ERAEEAEE5E (P9 588) 2EXR

3 —31

Extending Database Space of Inada/ODMG for Very Large

6 F—6

Databases on 64 Bit Workstations

Botao Wang, Akifumi Makinouchi, Kunihiko Kaneko
Graduate School of Information Science and Electrical Engineering, Kyushu University

1 Introduction

Since the computer applications become
more complex, and the users become more
sophisticated based on 32 bit environment,
the move to 64 bit environment is inevitable.
The gains from 64 bit computing envi-
ronment can be summed up in three as-
pects: performance, precision and capacity,
which should be reconsidered in the appli-
cations which manipulate multimedia, scien-
tific, data warechousing databases. They are
usually huge in the size. For the 64 bit archi-
tecture, LP64 is chosen as solution by Open
System community considering the portabil-
ity, interoperability with 32 bit environment.

The Sequoia 2000 Project explored
the application of emerging database, net-
work, storage, and visualization technolo-
gies of Earth science problems, resulting in
a “database-centric” metaphor for scientific
computation. About Sequoia 2000 bench-
mark, one problems is that the data size is
huge. For example, the national benchmark
data is 16 GBytes; another problem is how
to represent the complicated operation, such
as POSTGRES operator “||", “ < | >" and
“x &' defined in its queries.

INADA is an application platform for
building databases with a database language
for object management. We integrating
ODMG93 C++ binding interface into IN-
ADA and call it INADA/ODMG. For the
persistent virtual memory used by INADA,
UNIX mmap() function is used mapping
virtual memory from file. The current 32
bit INADA shows incapabilities while deal-
ing with above problems, such as 2 GBytes
file size limit. Since the largest virtual mem-
ory available to the users is 2 GBytes, the

file larger than that size cannot be mapped.
This means that very large database such
as Sequoia 2000 cannot be handled by the
current 32 bit INADA. The key features of
our design is to make use of the gains from
the 64 bit architecture, to setup 64 bit IN-
ADA/ODMG based our current 32 bit IN-
ADA/ODMG, and realize the Sequoia 2000
benchmark on it trying to overcome above
problems.

2 Extending INADA Address Space

o Extend current ODMG data type while
porting.

In LP64(known as 4/8/8) model,
long and pointer is 64 bit type, but in
current ILP32(known as 4/4/4) model,
long and pointer is 32 bit type. In
ODMG, only 32 bit Long and Un-
signed Long are defined. It’s incapable
while dealing with 64 applications.

We think new data type should be in-
troduced in ODMG, Int and Unsigned
Int which is 32 bit and Pointer which
is 64 bit; the width of Long and Un-
signed Long should change from 32 bit
to 64 bit. Without extension, the appli-
cation based on ODMG are limited by
its 32 bit.

o Make use of the capability provided by
64 bit in our system
Address space has become vast on the
64 bit processor. DBesides addressing
more memory directly, the file size can be
much more huge than current 2 GBytes
limit; with this change, the disk man-
agement can also be improved. GBytes

3—32

of data need not to be stored in different
files any more and all the data can be ac-
cessed via, a single file if necessary, which
is one critical point for the performance
of DB and OS.

The INADA/ODMG is built on per-
sistent virtual memory and distributed
shared memory on Network of Worksta-
tion(NOW). The basic storage unit is
heap. Logically, the heap offers stor-
age for objects without size limitation.
But in the 32 bit implementation, one
heap is less than 2 GBytes, system has to
manage multi heaps distributed on multi
sites. In our new design based on 64 bit
architecture, the size of one heap can be
much larger than 2 GBytes, which al-
lows to get a file mapped on the very
large virtual memory. Simply, one heap
is used as one database file, which is one
critical point for mass data storage, such
as multimedia data and geographic infor-
mation data. Compared with 32 bit im-
plementation, the capability is increased;
the management become more simple,
the performance can be improved for one
file accessing, especially in the case with
mass data storage.

Besides above changing, another re-
design is OID structure. OID repre-
sents the identity of of an object. In
INADA, OID is composed of two parts,
Heap Identifier(h.id) and Object Refer-
ence Table Identifier(ortid), the size of
h.id is changed from 8 bit to 16 bit, and
the size of ord.id is changed from 24 bit
to 48 bit.

3 Benchmark Design

We use Sequoia 2000 benchmark to
test the performance of the new system .
Based on object design method, the data
classes RASTER, POINT, POLYGON,
GRAPH and additional classes BTree and
RTree are defined also. All the data are
stored using d_Collection, such as the ex-
tent of POLYGON, which is defined as:

d_Set<d_Ref<POLYGON>>

According to ODMG, OQL allows method
invocations with or without parameters any-
where the result type of the method matches
the expected type in the query. Besides
attributes definition in data class, which is
same as the attributes definition in relation-
ship database, the methods supporting kinds
of queries are defined too. With the method
the benchmark queries can be defined easily
in OQL without system extension, especially
in the case the system has special operation.

For example, the following is one benchmark
query in POSTGRES:

retrieve into F00-2(POLYGON.all)
where POLYGON.location| |RECTANGLE

which find alls the polygons that intersect
a specific rectangle and store them in the
DBMS. Operator “||” means polygon inter-

sect rectangle. The same query can be writ-
ten in OQL as:

select p
from p in polygon
where p.IntersectBox(RECTANGLE)

The method IntersectBox() is defined in
class POLYGON. The result type of the
above OQL query is d_.Set < d_Ref <
POLYGON >>. The operator “ < | >"
(polygon in circle) and operator “ % &x*" (
point on graph) can be defined in the same
way.

4 Conclusion

In this paper, we discussed properties
of 64 bit environment, redesigned our 32
bit INADA/ODMG for 64 bit environment.
The extension provides very large space for
database system. High performance and ca-
pability are expected based on our design.
The design has same interface as that of
ODMG C++ binding. The size of built in
data type in ODMG are upgraded and ex-
tended.

