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Pseudo-active Replication in Heterogeneous Clusters
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One approach to making distributed systems fault-tolerant is to replicate the processes. In
systems composed of widely available commercial products, the replicas have to be realized in
various types of processors. In active replication, the replicas are computed and communicated
in the same synchronous way, and the computation speed of the process depends on that of the
slowest replica. In this paper, we discuss a novel “pseudo-active” replication scheme in which
events do not necessarily occur simultaneously or in the same order, and do not necessarily
occur in the replicas. New requests can be issued to the replicas if some, but not necessarily
all, replies are received from the replicas, without waiting for the completion of the slower

replicas.

1. Intfoduction

In distributed applications, multiple au-
tonomous application processes cooperate to
achieve some objectives by exchanging mes-
sages. Mission-critical disributed applications
require the system to be fault-tolerant. Pro-
cesses may, for example, suffer from stop and
Byzantine®)'3) faults. One approach to mak-
ing a system fault-tolerant is to replicate the
processes in the system. In this paper, a collec-
tion of replicas is named a cluster. In the active
replication ¥ adopted by Isis®, every replica
performs the same computation and commu-
nication. In passive replication®), only one
primary replica performs the computation and
communication. In active replication, the repli-
cas can provide continuous service in the pres-
ence of faults, while in passive replication it
takes time to recover from a fault in the pri-
mary replica.

If the replicas in a cluster are allocated to
different types of computer, the cluster is het-
erogeneous. The computers have various pro-
cessing speeds and levels of reliability. A pro-
cess is completed only if the computations of
all the replicas are completed. In this pa-
per, we discuss a novel pseudo-active replica-
tion scheme that reduces the response time
and the total processing time and provides the
same level of reliability as the active replication
scheme. Here, a process can be completed if
the faster replicas complete their computation
without waiting for the slower replicas. The
slower replicas have to catch up with the faster
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ones. We discuss a distributed way for each
replica to detect the slower replicas by using
the vector clock'® carried by messages. In ad-
dition, we discuss how the slower replicas can
catch up with the faster ones by omitting events
and changing the order of occurrence of events.
In pseudo-active replication, the response time
and total computation time of the replicas are
shorter than in active replication, even if the
slower computers are included. In addition,
pseudo-active replication offers the same level
of reliability as active replication; that is, the
process continues as long as at least one replica
is operational.

In Section 2, we overview the replication
schemes. In Sections 3 and 4, we present the
system model and explain pseudo-active repli-
cation. In Section 5, we evaluate pseudo-active
replication by comparing the total computation
time with that in active replication.

2. Replication Schemes

A process p; is replicated in order to make p;
fault-tolerant. A collection {p;1,...,pu,} (i >
1) of replicas of p; is a cluster ¢;. There are two
approaches: active'®) and passive?® replication.
In active replication ®14), every replica p;; (j =
1,...,1;) in ¢; performs the same computation
by receiving and sending the same messages in
the same order. p; is operational as long as at
least one replica is operational, provided only
stop-faults occur.

In passive replication®, ¢; contains one
primary replica p;; and  backup replicas
Di2y---,Pi;- Replica p;; exchanges messages
and computes the messages received, while no
backup replica performs any computation. p;
takes a checkpoint and sends the local state in-
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formation saved at the checkpoint to all the
backup replicas. Then, every backup replica
changes its local state. If p; is faulty, one of
the backup replicas, say p;, is selected to be
primary and starts to compute from the check-
point taken most recently. Hence, it takes time
to recover from a fault in the primary replica;
in other words, less time is available.

The active replication approach involves
more redundant processing and communication
than the passive one, but the computation can
be continued as long as at least one replica is
operational. Hence, we adopt active replication
to realize the highly available applications.

To reduce the communication overhead in
active replication, we propose hybrid replica-
tion 18,

3. System Model

3.1 Heterogeneous Clusters

A distributed system is composed of multi-
ple computers interconnected by a communica-
tion network. A distributed application is real-
ized through cooperation of multiple processes.
Each process is computed in a computer. A
group G is a collection of cooperating au-
tonomous processes p,...,p,, (Fig.1). Each
pi is replicated in a collection {ps,...,pi,}
(I; > 1) of replicas, i.e. cluster ¢;. This is a one-
replica cluster iff it includes only one replica. It
is homogeneous iff all the replicas it contains
are in the same types of computer. Each com-
puter is characterized in terms. of processing
speed and reliability level. Cluster ¢; is hetero-
geneous iff some replicas are in different types
of computer; for example, it is heterogeneous
if a replica p;; is computed in a faster com-
puter such as an UltraSparc station and another
replica p;; is computed in a slower computer
such as a Sparch.

