Technical Note

An Interactive Method for Designing Smooth Convex Curves by Using a Cubic B-spline Formulation (II)

Hui Guan[†] and Tatsuo Torii[†]

This work is an improved version of the previous method ⁵⁾ for interactively designing convex curves by using a cubic B-spline formulation. The new algorithm ensures that the highest point of the resulting curve occurs only at that of the ideal curve in the user's mind. Also, it suggests a class of convex B-spline curves that share the same highest point and have different curvatures at the point, providing the user with an easy interactive control of shape.

1. Introduction

Many applications of computer graphics and computer-aided geometric design require to interactively generate convex curves with some level of continuity at end-points. The work of Ref. 5) has introduced an easy-to-use and efficient design method for creating such a curve using a cubic B-spline and a recursive subdivision manner, in the case of given unit tangents at two end-points. The previous method proposed has several properties which may be desirable, but suffers from two problems: (1) it makes the resulting curve have always zero curvature at the sample point selected by the user, and (2) it fails to obtain a satisfactory approximation when the sample point is a considerable distance from the highest point on the ideal curve in the user's mind, where the highest point on a curve is defined to be the point farthest from the line passing through end-points $^{5)}$.

This paper attempts to improve the previous work in order to cope with these problems. In relevant literature, Goodman and Unsworth $^{1)}$ presented a shape preserving interpolation scheme to remove the zero-curvature at each of the interpolation points. Piegl $^{2)}$ discussed how to modify the shape of the nonuniform rational B-spline curves by interactively adjusting control vertices or weights. More recently, Pigounakis and Kaklis $^{3)}$ developed a two-stage automatic algorithm for fairing C^2 -continuous cubic parametric B-splines under convexity, tolerance and end constraints.

The work by Goodman and Unsworth 1) is the closest to our research, but it cannot preserve location of the highest point. The algorithm described here not only lets the user choose as the sample point the highest point on an intended curve, but also leaves it unchanged during interactive manipulation. In addition, it gives the user direct control over shape by moving one point upwards or downwards along a line, through which a class of B-spline curves with different curvatures at the sample point can be created while in the same time maintaining several interesting and useful geometric properties of the original curve.

The remainder of this paper is organized as follows. We begin in Section 2 by reviewing the mathematical formulation of the approximation curve used in this paper. Section 3 shows an improved scheme for the interactive design of convex B-spline curves, and Section 4 gives the example of the application of the scheme. In Section 5, we conclude this paper.

2. Mathematical Formulation

As in the previous work ⁵⁾, the parametric cubic B-spline chosen to approximate an intended curve is given by

$$Q(t) = \sum_{i=0}^{4} B_i N_{i,4}(t) \qquad 0 \le t \le 2$$
 (1)

where B_i , $i = 0, \dots, 4$ are control vertices, and $N_{i,4}(t)$, $i = 0, \dots, 4$ are basis functions defined over the knot vector $U = \{0, 0, 0, 0, 1, 2, 2, 2, 2\}$ by the Cox-deBoor recursion formula⁴)

by the Cox-deBoor recursion formula 4)
$$N_{i,1}(t) = \begin{cases} 1 & u_i \le t < u_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$N_{i,k}(t) = \frac{t - u_i}{u_{i+k-1} - u_i} N_{i,k-1}(t) + \frac{u_{i+k} - t}{u_{i+k} - u_{i+1}} N_{i+1,k-1}(t)$$

$$k = 2, 3, 4$$

[†] Department of Information Engineering, Faculty of Engineering, Nagoya University

where the values of u_i are elements of the knot vector U and the convention 0/0 = 0 is adopted.

The curve Q(t) exhibits (1) the convex hull property: it lies entirely within the convex hull of its control polygon, and (2) convexity-preserving property: it is convex when the control polygon is convex.

3. Curve Design

Suppose we have two end-points P_o and P_4 together with the respective unit tangents which intersect at T, and the highest point P_f on the ideal curve in the user's mind, as shown in Fig. 1. Our goal is to find a convex B-spline curve which lies within the triangle P_oTP_4 , possesses P_f as its highest point, interpolates P_o and P_4 , and is tangential at P_o and P_4 to the lines $P_o\overline{T}$ and $\overline{T}P_4$, respectively.

