Vol. 38 No. 12

Regular Paper

Transactions of Information Processing Society of Japan

Dec. 1997

A Neural Networks Approach for Query Cost Evaluation

JiHAD BouLos," YANN VIEMONT!t and KINJI ONO!

This paper presents a new approach for query cost evaluation that may help or replace
the known analytical approach. Our proposed approach is based on neural networks and

the connectionist concept.

A neural network is trained to learn the execution cost of the

implementation algorithm(s) for a logical algebra operation (or query) with some predicates;
after that, this network is used to estimate this operation (query) cost with other entries.
The approach is based on a curve fitting like since neural networks have been proven to be
“universal approximators.” An additional advantage of this approach is its applicability to
user defined methods where the user does not need to estimate the cost of his method since
the system may apply this method several times, collects measurements, and captures its

behavior with its curve fitting capacity.

1. Introduction

Cost models are still a problematic issue in
database research because of their imprecision
and the continuous introduction of new data
types and processing in extended database sys-
tem. Most cost models used by new complex
optimizers remain primitive regarding the real
execution complexity. This simplification may
mislead the optimizer to choose a Query Eval-
uation Plan (QEP) that was estimated cheaper
than others in a certain environment (platform,
DBMS, data), but is more expensive in the real
one. Moreover, in distributed multi- database
systems, several proprietary systems must co-
operate with a global optimizer. Often, these
systems do not provide their internal cost mod-
els and hence a general one must be assumed
for all of them.

In this paper we study the feasibility and ef-
fectiveness of replacing an analytical cost model
for query cost evaluation by a set of neural
networks. The approach builds upon replacing
each analytical cost formula for estimating the
execution cost of a query or an operation by
a neural network. This network is trained to
capture the operation execution cost in a cer-
tain environment by a set of inputs (operation
cost influencing parameters) and an output (the
execution time). This implies that a phase of
input-output measurement followed by a train-
ing phase must proceed the exploitation phase.

Cost models are in general simple, do not

t National Center for Science Information Systems
(NACSIS)

t1 Laboratoire PRiSM, Univ. de Versailles-St-Quentin,
France

2566

evolve with the environment, and put several
assumptions on influencing factors (e.g., cache
hit ratio, size of sorting area, ...) on query
execution costs at execution time. For ex-
ample, most known query optimizers uses the
(n x log,n) number of I/O for a sort opera-
tion as its cost. The base 2 is usually used
for the logarithm while in reality the correct
base must be the number of available clusters
(merging units.) This last parameter may rad-
ically change the sort behavior from an I/0O-
bound operation to a CPU-bound one, when
there is a sufficient number of buffers. Refer-
ence 3) showed that, whenever sufficient disks
are available, a sequential scan is first CPU-
bound when the tuple sizes are small and only
becomes I/O-bound when these sizes get large.
Most analytical models take a constant size for
evaluated tuples. Moreover, Ref.3) also identi-
fied two situations in the execution of single op-
erations that are sensible to the available buffer
size: 1) choosing between a sequential scan and
an index-scan with an unclustered index, and 2)
choosing between a nested-loops with an index-
scan over the inner relation and a hash-join.

Several research papers!):®):7) address the is-
sue of query cost estimation for heterogeneous
DBMSs. In all these papers, the authors use a
calibration process for some predefined analyt-
ical models.

Reference 1) establishes a calibration method
to extract for a predefined analytical cost model
its parameter values that depend on the plat-
form and the DBMS. A benchmark is executed
on a system to measure its performance, and
an equation system is then constructed and re-
solved. This process produces a calibrated cost

Vol. 38 No. 12

model for a specific platform. References 6) and
7) use the same process to approximate the ex-
ecution cost of a query in a heterogeneous envi-
ronment by executing some predefined queries
on the target DBMS with different result sizes.
Contrary to Ref. 1) where basic operations are
modeled, in Refs.6) and 7) global queries are
modeled.

