note that T} and T*¢ read and write the same
values. Therefore, we can say that T*? is equiv-
alent to T;.

Theorem 2: Let H be a history produced
by SGT-WD. SG(H) is acyclic iff H is serializ-
able.

[Proof] Although write operations are deferred
in SGT-WD, the executed transaction writes
the same value as the original transaction, as
mentioned above. This means that an SGT-
WD scheduler executes 7/*¢ instead of 7.
Therefore, H is an execution in which T{*%s are
executed concurrently. Let H¥? denote an exe-
cution in which such T{%s are executed serially.
For SGT-WD, Theorem 1 says that SG(H) is
acyclic iff there is an execution H¥? that is
equivalent to H.

(“if” part) Suppose that H is serializable. From
the definition of serializability, there is a serial
execution H, that is equivalent to H. Since
each T®? is equivalent to T;, H¥? can be ob-
tained by replacing each T; in H, with T2,
and is equivalent to H,. Therefore, from Theo-
rem 1, SG(H) is acyclic.

(“only if” part) Suppose that SG(H) is acyclic.
From Theorem 1, there is an execution H¥¢
equivalent to H. Since 7% is equivalent to T},
a serial execution H, equivalent to H;"d can be
obtained by replacing each 7/*¢ in H*¢ with T;.
Therefore, H is serializable. O

As mentioned in Section 5.2, SGT-WD uses
readlocks and writelocks to execute read/write
processes without interleaving with other con-
flicting operations. Therefore, the following
theorem is derived immediately.

Theorem 3: The SG maintained by an
SGT-WD scheduler is always equal to SG(H).

0

The above two theorems show that an SGT-
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WD scheduler always produces serializable ex-
ecutions.

7. Evaluation

7.1 Comparison with SGT Certifica-

tion

In this section, we compare SGT-WD with

SGT certification. To explain the features of
the two algorithms, we show some examples of
concurrent executions in figures. In the figures,
the following symbols are used:

e S means the start of the transaction.

o R(z) (W(x)) means the read (write) oper-
ation on data item x.

e V means the validation. It includes the
validation phase and the subsequent write
phase.

e ( means the commitment of a transaction.

e A means the abortion of a transaction.

Figure 2 shows an execution produced by
SGT certification and SGT-WD. Suppose that
a transaction 73 is involved in a cycle includ-
ing other transactions (not T3) and is aborted.
Consider SGT certification first (top of Fig.2).
A transaction T3 is aborted by the failure, and
then T5, which read the data item z written
by T), must also be aborted; that is, a cas-
cading abort occurs. However, since T has
already been committed when 7 is aborted,
T, cannot be aborted and the database can no
longer recover to a consistent state. This shows
that SGT certification may produce executions
that are not recoverable. To make the execu-
tion recoverable, SGT certification should de-
fer the commit of 75 until 7} is committed or
aborted (as shown in the middle of Fig.2). We
call this deferment commit waiting. Hereafter,
we assume that SGT certification always car-
ries out commit waiting if necessary. On the

SGT certification (without commit waiting)

time

time
Write deferring

SGT-WD
T [SEIWWE

T2

time

Fig.2 Comparison of SGT certification and
SGT-WD (case 1).
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other hand, SGT-WD avoids such an execution
by deferring the write operation of 77. Under
SGT-WD, z is not modified when T, reads it,
while T3 reads z, which is modified by 77 un-
der SGT certification. Therefore, under SGT-
WD, T5 does not need to be aborted when T3
is aborted. Clearly, SGT-WD is more desir-
able than SGT certification in this case. Con-
sider another execution, shown in Fig.3. In
this case, we assume that there are no trans-
actions except 77 and 75. Under SGT certifi-
cation, Ty and 73 do not form a cycle. Under
SGT-WD, however, a cycle is formed, because
the real execution of W(x) of Ty is deferred un-
til the write phase. Therefore, T; should be
aborted and restarted. In the case of SGT cer-
tification, such a cycle is not formed and nei-
ther 177 nor T3 is aborted. Therefore, it may
be concluded that SGT certification has an ad-
vantage over SGT-WD in this case. However,
there is commit waiting for SGT certification.
That is, under SGT certification, the commit
operation of T5 must wait until 7} is commit-
ted. This means that a transaction waits for
another transaction. Accordingly, the merit of
certifications that aggressively schedule opera-
tions is damaged. On the other hand, no trans-
actions wait for other transactions in SGT-WD.
In this case, it is difficult to say which algorithm
is more desirable.