The previous design scheme ⁵⁾ to do this is (1) to select the intersection P_m of the intended curve and the line \overline{TM} as a sample point, where M is the midpoint of $\overline{P_0P_4}$, and (2) to use it as the control vertex B_2 . As a result, it produces a convex B-spline curve that satisfies the given end conditions and interpolates the sample point P_m , where the curvature at P_m is always zero and P_m is the highest point on the curve. Thus, the curve is very flat in the neighborhood of P_m . In addition, when P_m is a considerable distance from the highest point P_f , the approximation curve and the intended curve have the significant differences.

To better mimic the shape of the intended curve, instead of using P_m as the sample point an alternative that is reasonable and more intuitive is to choose the highest point P_f . Thus,

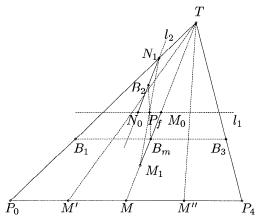


Fig. 1 Construction of a control polygon for a convex B-spline.

by setting 0, 1 and 2 in Eq. (1) to interpolate P_0 , P_f and P_4 , and by using the Cox-deBoor formula to calculate basis functions $N_{i,4}(t)$, $i = 0, \dots, 4$, we obtain

$$P_{\rm o} = \mathbf{Q}(0) = \mathbf{B}_{\rm o} \tag{2}$$

$$P_f = Q(1) = \frac{1}{4}B_1 + \frac{1}{2}B_2 + \frac{1}{4}B_3$$
 (3)

$$\boldsymbol{P_4} = \boldsymbol{Q}(2) = \boldsymbol{B_4} \tag{4}$$

Rearranging the terms in Eq. (3) yields

$$B_2 + \frac{1}{2}(B_1 + B_3) = 2P_f \tag{5}$$

Now define $B_m = \frac{1}{2}(B_1 + B_3)$; i.e., let B_m denote the midpoint of the line connected by B_1 and B_3 . Equation (5) then reduces to

$$\boldsymbol{B}_2 + \boldsymbol{B}_m = 2\boldsymbol{P}_f \tag{6}$$

Geometrically, the equation states that P_f must be the midpoint of the line connected by B_m and B_2 .

On the other hand, according to the first derivatives of the basis functions at t=0, 1, and 2, we can find that the respective tangents at P_0 , P_f and P_4 are

$$d\mathbf{Q}/dt|_{t=0} = 3(\mathbf{B}_1 - \mathbf{P}_0) \tag{7}$$

$$dQ/dt|_{t=1} = \frac{3}{4}(B_3 - B_1)$$
 (8)

$$d\mathbf{Q}/dt|_{t=2} = 3(\mathbf{P}_4 - \mathbf{B}_3) \tag{9}$$

It is easy to see from Eqs. (7) and (9) that B_1 and B_3 lie on the lines $\overline{P_0T}$ and $\overline{TP_4}$, respectively. Also, it is clear from Eq. (8) that the line $\overline{B_1B_3}$ is parallel to $\overline{P_0P_4}$ since P_f is required to be the highest point on the approximation curve. Thus, B_m should be on the midline \overline{TM} , as shown in Fig. 1. This means that choosing one point on the midline \overline{TM} can determine a control polygon $B_0B_1B_2B_3B_4$, and then produce an approximation curve that satisfies the given end conditions and makes the tangent at P_f parallel to $\overline{P_0P_4}$.

However, such a curve may not be convex. To assure the convexity of the curve, B_2 has to lie inside the triangle constructed by B_1 , B_3 and T. Equation (6) indicates that B_2 is determined by B_m and P_f . We now use Fig. 1 to give conditions on B_m and P_f for an approximation curve to be convex. In this figure, the line l_1 passes through P_f and is parallel to $\overline{P_0P_4}$. M_0 is the intersection of l_1 and \overline{TM} . N_0 is on the line l_1 and $N_0 = 2P_f - M_0$. The line l_2 passes through N_0 and is parallel to \overline{TM} . N_1 is the intersection of l_2 and $\overline{P_0T}$. M_1 is

the intersection of \overline{TM} and the line connecting N_1 and P_f . M' and M'' are the midpoints of the line segments $\overline{P_0M}$ and $\overline{MP_4}$, respectively. According to the above definitions with respect to P_f , B_m , M_0 , M_1 , M', M'' and T, we have the following theorem.

Theorem 1 Given a point P_f inside the triangle $\underline{M'TM''}$ and a point B_m on the line segment $\overline{M_0M_1}$, the resulting curve is convex.