In this paper, the processes are assumed to
stop as a result of faults.

3.2 Causal Precedence

Let s;5(m) and 7;;(m) denote the sending and
receiving events of a message m in a replica p;;,
respectively. ,
[Causal precedence]® An event e, causally
precedes ez (e1 — ez) iff one of the following
conditions holds:

(1) ey occurs before ey in some process.

(2) e1 = si;(m) and ex = 741 (m).

(3) e1 — e3 — ey for some event es. ]
[Definition] A message m1 causally precedes
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mo (m1 — mz) iff sij(ml) — Sk[(mz). O
Here, m; and my are concurrent (m; ||
mgy) iff neither m; — mso nor me — my.
The replicas have to deliver m; before my if
m; — my. Many group communication pro-
tocols 3971112116017 have been proposed
to support a group of multiple processes with
causally ordered delivery of messages.

To deliver messages causally, each p;; manip-
ulates the vector clock®19) V = (Vi | k =
1,---,n,h=1,---,1;). Each element V}; shows
the local clock of py,, which p;; knows. Initially,
Vkn = 0. Each time p;; sends a message m, Vij
is incremented by 1. Message m carries the lo-
cal clock m.V’; that is, m.Vip, = Vi, for every &
and h. On receipt of a message m, p;; manipu-
lates V' as Vip, := max(Viy, m.Viy) for every k
and h. The vector clock satisfies the following
property 19):

[Property] For every pair of messages m; and
meo, M1 —> Mo iff m,.V < ma.V. O

By using the vector clock, the messages re-
ceived are sequenced in “—”. However, a gap
between messages, that is, a message loss, can-
not be detected. Hence, the network is as-
sumed to support the reliable data transmis-
sion of messages to multiple destinations in Isis.
Nakamura and Takizawa '?) present a method
by which not only are messages causally or-
dered, but also gaps can be detected by using
the vector of message sequence numbers.

In this paper, the network is assumed to sup-
port all the replicas in each cluster with totally
and causally ordered delivery of messages. That
is, every replica can receive all the messages in
the same causal order.

4. Pseudo-active Replication

4.1 Active Replication

Replicas p;1,...,py, of the process p; are of-
ten obliged to be distributed to various types of
existing computers, because it is expensive to
replace existing computers with a set of com-
puters all of the same type; in this case, the
cluster c; is heterogeneous. In active replica-
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tion, every replica is required to perform the
same computation and communication at the
same time as the other replicas¥). Here, sup-
pose that a process p, sends a request to Dij
and pi. If p;; is faster than py, ps has to wait
for the response from p;; even after receiving
the response from p;;. Thus, every replica has
to wait for the slowest replica in ¢;. We there-
fore propose a pseudo-active replication by re-
laxing the constraints of active replication in
order to decrease the response time in hetero-
geneous clusters.

Each replica p;; can be also modeled as a de-
terministic finite state machine (Fig.2). Let
s?j denote the initial state of p;;. Here, s =

- = s).. If an event ej; occurs in sf;, s2; is
transited to the 1st state si.. Thus, the hth

ij*
state sfj is transited to sttt ?j*'l

i if an event e
occurs. Here, p;; is represented in a sequence
of the events e}, o-- -oeﬁ}j. Let e?j(sfj”l) denote
astate s?; and let e} oel; (s}57%) = el (s)7!) =
sfj There occur local events and communi-
cation events, namely, sending and receiving
events. el denotes an instance of an event e”
in Dij-

p; is actively replicated in a cluster ¢; =
{pi1,.--,pu,} if the following conditions hold:

[Active replication (AR) conditions]
AR1: For every pair of operational replicas
pij and pg, b = s and efs = el for
every h.
AR2: For every pair of operational replicas

pi; and pg, e% — e?k“ and e?k — e?j“ for

every h.
AR3: No operational replica p;; loses any
event. O

AR1 means that every replica performs the
same computation and communication in ¢;,
that is, the same events occur in the same order.
AR2 means that every event occurs simultane-
ously in every replica. Every event e?j occurs
in p;;- after e?k'l occurs in every p;. p;; and
pi are synchronized iff they satisfy AR2. AR3
means that every p;; performs the same compu-

Pseudo-active Replication in Heterogeneous Clusters 381

e/
Y

\ time

Fig.3 Synchronized replicas.

tation as a cluster including only p;;. If every
replica misses some event, AR3 does not hold,
although AR1 and AR2 hold. p;; includes py
iff every event occurring in p;; occurs in p;;.