The paper is organized as follows: Section 2
establishes a formal equivalence between query
cost executions and analytical functions and
Section 3 presents a background on neural net-
works for function approximation. In Section
4, we discuss ways of constructing and training
neural networks for queries and operations cost
prediction and Section 5 presents issues in us-
ing neural networks in evaluating some of the
different execution algorithms of database oper-
ations. Section 6 presents the results of several
experiments to test the efficiency of neural net-
works in query cost evaluation and in Section
7 experiment on cost learning and prediction of
user defined methods is reported. A conclusion
and some future directions are stated in Section
8.

2. Query Cost Functions

Equivalence between query costs and cost es-
timation functions must be established in a first
step to formalize the applicability of neural net-
works in query cost estimation. References 1),
6) and 7) also use similar equivalence models.

For any query a certain number n of vari-
ables govern its execution cost (this is also true
for basic physical operations). We denote these
variable by zi,...,z,. Any variable, however,
need not to be independent from the others or
strictly linear. It is allowed, for examples, that
T; = x; X 2 or z; = z; X f(zy). This flexibil-
ity allows a variable to capture the cost of non-
linear operations such as a sort. The query exe-
cution cost C is dependent on each of these vari-
ables and tends to vary in a continuous manner
with their variations. We can hence say

C=a+a1z1+...+apz,

n
=ap + E a;T;
i=1

where ag, ..., a, are cost coefficients represent-
ing the influence of each variable z; on C. To
get the equivalence between the query cost and
this linear combination of cost factors z; we
must find ag,...,a,. One way to get these
is to execute the query m times while varying

A Neural Networks Approach for Query Cost Evaluation 2567
Z1i,...,Zn to get an equation system of the form
Ci=ap+ayzy;+...+apz,;

n
:(L0+2ai$i’j (]:1,,m)
=1

Solving this system by the least squares method
yields the coefficients ag,...,a, that give an
estimated cost F; for each measured cost C;.
These coefficients are an approximation of

ag, - .., 0, and minimize
m
LSE = Z[C] — (ao + a1 xy ; -+
i=1

asZaj + + + annj))°

Equivalence between any query cost function
and a continuous cost function is hence estab-

lished.

3. Neural Network Approximation
Capabilities

A neural network is characterized by its ar-
chitecture. The elements of a network are com-
puting units and their interconnecting edges.
Formally, Ref. 4) defined “a neural network ar-
chitecture is a tuple (I, N,O,FE) consisting of
a set I of input sites, a set N of computing
units, a set O of output sites and a set E of
weighted directed edges. A directed edge is a tu-
ple (u,v,w) wherebyu € TUN, v € NUO and
w€E R

For our problem of query cost evaluation, we
focus our attention on feed-forward neural net-
works (Fig. 1) because of their proven function
approximation capabilities.

3.1 Feed-Forward Networks

A feed-forward neural network is a computa-
tional graph whose nodes are computing units
and whose directed edges transmit numerical
information from node to node. Each comput-
ing unit is capable of evaluating a single prim-
itive function—the activation function—of its
inputs and compares it with the unit-computed

Input Hidden Output
Layer Layers Layer

Fig.1 A feed-forward neural network.

2568 Transactions of Information Processing Society of Japan

threshold. Hence, the network represents a
chain of function compositions that transform
an input to an output (called a pattern). The
network can be understood as a particular im-
plementation of a composite function from in-
put to output space, which is called network
function. The most known and used learning
algorithm in feed-forward neural networks for
function approximation is the back-propagation
algorithm. With this learning algorithm, the
most popular activation function is the sigmoid.

Given random weights wy,...,w, and a bias
—#, a sigmoidal unit computes for the inputs
Zi,...,Ty the output

1

1+exp (X, wiz; —6)

The learning problem of the back-propagation
algorithm consists of finding the optimal com-
bination of weights wy, ..., w, so that the net-
work function ¢ approximates a given function
f as closely as possible. However, and unlike
statistical regression methods, we do not need
to know the shape of the f function ezplicitly
but implicitly through some examples.

