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Abstract

We present parallel methods for finding the upper en-
velope of n possibly-intersecting planar line segments
in the EREW PRAM. We show that the envelope can
be computed in O(log'*“n) time using O(n/log® n)
processors for any positive constant €, or in O(logn
log log n) time using O(n) processors. The first result
achieves cost optimal and the second runs faster. We
use a technique called multi-divide-prune-conquer in
onr algorithms.

1 Introduction

Let S be a set of n segments. Considering the segments
as opaque barriers, the upper envelope of S, denoted
as UE(S), is made of the portions of the segments vis-
ible from y = 400. The upper envelope of segmnents
is an important concept in visibility and motion plan-
ning and has many applications [4, 2, 11]. The com-
plexity of the upper envelope is the number of distinct
pieces of segments that appear on it. If the segments
are nonintersecting, the complexity of UE(S) is lin-
ear in n. In this case, UE(S) can be computed opti-
mally in O(nlogn) time and it acturally can be found
iv O(n) time if the segments endpoints are sorted in
the left-to-right order [2]. Generally, the complexity
of UE(S) is O(na(n)), where a(n) is the extremely
slowly growing functional inverse of Ackermann’s func-
tion [3, 8]. Atallah [3], Hart and Sharir [8] presented
an algorithm that computes UE(S) in O(na(n)logn)
time. Hershherger improved their result and gave an
optimal O(nlogn) time algorithin [9]. His method can
be easily parallelized to a cost optimal algorithm which
runs in O(log? n) time and n/log n processors in the
EREW PRAM ( the PRAM is a synchronous parallel
computational model employing a number of proces-
sors which share a common memory, and the EREW
PRAM is the weakest version of the PRAM in which
neither concurrent reading nor concurrent writing is
allowed). Although related researches are continued
[7, 10], but no much progress is made in the PRAM (It
was claimed that the envelope can be found in O(log n)
using n pocessors in CREW PRAM, the stronger ver-
sion of the PRAM in which concurrent reading is al-
lewed but concurrent writing is not, but the paper was

withdrawn later [5]). On the other hand, if O(n'**)
processors are available for any positive constant k,
UE(S) can be computed in O(logn) time by ordinary
n®-way divide-and-conquer (c is any constant with ¢ <
k) easily. Therefore, it is interesting to design algo-
rithms in the EEW PRAM which computes UE(S) in
o(log” n) time using O(n) or o(n) processors.

We present two efficient algorithms for computing
the envelope of segments in the EREW PRAM. It is
easily to see that if we have at most n processors, or-
dinary d-way divide-and-conquer which usually gives
nice parallel algorithms is difficult to be used directly
for sloving the envelope problem of segments in par-
allel. The segments can not be partitioned easily: if
we divide the segments into subsets without cutting
segments, the segments in different subsets may in-
tersect each other, and if we cut the segments with
vertical lines such that the subsets are separated each
other, the number of the segments (subsegments) may
become very large. Our algorithms are based on a
complex divide-and-conquer which we call multi-level
divide-and-conquer and a prune technique which are
used to to partition the segments efficiently and pre-
vent the total number of the segments hecome larger
and larger in recursive steps.

2 Cost optimal algorithm

Let L : y = z be a vertical line and S’ be a set of
segments. L is a left (or right) base of S’ if the left (or
right) endpoint of each segment of §’ is on line L. If
S’ has a left (right) base, the envelope of S’ contains
at most 2n — 1 segments[12].

Lemma 1 (9] (1) The envelope of any n segments can
be computed in O(log? n) time using O(n/logn) pro-
cessors. (2) If the envelope of n segments with a left
(right) base can be computed in O(lognloglogn) time
using n/loglogn processors, then the envelope of any
n segments can be found in the same complexity. [

We use multi-level divide-and-conquer which was
first introduced in [6] to compute the envelope of seg-
ments with a left (right) base as follows.

First recursive step: Divide the set S of n segments
into & subsets such that each subset contains n/é seg-
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ments, and then recursively construct the upper enve-
lope of each subset in parallel. Note that the resulting
upper envelopes may intersect with each other.

Second recursive step: Using n/§—1 vertical lines to
partition the 6 envelopes obtained in the first recursive
step into n/§ separated parts, and then recursively find
the upper envelcpe of each part in parallel.

Merge step: Concatenate the n/§ separated upper
envelopes obtained in the second recursive step from
teft to right. ™

Theorem 1 The envelope of n segments can be com-
puted in O(log' ™ n) time using O(n/ log® n) processors
for any positive constant € on the EREW PRAM. g

3 Faster algorithms

Let S be a set of n segments. A set L(S) is said in-
duced from S if L(S) = {l | 1is a straight line con-
taining at least one segment of S }. The envelope of
L(S) can be found easily by using the following dual

transformation f: segment y = az + b ER point (a,b).
Let D(L(S)) be the dual set of L(S). UE(L(S)) can
be found in O(logn) time using O(n) processors in the
EREW PRAM since the convex hull of D(L(S)) can be
computed in the same complexity {1]. Let S(Ly, L) de-
note the portion of § between vertical lines Ly : y = 4
and Ly : y = 7y, For each segment s of S(Ly, Ly), let
o(s) denote the original segment of S contains s. The
following lemma reveals the relation hetween the upper
envelopes of lines and segments.

Lemma 2 Let 5 be a set of n segments. If S has a
left base Ly 1 y = £y and a right base Ly: y = z9 (11
< Tay. then UE(S) = UE(L(S))(L1, Ls). i

Given lines L; and Ly, set S’ = § (L1, L2) can be
divide into two subsets: increasing-segment set I{S’)
and original-segment set. O(S"), where for each segment
s € I{S"), then original segment o(s) intersects with
both L, and L, and for each segment ¢t € O(S5’), the
original segment o(¢) intersects at most one of Ly and
L. Since UE(S') = UE(UE(I(S))UUE(O(S"))), the

following lemma 3 holds from Lemma 2.

Lemma 3 Let § be a set of segments, Ly and Ly be
two vertical limes and S" = S(Ly, Ly). UE(S") =
UE(UE(L(I(S")) (L1, L) U UE(O(S")) holds. 2

According to Lemma 3, when we recursively com-
pute U E(S"), we first compute UE(L(I(S"))) (L1, Ly)
directly by the envelope algorithm of lines, and then
recursively compute UF(O(S’)). This lets us prune
I(S’) from S’ in recursive computing. Using the prune
technique to the previous algorithm, we can get the
following result.

Theorem 2 The upper envelop of n segments can be

found m O(logn loglog n) tume using n processors in
the EREW PRAM. 5
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