Here, let m* show an instance of a message
m sent by Dij-
[Proposition 1] p;; and py, are synchronized
if m; — mY iff m;y — mi for every pair of
messages my and msq respectively received and
sent by p;; and ps. 0
AR2 holds if all the replicas in ¢; are synchro-
nized. In Fig. 3, p;; and p;, receive a message
my. After receiving mi, p;; and p;; send mg
and mé’“, respectively. pp; sends mg after re-
ceiving my and m&. Since my — m3 and
m& — ms, pi; and p;, are synchronized.

4.2 Following Relation

The replicas in the faster computers support
a shorter response time than the slower ones.
The computation speed of the cluster ¢; de-
pends on the slowest replica in ¢;, because AR2
has to be satisfied. The response time can be
reduced if the computation of ¢; is completed
before that of every replica. For example, sup-
pose that the computation of a request m from
pp, is completed in the fastest replica p;; while
the other replicas are still computing m in ¢;.
Replica p;; sends the response of m to p;,. Here,
pr, considers that m is completed in ¢;, although
pr, has not received all the responses from c;.

First, we consider a case in which AR1 holds
but AR2 does not. That is, every event occurs
in the same order but does not necessarily occur
simultaneously in every replica.
[Definition] p;i follows psj (pij = pix) iff €55 =
€ik, egj =€), e; — e;j, e — e, and e;; —
ej,, but egre;; for some events e;; and ef;
occurring in p;; and e;; and e}, in pi. m]

pi; and py, are synchronized iff neither p;; =
Pik DOT pig = pij. If pij = pix and piy = pij,
pi; and p;, are thrashed. p;; and p; may be
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thrashed if either p;; or p;; sometimes becomes
slower because of overload. Figure 4 shows
that p, follows p;;. pix is still in state ¢ while
pi; is already in e, because u;; — .
[Deﬁnition] pir fully follows pi; (pij~3pik) iff
e ey ife;; — ezk for every events e;; and e
1n Dijs and eix and e}, in p;; such that e;; = ezk,
e = €, €y = ew, and e;; — €} O
If the computer of p;; is always faster than that
of pix, then p;; fully follows p;;. It is trivial to
show that Dij = Dik if DijR3Dik -

A cluster ¢; is regular iff every pair of replicas
pi; and p;; are synchronized or one of p;; and
pir fully follows the other. Here, both p;; = pix
and p;; = p;; may hold in some p;;. That is,
the processing speed of some replica is dynam-
ically changed.

Suppose that p;; and p; send messages m%
and m¥, respectively, after receiving m; before
mg as shown in Fig.5. In active replication,
Pri is required to send mg after receiving msy
from every replica. However, py; sends mgz af-
ter receiving my without waiting for mi. On
recelpt of mg, ps; and pix know that mgy — ms
but m&¥ Ams, that is, they know that pp; sends
ms before receiving m& from p;,. Hence, Dij
and p;; can decide which one should follow the
other by using the following theorem:
[Theorem 2] p;, follows pij (pi; = pix) if
mg — ms but m&¥ 4 ms for some messages
mg and my respectively received and sent by
pij and pik. a
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In Fig.5, py follows p;; on receipt of mg,
since my — mgz but m3 || m¥*. p; and pi
are synchronized before receipt of ms. For ex-
ample, suppose m; and ms are requests and
my is the response to m;. Here, suppose that it
takes longer to compute request m; in p;; than
in p;j. That is, p; is slower than p;;. Without
waiting for all the responses of my, pp; can send
another request ms to p;; and p;x on receipt of
mzj By this method, the response time can
be reduced even if the system includes slower
computers.