Consider a feed-forward network with n in-
put and k output units. It is trained with a
set {(z1,%1),..-,(ZTm,tm)} consisting of m or-
ders pairs of n- and k- dimensional vectors (the
input-output patterns). Let the primitive func-
tions at each node of the network be continu-
ous and differentiable (e.g., the sigmoid). The
weights of the edges are real numbers selected
at random. When the input z; from the train-
ing set is presented to the network, it produces
an output o; different in general from the tar-
get t;. What we want is to make o; and %;
identical for ¢ = 1,...,m, by using a learning
algorithm. Explicitly, we want to minimize the
error function of the network, defined as

1 m
Er = '2— Z “01, - tiuz.
i=1

After minimizing this function for the training

set, new unknown input patterns are presented

to the network and we expect it to interpolate.

Hornik, Stinchcombe, and White?) were the
first to prove in the following theorem the uni-
versal approximation property of feed-forward
neural networks.

HSW Theorem: standard multi-layer feed-
forward neural networks with as few as a
single hidden layer can approrimate any
continuous function uniformly on any com-
pact set and any measurable function ar-

Dec. 1997

bitrarily well in the corresponding met-
ric, regardless of the squashing function
(continuous or not), regardless of the di-
mension of the input space, and regardless
of the (finite) measure used.
Hence, feed-forward networks are theoretically
capable of approximating any multidimensional
function to any desired degree of accuracy-
provided sufficiently hidden units are available.
As a consequence, HSW theorem establishes
that “failures in applications can be attributed
to inadequate learning, inadequate numbers of
hidden units, or the presence of a stochastic
rather than a deterministic relation between in-
put and target.”

The formal equivalence between query costs
and analytical cost estimation functions and the
formal proof in the HSW theorem of the exis-
tence of at least one neural network for approx-
imating any analytical continuous function pro-
vide a proof on the capabilities of feed-forward
neural networks in approximating query cost
functions.

3.2 Accuracy Measure

Several methods have been proposed in the
neural network field of research for measuring
the goodness of a neural network approximating
a function. All of these methods require a net-
work to be trained on a subset of the measured
points and validated on the rest or the whole
set. We have applied this constraint in all the
experiments reported in this paper. However,
we use here general statistical analysis formu-
las adopted from Ref. 7) because of their appli-
cability in our problem of continuous function
approximation.

The standard error of estimation is defined as

_ Zgl(ci‘EiV
SE‘\/ (1)

This standard error is an indication of the ac-
curacy of the estimation. The smaller SE is,
the better the estimation is.

A second descriptive measure used to judge
the goodness of a trained network is the coeffi-
cient of multiple determination R?, defined as

RZ=1-— ZZl(Ci — Ei>2 .
T [Cz' - <Z;ﬂ:1 Cj)/m]

R?(e [0,1]) is the proportion of variability in
the response variable C explained by the base
variables z’s. The larger R? is, the better the
estimation is. We also use the average abso-
lute error and the average relative error in each

Vol. 38 No. 12

evaluation of the accuracy of the estimation.
This is because these two evaluation measures
are well known and used. The absolute error is
computed as

> ICi—Ei
=1
and the relative error is computed as
>im1 |Ci — Eif
221 &

4. Evaluation Approaches

The query cost evaluation process may be ap-
plied on complete queries or on basic operations
within each query. The advantage of having a
single large network structure for each type of
queries is its bounded global error rate while its
inconvenience is the large structure of the net-
works and the null inputs that these networks
may have when a simple query is injected into
one of them. On the other hand, we can con-
struct a small network for each atomic opera-
tion in a QEP and connect these small networks
in a large one according to each QEP. The ad-
vantage of this choice is its adaptability to the
QEP structure of any query while its inconve-
nience is the propagation of the error rate of
the different networks.

4.1 Modeling Queries

In the first approach of query processing cost
evaluation by neural networks, whole queries
may be measured, learned, and evaluated. In
this context a classification of query types must
be processed to identify the fittest network to a
query, and then the network is used to estimate
the cost of the query. A finite set of query types
must be identified and modeled.