The commit waiting mentioned above is
also necessary for usual SGT. Moreover, most
scheduling algorithms (including Two-Phase
Locking and Timestamp Ordering) need this
type of commit waiting to maintain the recov-
erability of executions®. Under SGT-WD, no
commit waiting is needed, because all transac-
tions read only data items written by commit-
ted transactions. This is one of the merits of
SGT-WD.

In the case of Fig.4, SGT-WD is clearly
worse than SGT certification. Under SGT cer-
tification, 77 and 75 do not form a cycle, and

SGT certification Serialization Graph

T~ T

ommit waiting

time
SGT-WD

‘Serialization Graph
TiaTp

time

Fig.3 Comparison of SGT certification and
SGT-WD (case 2).
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SGT certification Serialization Graph

T2

time

Serialization Graph

time

Fig.4 Comparison of SGT certification and
SGT-WD (case 3).

both are committed immediately (without com-
mit waiting). Under SGT-WD, however, a cycle
is formed, because the real execution of W(x)
and W(y) of T is deferred until the write phase.
Therefore, T should be aborted and restarted.
7.2 Overview of Simulations
One of our goals is to shorten the processing
time of transactions when SGT is used in dis-
tributed database systems. We evaluated the
processing time under SGT, SGT certification,
and SGT-WD by means of simulations. We
implemented the three types of scheduler on a
simulator of a distributed database system. In
distributed database systems, the communica-
tion cost strongly affects the processing time.
To reduce the communication cost, we adopted
the fractional tag scheme that we proposed in
Tada, et al.®). A distributed database system
is a collection of local databases, called sites,
connected by a communication network. In the
fractional tag scheme, each site has its own lo-
cal SG, and messages are passed among sites to
search for remote local SGs.
The following assumptions are similar to
those in the abovementioned paper?.
In our experiment, we regard a transaction as
a string of operations, and we assume that each
operation accesses only one data item.
We classify transactions into two types:
e Local transactions access only data items
stored at the sites that execute them.
o Global transactions access data items
stored at more than one site.
We define locality as the ratio of local transac-
tions to all transactions.
Though there are many parameters, we fixed
some parameters to simplify the simulations.
o There are 10 sites in the distributed
database system.
e 100 data items are stored at one site.
o The transaction size is fixed; that is, all
transactions contain 8 read/write opera-
tions.
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Fig.5 Mean processing time (arr-interval = 200
steps, locality = 20%).

o 25% of all operations are write operations.

¢ Each global transaction accesses at most 3

sites.

The time needed for executing a transaction
mainly consists of the CPU processing time for
scheduling, the communication delay for send-
ing messages, and the I/O delay for data access.
It seems that the CPU processing time is much
smaller than the others. Simulations are ex-
ecuted in steps. We measure the transaction
processing time by the number of steps. We as-
sume that schedulers can process one message
in one step, and that the access to a data item
(including I/O delay) needs 100 steps.

To execute one operation, two types of mes-
sage are needed:

e Messages for scheduling, which are needed

to search for local SGs

o Messages for data access, which are needed

to transfer data values
The number of messages of the former type
can be suppressed by the certification approach,
while messages of the latter type are still
needed. Moreover, additional types of message
are used to abort transactions and delete un-
necessary nodes from the serialization graph.

7.3 Simulation Results

We selected the following parameters:

e The time needed to transfer an message be-

tween two sites (denoted com-delay).

e The mean interarrival time of transactions

(denoted arr-interval).