4.3 Decision Rule

Next, we consider how each replica p;; can
decide in a distributed way whether p;; follows
or succeeds other replicas in the cluster ¢;. Sup-
pose that p;; receives a message m carrying
the vector clock m.V ). From Theorem 2, ps
knows that p; follows p;, if m.Vy, < m.Vj,.
Hence, p;; decides how the replicas are followed
on receipt of m according to the F rule.
[Following (F') rule] For every pair of replicas
Pin and pj in ¢,

(1) Dik follows pin if MV < m.Vin,

(2) pix and p;p, are synchronized if m.Vy, =

m.Vip. 0
ik follows pip in pij(psn =i5 Pa) if ps; decides
that p;n = pi. This means that p;; knows
that py, follows p;,. Here, p;; considers that
pin, is the fastest and slowest in ¢; if m.Vy, is
maximum and minimum in m.V, respectively.

Suppose that py; in ¢, sends m; and mg to Dij
and p; in ¢;, and that p;, in ¢; sends my4 and
me, as shown in Fig. 6. pp; sends m3 on receipt
of my from p;; before receiving m&* from pyy.
Hence on receipt of m3, p;; =45 Pik and Dij =ik
Dik- Pru sends mg on receipt of m¥ from py
before receiving mg’. Hence, on receipt of mg,
pi; and py; know that p;; = p;;. On receipt of
m3z and ms, p;; and p;, are thrashed; that is,
Pij = Pik and py = pyj.

It is straightforward to show that the fol-
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lowing theorem holds, since every. replica is as-
sumed to receive all messages in the same order.
[Theorem. 3] On receipt of a message m,
Dij =in Pik iff pgj =4 pix for every pair of op-
erational replicas p;, and p;. ]
- If p;p, knows that p;; follows p;; by the F rule
on receipt of m, another p;;, receiving m is sure
that p;; =n Dik-
[Definition] A message m is delayed on p;; if
m.V;; < m.Vy, for some pjy. m|
If p;; receives. a message delayed on p;;, p;j
knows that p;; follows some replica.

In active replication, pp; sends a request mes-
sage my to p;; and py. On receipt of the re-
sponses my and mi*, py, considers that the
computation of m; is completed, and sends a
request m3 to p;; and p;. In pseudo-active
replication, pp; does not wait for the responses
from all the replicas. Since only stop-faults are
assumed to occur, pp; can send ms after py;
receives one response from one replica.

Next, suppose that the replicas in c; receive
requests m; and mo. If my || ma, the replicas
in ¢; may receive m; and my in different orders.
If p;; and p;;, receive write requests m; and my
in different orders, p;; and p; become incon-
sistent. Hence, we assume that every p;; in ¢;
takes messages in the total order.

4.4 Equivalent Sequences of Events

The slower replica p;; has to catch up with
the faster full replica p;; in ¢;. If every event
stored in the receipt queue is required to occur
in pi, pix cannot catch up with p;;, since p;;
is faster than p;;,. Hence, we try to make p;p
catch up with p;; by omitting events unneces-
sary and by changing the order of occurrence of
the events.

First, we try to relax the AR1 condition.
[Definition] An event e is an identity event in
pij iff e(s;;) = s;; for every state s;;. An event
sequence S is idempotent in p;; iff S0 S(s;;) =
S(si;) for every state s;; of p;;. O
For example, an execution of an SQL select
statement is an identity event.

[Definition] An event sequence S; is absorbed
by S; iff S; o Sz(s,j) Sa(s4) for every state
si; of pi;. O
Suppose a write event w; of a value v; occurs
before wy of v2 in p;;. Because v, is overwritten
by vs, we absorbs wy. ‘

[Definition] Two event sequences S; and S
are commutative in p;; iff Sy o Sa(s;;) = Sy 0
S1(si;) for every state s;; of p;;. m]
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Unless S; and S5 are commutative, S; and Sp
conflict. For example, two select statements are
commutative but select conflicts with update.
[Definition] Let S; be a sequence of events
€11 © -+ 0 €1k, and let 52 be €21 O+ 0 €2,
Sy is equivalent to Sy in pi; (S1 =. Ss) iff
€110+ -0egg, (8;5) = eg1 0+ -0eqx(sy;) for every
state s;; of pi;. o

In Fig.7, p;; 1nc1udes pin. If u and w are
identities, c=band e=d, tov=touovow.
Furthermore, if ¢ and v are commutative, vot =
tov. Here, p;;, can catch up with p;; by omitting
two identity events u and w.

[Omission rules| Let S; and 52 be event se-
quences and let e be events.