The types of queries may be classified ac-
cording to several criteria, e.g., the number of
joins in the query, the number of predicates
in the query, the complexity of the functions
that must be applied in the query. Since neural
networks have a powerful capability of classifi-
cation?), they may classify in a first phase an
evaluated query in a certain type (Fig. 2), and
then evaluate the cost of the query according to
the neural network that captures the execution
model of the type (Fig. 3).

This approach—adopted by Refs. 6) and 7)—
is relatively simple but the identification of
query types and the classification of queries
complicate the evaluation process.

A Neural Networks Approach for Query Cost Evaluation 2569

Query —» Classification o Type

Fig.2 A first phase of query classification.

Query —»{ Cost Evaluation 3 Cost

Fig.3 A second phase of query cost evaluation.

4.2 Modeling Operators

In a different approach of query processing
cost evaluation by neural networks, basic op-
erations in QEPs may be measured, modeled,
and evaluated. However, for performance eval-
uation of queries, the constraint in applying this
approach is that the evaluator must have access
to the QEPs generated by the DBMS. In this
case, a query execution tree is generated by the

. DBMS without a real execution of the query;

this query tree is then passed to the evaluator
and a separated neural network according to
the node type evaluates the cost of each node
in the tree. The whole cost of the query is com-
puted from the query tree node costs.

The number of networks in this set is known
in advance since a network captures the cost
of a query node type, which is an element in a
finite set of physical operations. Statistics on a
node in the query tree, and eventually the result
size of a preceding node, are the main inputs to
the neural network modeling its execution cost.
An illustration of the mapping of a query tree
to a tree of neural networks is given in Fig. 4.

This approach of query processing cost eval-
uation by neural networks is more complicated
than the first one, but its applicability and inte-
gration in an optimizer or a performance eval-
uation tool seem to be more realistic. It has
been adopted by Ref. 1).

5. Neural Network Issues

Several problems arise when applying the ap-
proximation capabilities of neural networks to
query cost evaluation. The kind and structure
of the networks that mostly adapt to the prob-
lem must be identified and constructed. Influ-
encing and irrelevant environment parameters
for a platform, a DBMS, and an application
also must be identified and separated, and mea-
surements must be done to obtain a significant
amount of data for training and validating the

2570 Transactions of Information Processing Society of Japan

Dec. 1997

(a) A QEP with its statistics.

(b) The equivalent network of neural networks.

Fig.4 The mapping between a QEP and a network of neural networks.

networks. As a general rule of thumb, small val-
ues for the training and validating patterns are
more convenient for neural networks. Large val-
ues of some input parameters may be “cooked”
in order to bring them to more convenient ones.
An example of such parameters is the size of a
relation. In this case, it is better to inject in
the neural network the logarithmic value of the
size (e.g., log;o(size)).

Also, an applied rule for testing a neural net-
work generalization is to train the network on
a part of the I/O data and to test its perfor-
mance on a second part. We applied this rule
in all the experiments reported in this paper:
20% of the measurements were used as training
data, and the whole measurements were used
as validation data.

5.1 Network Structure

The theorem of Ref.2) (on which all this
work is founded) guarantees the existence of
(at least) a neural network that approximates
a specific function. However, it did not give a
method to generate the network; a trail-and-
error process for the network structure must be
undertaken. During the learning phase and in
the cases where a network reaches a stable state
that does not satisfy the user (i.e., stuck in a
local minimum), the network is then reinitial-
ized with other random values and the learning
phase is repeated. If after several trials, the net-
work did not converge to an acceptable rate, a
different structure of the network must be re-
generated and the process of learning is again
reinitialized.

When should the training phase stop? The
learning phase makes as many cycles on the
learning examples as the user is unsatisfied with

the error rate showed by the network. When the
user decides that the error rate is sufficiently
small, he stops the learning phase and tests the
network with other input data. :

5.2 Input Parameters

The choice of the input statistical parame-
ters to a neural network must characterize a
database application and at the same time be
relevant to the network. In addition, there
is a part of these parameters that depends
on whether the general approach (modeling
queries) or the building block one (modeling
operators) is adopted and on the data model
and its optimization strategy. However, some
parameters are the same for both choices.