Figure 5 depicts the mean processing time
of transactions when arr-interval is fixed to 200
steps. The processing time increases with the
communication delay. The rate of increase of
the usual SGT is higher than that of SGT-WD
and SGT certification. Of course, the influence
of communication delay depends on the num-
ber of communications. Since SGT-WD adopts
the certification approach, the number of com-
munications is as small as in SGT certification.
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Fig.6 Mean processing time (com-delay = 300
steps, locality = 20%).

Though the rates of increase of SGT-WD and
SGT certification are almost equal, the abso-
lute processing times differ. This is because
SGT certification causes more abortions than
SGT-WD.

In Fig. 6, com-delay is fixed at 300 steps and
arr-interval is varied.

The shorter arr-interval is, the larger the load
of the database. In the state of equilibrium,
the numbers of arriving and leaving transac-
tions during a period are almost equal, and the
number of transactions in the database system
is almost equal all the time. However, if arr-
interval is less than a certain value, then the
rate at which transactions arrive exceeds the
rate at which they leave. Therefore, the number
of transactions in the system keeps on increas-
ing. That is, saturation of load occurs. Some
points are not plotted in the graphs, because
the mean processing time cannot be found as
a result of the load saturation (for example the
point for arr-interval = 130 in Fig. 6).

In Fig. 6, the mean processing time of SGT-
WD is the shortest. Of course, the processing
time increases as arr-interval decreases. How-
ever, the increase rate of SGT certification is
much higher than that of SGT-WD or the usual
SGT. This is because SGT certification causes
many abortions as the load becomes higher.
The rates of SGT-WD and the usual SGT are
almost equal. This means that though SGT-
WD takes the certification approach, it is as
tolerant to an increase in load as the usual SGT.
We consider this to be the benefit of deferment
of write operations. Figure 7 depicts the abort
rate, where

# of abortions
# of commitments
In Fig.7, com-delay is fixed at 300 steps and
the locality is 20%. The abort rate of SGT-WD
is almost equal to that of the usual SGT, and
is much lower than that of SGT certification.
Though SGT-WD adopts the certification ap-
proach, the number of abortions is suppressed,

abort rate =

mean interarrival time (steps)

Fig.7 Abort rate (com-delay = 300 steps,
locality = 20%).
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Fig.8 Mean processing time (com-delay = 300
steps, locality = 80%).

because any cascading aborts are avoided by
deferment of writes.

In Fig. 8, com-delay is also fixed at 300 steps.
The difference between Fig. 6 and Fig. 8 is local-
ity. When the locality is high, the processing
time is short, because the effect of communi-
cation delays is weakened. However, the fre-
quent occurrence of abortions seriously affects
the performance, regardless of locality.

Simulation results shows that SGT-WD suc-
ceeded in introducing tolerance of the com-
munication delay of SGT certification without
spoiling the load tolerance of the usual SGT.

8. Conclusions

In this paper, we proposed a scheduling algo-
rithm that we call Serialization Graph Testing
with Write Deferring (SGT-WD). SGT-WD is
a certification algorithm that defers write op-
erations by using internal buffers. Its major
advantages are as follows:

¢ Operations can be executed immediately.

o Only cascadeless executions are produced.

We evaluated SGT-WD, the usual SGT, and
SGT certification by means of simulations on
distributed database systems. Two merits of
SGT-WD were recognized through these simu-
lations. First, the influence of the communica-
tion delay on the processing time under SGT-
WD is smaller than under the usual SGT, be-
cause of the suppression of communication by
the certification approach. Second, SGT-WD is
more tolerant of a load increase than SGT certi-
fication. This merit results from the deferment
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of write operations.

The major disadvantage of SGT-WD is com-
mon to all certification algorithms. That is,
transaction conflicts are detected later than in
noncertification algorithms. We expected that
this delay in conflict detection would cause
many unnecessary abortions. However, simu-
lation results showed that the influence on the
number of abortions was less than expected.

From the above, we conclude that SGT-WD
is an effective variant of SGT, especially for dis-
tributed database systems.
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