(1) S10eo08; =508, if e is an identity.

(2) eoS;0e= S oeif eis idempotent and

S1 includes no event conflicting with e. O
That is, the slower replicas can omit the iden-
tity and idempotent events - occurring in the
faster replicas.

Next, we consider how to exchange events.
[Exchangmg rule] Let S be an event sequence
and let e; and ey be events. e;0Soe; = eg080e;
if e; and e, are commutative and S includes no
event conflicting with e; and es. O
Suppose that wy and ws are events writing ob-
jects = and y, respectively, and that r is an
event reading z. Here, wy orows = wy orow;
if z, ¥, and z are pair-wise different.

4.5 Catching up :

We discuss how the slower replicas catch up
with the faster ones by using the omission and
exchanging rules. In Fig. 8, suppose p;;, follows
ps;- In the computation of the request m1, pi
receives the requests ms and ms from py;. Here,
m3z — ms and m3 and my are delayed. Since p;y
is sure that p;; completes m3 and py; receives
the response my of ms from p;;, pix does not
need to compute mz. However, p;; is not sure
that p;; completes ms.

[Definition] A message m is obsolete in p;; iff
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(1) m is received but is not delivered to p;;,
(2) m is delayed on p;;, and
(3) there is some message m' received in p;;
such that m — m/, m’ is delayed on p;;,
and m.V;; < m'.Vy, for some pj. |
Thus, p;; can omit an obsolete request m, since
m is already finished in the faster replica p;.
On receipt of a message m, p;; stores m in
the receipt queue RQ;;. The messages in RQ;;
are sequenced in causal order. p;; takes a top
message m from RQ);; and computes m; that
is, the messages are causally delivered to p;;.
In Fig.8, mz and ms are stored in RQ);; and
mg — ms during the computation of m;. After
sending m;, p;, takes mg from RQ;.
p;;j executes the following procedure to check
whether a top message in RQ);; is obsolete.
[Receipt] A message m arrives at p;;.

(1) m is stored in RQ;; in the causal order
by using the vector clock.

(2) If m is delayed on p;;, m is marked as
delayed.

(3) If m is delayed, RQ;; is searched for ev-
ery delayed message m’ causally preceding
m(m' = m) in RQ;;.

(3-1) If m’ is an identity request, m' is
marked as omissible.

(3-2) If m' is idempotent and the same

kind of request m” as m' precedes m

and succeeds m’ in RQ;;, m’ is marked

as omissible if there is no message be-

tween m and m' in RQ;; that conflicts

with m'. a

pi; takes the top message m from RQ;;. If m

is marked omissible, p;; removes m and sends

back the dummy response of m with no result.
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In Fig. 8, suppose mo and my4 are idempotent
requests. mg arrives at p;; during the compu-
tation of the request m;. Here, m3 is delayed
on p;; but is not obsolete. mgz is enqueued into
RQ;;. Then, the request ms arrives at py. ms
is delayed on p;;. The messages in RQ);; are
checked by the receipt procedure if they are ob-
solete. m3 in RQ),; is obsolete, since ms — ms
and ms is delayed. Therefore, ms is marked
as omissible. After the completion of my, that
is, after sending ms, pix takes mz from RQ;;.
Since mg is marked as omissible, p;; omits ms
and sends back a dummy response for ms to
pri- Then, py starts to compute ms, since ms
is not obsolete while it is delayed.

4.6 Correctness

Let c; be a cluster of replicas p;1,...,pi, of a
process p;. Let d; be another cluster of replicas
gi1, - --,qik; of p;. Here, suppose that a process
pp, receives multiple instances m!, ... m% of a
message m from p;; ...p;,. pp takes only one
of them, which is delivered to p,. The sequence
of messages taken from c; is an output sequence
of ¢; to py.

[Definition] ¢; is equivalent to d; (c; = d;) iff
all output sequences of ¢; and d; are the same
for every input sequence of messages. O
[Theorem 4] In pseudo-active replication, ev-
ery cluster ¢; is equivalent to some one-replica
cluster of p;.