Some of the common inputs that are the most
representative for most queries are stated here.
These may be: the value of a predicate con-
stant, the size of the input, the size of the
output (selectivity), indexes for each relation,
clustered indexes or not, average size of a tu-
ple, number of attributes in a tuple, minimum
and maximum values for each attribute, kind
of the predicate(s) (=, <, <, >, >), symbolic or
numerical predicate, CPU power, disk access
time, network bandwidth.

SQL queries must be executed with differ-
ent shapes; predicates, predicate constants, and
database sizes. For example, the SQL query
that must be executed to extract the cost of a
table scan is:

Select Count(*) From R;

The “Count” is used to avoid the cost of re-
sult transfer between the DBMS working space
and the client working space and it was used
for the same reason in all the other queries.

Vol. 38 No. 12

6. Experimental Results

Several experiments were repeated with dif-
ferent versions of a commercial DBMS and on
several platforms. All the results were con-
sistent and reproducible. We report here ex-
periments on a Sun-Sparc1000 machine. Selec-
tion queries from the AS3AP® and the DKSV
benchmarks were executed several times on
several sizes of the databases and measure-
ments were collected. The tests were made in
two ways: measurements and estimations were
made on global relational queries, and then
measurements and estimations were made on
basic algebraic operations. For all the experi-
ments, 20 measurement points were taken for
each experiment where 20% were used to train
the neural network and the whole 20 points
were used to test it. We report the performance
of several neural networks in query processing
cost estimation for one global joining query and
several other basic algebraic operations.

We have also calibrated general analytical
cost formulas for some basic operations to com-
pare their output performance against that of
neural networks. The accuracy of the results of
each method is given for each experiment with
the standard error of estimation SE, the coeffi-
cient of multiple determination R?, the average
absolute error, and the average relative error.

6.1 Global Approach

In this test the global execution cost of a
query joining two relations is estimated. Two
relations of 100,000 tuples each are joined with
the sort-merge-join algorithm. A predicate is
applied on one of the two relations in order to
change its result size and hence the merge size.
The query has the following shape:

Select Count(x)

From R1, R2

Where R1.A1 = R2.A2

and R2.A2 = cst
The optimizer choose the following QEP for this
query:

Select (Count) - 1

. Merge-join Result-size

Sort(join) Result-size
Table-Access-Pred(R2) 100,000

Sort(join) 100,000
Table-Access-Full(R1) 100,000

The first relation is full scanned and the
100,000 tuples are sorted, while the second rela-
tion is full scanned and the predicate is applied
and then the remaining tuples are sorted. Since

A Neural Networks Approach for Query Cost Evaluation 2571

Table 1 A comparison of error rates on a sort-merge

join query.
Avg. Abs. | Avg. Rel.
i 2 <
SE| R Err. Err.
NN Estimates 0.34 | 0.99 0.21 0.99%
Analytical Estimates | 0.43 | 0.98 0.34 1.5%

a uniform distribution was chosen for both at-
tributes in the two relations, the result size from
merging the two relations is the same as the size
of the second relation after applying the predi-
cate. The analytical cost formula that was cal-
ibrated for this query was computed as follows:

Cost(Sort-Merge-Join)

= (2 x 100000 x Access_Tuple)
+ (100000 x log, (100000)
/machine_dependent_constant)
+ (Result_Size x log,(Result_Size)
/machine_dependent_constant)
+ Result_Size x Merge_Join.
The only input parameter to the network was
the predicate constant value—since all other
parameters were unchanged—and the output
was the elapsed cost time. The most appro-
priate structure of the neural network was 1-3-
2-1; it converged after 2,000 cycles in about 3
seconds.

Table 1 compares the four mentioned error
rates for both the neural network and the an-
alytical formula. The reader must remember
that the higher R? is, the better the estimates
are. Figure 5 illustrates the curves for the
query real execution time, the neural network
estimates, and the analytical formula estimates.
From both the comparison table and the fig-
ures, it is shown that the neural network esti-
mates are better than those of the analytical
formula are.