Proof: Consider a point P_f inside the triangle M'TM''. Since $N_o - P_f = P_f - M_o$, N_o is inside the triangle P_oTP_4 . On the other hand, for a point B_m on the line segment $\overline{M_oM_1}$, B_2 satisfying Eq. (6) lies on the line segment $\overline{N_oN_1}$.

Recall that B_m is the midpoint of the line segment $\overline{B_1B_3}$ parallel to $\overline{P_0P_4}$. Thus, as can be seen from Fig. 1, B_2 must lie inside the triangle B_1B_3T . That is to say, the control polygon $P_0B_1B_2B_3P_4$ is convex. This completes this proof.

Of course, if P_f happens to be outside the triangle M'TM'', the above method is not applicable. In this case, we employ the subdivision strategy described in Ref. 5) to split the intended curve into two parts at P_f and apply the method for each one. This process can be repeated until a satisfactory curve is obtained.

4. Example

To test the effectiveness, the curve design scheme described above has been applied for the example of Fig. 1. For the sake of a better understanding, we chose as B_m the points M_o , $(M_o + M_1)/2$ and M_1 , respectively. The resulting curves, together with their control polygons, are shown in Fig. 2.

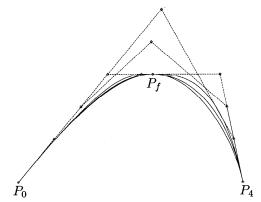


Fig. 2 The convex cubic B-spline curves together with their control polygons.

As can be seen from this figure, all of the three curves have the following properties: convexity preserving, interpolation of the given end conditions, and possession of the highest position at P_f . But they have subtle differences in shape. For example, when $B_m = M_0$, the generated curve is flatter in the neighborhood of P_f . In fact, the curvatures of them at P_f are 0.0, 0.00473, and 0.00625, respectively. This shows that the curvature at P_f increases as P_m approaches P_f . Thus, by moving P_f on P_f increases as the proximation curves similar to the designed one, among which the most satisfying can be chosen.

5. Concluding Remarks

This paper has presented an improved method for designing a convex B-spline curve in an interactive graphics environment. The algorithm leaves the highest point unchanged in order to reflect the shape characterization of an intended convex curve, and in general allows non-zero curvature at the point. The preliminary experiment indicated that it does indeed provide a convenient geometric means to quickly generate a class of convex B-spline curves with several common geometric properties.

Acknowledgments We are grateful to the referees for their careful reading and valuable comments.

References

- Goodman, T.N.T. and Unsworth, K.: Shape Preserving Interpolation by Curvature Continuous Parametric Curves, Comput. Aided Geom. Des., Vol.20, No.5, pp.323-340 (1988).
- Piegl, L.: Modifying the Shape of Rational B-spline. Part 1: Curves, Comput. Aided Des., Vol.21, No.8, pp.509-517 (1989).
- Pigounakis, K.G. and Kaklis, P.D.: Convexitypreserving Fairing, Comput. Aided Des., Vol.28, No.12, pp.981–994 (1996).
- 4) Rogers, D.F. and Adams, J.A.: Mathematical Elements for Computer Graphics, pp.305-351, International Edition, Singapore (1990).
- 5) Guan, II. and Torii, T.: An Interactive Method for Designing Smooth Convex Curves by Using a Cubic B-spline Formulation, Trans. IPS. Japan, Vol.36, No.12, pp.2754– 2760 (1995).

(Received April 14, 1997) (Accepted January 16, 1998)

Hui Guan received the B.S. degree in Computer Science from Beijing University of Aeronautics and Astronautics, Beijing, China, in 1987, the M.S. degree in Information Engineering from Fukui University,

Fukui, Japan, in 1993, and the D.E. degree in Information Engineering from Nagoya University, Nagoya, Japan, 1998. Her research interests include computer graphics and computeraided geometric design. Dr. Guan is a member of the IPSJ.

Tatsuo Torii is a professor of Department of Information Engineering, School of Engineering, Nagoya University. He has been engaged in research about numerical analysis and mathematical software. His special

subjects are function approximation and numerical integration based on the FFT technique. He was born in Kumamoto prefecture in 1934. He graduated from Department of Electricity, Kyushu Institute of Technology in 1957. After his 7 years career being with Shin Nihon Chisso Corp., he joined Department of Applied Physics, Faculty of Engineering, Osaka University as a research assistant in 1964. He received D.E. from Osaka University in 1972. In 1975, he joined Department of Information Engineering, School of Engineering, Nagoya University as an assistant professor. He was promoted to an associate professor in 1976, and to a professor in 1985. He is a member of IPSJ.