[Proof] Every slower replica p;; omits only ob-
solete messages. Every omissible message m is
computed in one replica and the response is re-
ceived by the sender of m. Lastly, let us con-
sider a case in which the replicas are faulty. If
the fastest replica is operational, it is straight-
forward. Suppose that the fastest replica, say
pi1, becomes faulty before sending the response
to a request m. Since m is never omissible in
any operational replica, some replica is certain
to computes m. O

5. Evaluation

Pseudo-active replication supports the same
level of reliability as active replication; that is,
the cluster can provide service as long as at least
one replica is operational, as shown in Theo-
rem 4.

We evaluate the pseudo-active replication
cluster ¢; = {pi1,...,pi, } by comparing it’s re-
sponse time and computation time with those
of an active replication cluster. A process py
sends requests to the replicas in ¢; and receives
responses from the replicas. Let d; be the prop-
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agation delay time between p, and the replicas
in ¢;. There are f; types of requests that p;;
can take. ¢, ¢, and 7¢ denote the proba-
bilities of an identity request, an idempotent,
request, and some other request in c;, respec-
tively. Here, 7! + 7¢ + 7?2 = 1. We assume
that every pair of operations conflict if neither
of them is an identity. We assume that p;; is
the fastest and p;, is the slowest in ¢;. Suppose
that pp, issues w requests to ¢;. After sending
a request r, p, sends the subsequent request to
c; on receipt of the response to . In this pa-
per, we assume that it takes 77, 7%, and 7
time units to compute each identity event, each
idempotent event, and each other event, respec-
tively, in p;;. Let 7; be the average compu-
tation time for each event in p;;; that is, let
Tij = T§ T +nf.7d + ¢ 75, We assume that
T/ Th = Tidj/Tidl =T15/mh = Tij /T (< 1)

Compute w requests in p;; is expected to take
w-T;; time units. The expected processing time
Rp in the pseudo-active replication, is w - (71 +
2-4;) time units, while the expected processing
time R4 in active replication is w - (73, + 2 - d;).
It is clear that Rp < R4, since 151 < Ty, -

If no event is omitted in any p;;, w requests
are computed. Hence, the total computation
time of ¢; in active replication is' ¥;—=1,  sw -
;5. In pseudo-active replication, some obsolete
events are omitted.

Let us consider the total computation times
of the fastest replica, p;1, and the slowest, py;.
The total time of p;; is defined as the time from
when p;; receives the first request until p;; sends
a response to the last request. Let T4 be the
total time needed for p;, to compute the re-
quests in active replication, that is, when no
requests are omitted. Let T/p be the total com-
putation time of p;, in pseudo-active replica-
tion. Here, suppose that 7! = 0.5, 7¢ = 0.3,
and 7Y = 0.2. That is, 50% of requests are
identity ones, and 30% and 20% are idempo-
tent and other requests, respectively. pp, sends
w(= 100) requests by randomly selecting op-
erations in f;(= 10) ones. Let ¢ be the ratio
of the propagation delay §; among pp, and the
replicas in ¢; to the processing time 74 of the
identity request in p;, 6;/75. The total pro-
cessing times Tp and T4 are obtained by the
simulation. The number wp of operations com-
puted in p;;, in pseudo-active replication is also
obtained. Figure 9 shows T4/R4 and Tp/R4
with § = 0.1, 1, 3, 10 for 7;1/7y,. The dotted
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lines show Tp/Rs. Figure 10 shows wp/w
with & for 71 /7y,

Figures 9 and 10, show that pseudo-active
replication can reduce the total processing time
and the number of operations computed in
the slower replicas. Furthermore, the greater
the distance between p; and the replicas, the
more efficient the pseudo-active replication. In
Fig. 10, let us consider wp/w for § = 3. If it
takes 10 msec. to compute identity request such
as read in p;;, the propagation delay is 30 msec.
If py, is five times slower than p;;, the propor-
tion of requests computed in p;, is the same,
namely, 50%. This means that every identity
request is omitted in p;;,, since every request
issued to py, is queued in RQ;;.

6. Concluding Remarks

This paper has discussed pseudo-active repli-
cation in heterogeneous clusters. In a hetero-
geneous cluster, the computation of the cluster
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can be completed if the fastest replica is com-
pleted while the slower replicas are still being
computed. We have presented a vector-clock-
based method by which each replica can decide
how to follow others. The slower replicas can
catch up with the faster ones by omitting iden-
tity and idempotent events and changing com-
mutative events. We have shown that pseudo-
active replication implies a shorter response
time and total computation time than active
replication, while providing the same level of
reliability. .
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