6.2 Building Blocks

With this approach of cost estimation where
each physical operation is isolated and esti-
mated alone, the efficiency of neural networks
with different input parameters for several op-
erations is tested. The reported tests here are
for the scan, the sort, and the merge-join oper-
ations.

6.2.1 Scan

The first test consisted of scanning a relation
with several sizes. The size of the relation was
varied between 5,000 and 100,000 tuples, and
the same query was repeated on all sizes. A
neural network was generated (with a structure
of 1-3-2-1) and trained on a subset (20%) of
the measurement data, and converged after few

2572 Transactions of Information Processing Society of Japan Dec. 1997

29 + Join Query

29 + Join Query
- - - - Exec. Time
—————— NN Est.

Cost (sec.)

—
=]
|

17 +

15 t t t 1 t + } + f

Result Size (x1000)

Fig.5 Performance of a neural network against an analytical formula for

27 + - - - - Exec.Time -
Analytical Est. _
25 +
$23 4
2 21 +
(8] T
19 +
17 +
15 et
5 25 45 65 85
Result Size (x 1000)
the sort-merge query.
10 T Scan
- - - - Exec.Time -
g+ .

— Analytical Est.

Cost (sec.)

Scan Size (x 1000)

10 T Scan

- - - - Exec. Time
— NN Est.

g 6
z
O 4
2 -
0 t } t + f f + t t
5 25 45 65 85
Scan Size (x 1000)

Fig.6 Performance of a neural network against an analytical formula for

the scan operation.

Table 2 A comparison of error rates on a elapsed
cost of a scan.

Awvg. Abs. | Avg. Rel.
2

SE| R Err. Err.
NN Estimates 0.41 | 0.98 0.26 11.7%
Analytical Estimates | 0.95 | 0.91 0.77 113.4%

hundred cycles. The measured cost of this test
was the elapse time of the scan, i.e., the CPU
and the I/O cost. Table 2 compares the error
rates of the neural network against those of the
following calibrated analytical formula:

Cost(Scan)

= Scanned_tuples x Access_tuple.

Figure 6 illustrates the estimates of both
the neural network and the analytical formula
against the real execution time of the scan. The
neural network outperformed the analytical for-
mula by a considerable margin because of the
cache effect on the small scan sizes and where

the analytical formula could not capture it.

6.2.2 Sort

The second test consisted of sorting a rela-
tion with several sizes. The size of the sort was
also varied between 5,000 and 100,000 tuples.
A neural network was generated (with a struc-
ture of 1-3-2-1) and trained with a subset of the
measurement data. The measured cost of this
test was the elapse time of the sort, i.e., the
CPU and the I/O cost. Table 3 and Fig.7
compare the performance of the output of the
neural network against that of the following cal-
ibrated cost formula:

Cost(sort)
= Sort.Size X log,(Sort_Size)
/(machine_dependent _constant).

Here, the neural network outperformed the
analytical formula by a small margin.

Vol. 38 No. 12 A Neural Networks Approach for Query Cost Evaluation 2573
8 Sort 8 T+ Seort \
71, - - - Exec. Time 7 4+ - - - - Exec. Time
Analytical Est. . ;o — NNEst.
6 .
~5 3
[$]
a o
S
o3 O
2
1
0 0 f t t t f ; } t f
5 25 45 65 85
Sort Size (x 1000) Sort Size (x 1000)
Fig. 7 Performance of a neural network against an analytical formula for
the sort operation.
7T Merge-Join 7T Merge-Join
S S ,
E Ti - - - - Exec. Time
- - - - Exec. Time
27 — Analytical Est 27 NN Est.
1 1T
0 t } ; t f ; t t } 0 } f } f t } } t }
5 25 45 65 85 5 25 45 65 85
Result Size (x 1000) Result Size (x 1000)
Fig. 8 Performance of a neural network against an analytical formula for
the merge-join operation.
Table 3 A comparison of error rates on a sort. Table 4 A comparison of error rates on the merge-
se | r? Avg. Abs. | Avg. Rel. jou.
Err. Err. SE | m? Avg. Abs. | Avg. Rel.
NN Estimates 0.81 | 0.97 0.53 15.4% Err. Err.
Analytical Estimates | 0.84 | 0.96 0.57 16.11% NN Estimates 0.49 | 0.8 0.34 7.44%
Analytical Estimates | 0.47 | 0.82 0.38 8.44%

6.2.3 Merge-Join

The third test consisted of merging two rela-
tions with several result sizes. The result size of
the merge was varied between 5,000 and 100,000
tuples. A neural network was generated (with a
structure of 1-3-2-1) and trained with a subset
of the measurement data. The measured cost
of this test was the elapse time of the merge.
Table 4 and Fig.8 compare the performance
of the neural network output against that of the
following calibrated cost formula:

Cost(merge-join)
= Result_Size x Merge_Join.

Here, both the neural network and the ana-
lytical formula performed slightly the same.

6.3 Global against Building Blocks

The performance of the global approach of
query cost estimation against that of the build-
ing block approach is an interesting issue. How-
ever, it would be unfair to directly compare
the estimation accuracy of the two approaches.
Summing the estimations of nodes in the build-
ing block approach overestimates a query cost

2574 Transactions of Information Processing Society of Japan

Table 5 A comparison of error rates on the merge-

join.
5 | Avg. Abs. | Avg. Rel.
2
SE | R Err. Err.
Global 0.34 { 0.99 0.21 0.99%
Building Blocks | 0.96 | 0.89 0.71 3.13%

Dec. 1997

Table 6 Performance of a neural network in esti-
mating the cost of a complex user defined
method.

Avg. Abs. | Avg. Rel
2
SE | R Err. Err.

NN Estimates | 0.77 | 0.99 0.58 0.39%

because this approach does not take into ac-
count the pipelining and the overlapping of
CPU and I/O of different operations. Mea-
suring and calibrating these two factors, a
more reliable comparison can be made. Ta-
ble 5 presents for the two approaches the
four adopted error measurements for the scan-
merge-join query of Section 6.1.

The global approach of query cost estima-
tion outperforms that of the building blocks ap-
proach. However, it is up to the designer to
choose one or the other of the two approaches
depending on his needs and the applicability
of the approach. The classification step in the
global approach is still a limiting factor for its
applicability in all situations.

7. Estimating Method Costs

An additional advantage of neural networks
in query cost evaluation is their applicability to
user defined methods. However, the condition
for this applicability is that the method cost
varies in a continuous manner with all its in-
put parameters. Whenever this is the case, an
equivalence model between the method input
parameters and an analytical function is estab-
lished and the applicability of neural networks
for cost estimation of this method is proved in
the same manner as in Section 2.

We defined and tested several methods with
different execution costs and influencing input
parameters. We report here on a method with
two inputs. Increasing the number of input
variables is straightforward.

The first input variable of the tested method
had an exponential influencing cost on the
method while the second input variable had a
logarithmic influencing cost. The method was
executed with 10 values for each variable, which
makes 100 executions. We trained a network
with 20% of the sample points and tested it
with all points. The experimented network had
a structure of 2-4-3-1. About 3000 cycles over
the learning set was sufficient for the network
to converge, which took about 10 seconds. The
performance of the network went beyond our
hopes and the average relative error between

Real Execution

S9

Exec. Time (sec.)

Second Variable

59

Exec. Time (sec.)
2

Second Variable

First Variable

Fig.9 Comparison between the real execution cost
and the NN estimated cost of a complex
method.

the estimated cost and the real execution cost
for the 100 execution points was bellow 1% (Ta-
ble 6). We can see from Fig. 9 the shapes of
both the real executions cost and the neural
network estimated cost of this method.

8. Conclusion

We have proposed in this paper a new ap-
proach for query processing cost estimation.
The approach is based on the capabilities of
neural networks to approximate any measur-
able function in a curve fitting like manner. A
set of neural networks is trained with measure-

Vol. 38 No. 12

ments from a working database environment in
a first phase, and it produces cost estimates for
evaluated queries in a second phase.

Limitations of analytical cost formulas and
new requirements of emerging database tech-
nology motivated our work in searching for
a new method to predict the performance
of query processing algorithms. The neural
network approach to overcome these limita-
tions and meet the new requirements was de-
composed, analyzed, and successfully experi-
mented.

A discussion on global or building block ways
of evaluating the cost of a query by neural net-
works was exposed and analyzed. We have the
feeling that the building block approach where
a tree of neural networks matches the tree of
nodes in a QEP may outperform the global
one in its effectiveness in a real working envi-
ronment. We have, however, reported exper-
imental results for both approaches and com-
parisons against calibrated analytical cost for-
mulas proved the effectiveness of both of them.
In addition, the effectiveness of neural network
estimations of user defined method costs was
also reported with an example.

More research work on feeding additional in-
put parameters of a database environment into
larger neural networks must be done. We did
not until now integrate any platform dependent
parameter in our tests; we intend investigating
this influencing aspect on performance by vary-
ing the CPU power, the disk throughput, and
the network bandwidth in a distributed envi-
ronment. :

References

1) Du, W., Krishnamurthy, R. and Shan, M.C.:
Query Optimization in Heterogeneous DBMS,
18th VLDB Conference, Vancouver, British
Columbia (1992).

2) Hornik, K., Stinchcombe, M. and White, H.:
Multilayer Feed-forward Networks are Univer-
sal Approximators, Neural Networks, Vol.2,
pp.359-366 (1989).

3) Hellerstein, J. and Stonebraker, M.: Predicate
Migration: Optimizing Queries with Expensive
Predicates, ACM SIGMOD, Washington DC
(May 1993).

4) Rojas, R.: Neural Networks: A Systematic In-
troduction, Springer-Verlag, Heidelberg (1996).

5) Turbyfill, C., Orji, C. and Bitton, D.: AS*AP
— An ANSI Sequel Standard Scalable and
Portable Benchmark for Relational Database
Systems, Performance Handbook for Database

A Neural Networks Approach for Query Cost Evaluation 2575

and Transaction Processing Systems, Morgan
Kaufmann, San Mateo, CA (1991).

6) Yao, Z., Chen, C. and Roussopoulos, N.:
Adaptive Cost Estimation for Client-Server
based Heterogeneous Database Systems, Uni-
versity of Maryland Report, CS- TR-3648 (May
1996).

7) Zhu, Q. and Larson, P.: Building Regres-
sion Cost Models for Multidatabase Systems,
PDIS’96, Miams, Florida (1996).

(Received April 3, 1997)
(Accepted September 10, 1997)

Jihad Boulos is a visisting
researcher at NACSIS. He got a
B.S. in Computer Science from
the American-Lebanese Univer-

sity in Lebanon in 1991, an
h M.S. and a Ph.D. in Computer

Science from the University of
Paris-VI in 1993 and 1996 respectively. He
is currently on a post-doctoral position at
NACSIS. His main research interests concern
database performance evaluation and assess-
ment, continuous media servers and hierarchi-
cal storage systems.

Yann Viemont is an associate professor at
the University of Versailles in Paris, France. He
got an M.S. and Ph.D. in Computer Science
from the University of Paris-VI. He worked at
Digital Equipment in the United States and as

‘an assistant professor at the University of Con-

necticut. His main research interests focuses
on geographical database systems and database
performance evaluation.

Kinji Ono is a professor and
director of R&D at NACSIS.
He received the B.S. in physics
from the University of Tokyo in
1962, M.S. in Electrical Engi-
neering from Stanford Univer-
sity in 1972, Dr. of Eng. from
the University of Tokyo in 1983. He joined
KDD in 1962 where he engaged in the research
on satellite communications, computer commu-
nications. After serving as the Director of Re-
search Laboratories ,he was assigned the Pro-
fessor of NACSIS in 1993. His current research
interests include high speed networking and dis-
tributed multimedia. He was awarded the Prize
of the Minister of the STA, the Achievement
Prize of IEICE. He is a Governor of ICCC,
member of IPSJ, IEICE and Fellow of IEEE.

