Vol. 39 No. 4

Regular Paper

Transactions of Information Processing Society of Japan

Apr. 1998

New Indices for Japanese Text:
A New Word-based Index of Non-segmented Text
for Fast Full-text-search Systems

NAOHIKO NOGUCHI,' YUJI KANNO,” MITSUAKI INABA'
and KAZUAKI KURACHI!

In this paper, we propose a new type of word-based index, the complete mazimal word index,
which is suitable for text of continuous sequence languages such as Japanese and Chinese. This
index solves the problems encountered in applying the word-based index file method to a full-
text retrieval system for such types of text. The proposed word-based index ensures retrieval
with no false dismissals for arbitrary search strings and very fast retrieval even for longer search
strings, while its size is small in relation to other types of index such as the n-gram-based
index. A formal definition of the complete mazimal word indez is given, and its generating
algorithm and searching algorithm are described. Some experimental results are presented to
demonstrate that this approach is in fact effective and practical. The proposed index is also
promising in that it can be naturally incorporated into inexact-match retrieval models such
as probabilistic and vector space model, because it contains word-based information such as

word frequencies and word distributions.

1. Introduction

To make word-based indices for text of con-
tinuous sequence languages such as Japanese
and Chinese, in which words are not delimited
by spaces, it is first necessary to segment the
text into a sequence of words as accurately as
possible. Although research on word segmenta-
tion methods for Japanese text has a long his-
tory, a perfect segmentation method for arbi-
trary text has not yet been developed. In fact,
the task is impossible in principle, because the
entire set of words that could be used in a text
cannot be predicted, and unregistered words
cannot be pinpointed with an ordinary dictio-
nary. Therefore, use of such a word-based index
of Japanese text for a fast full-text retrieval sys-
tem that has to handle arbitrary search strings
would lead to a certain amount of false dis-
missals, and the recall rate of the entire retrieval
system would depend heavily on the accuracy
of the word segmentation method it used.

Current studies of fast full-text retrieval sys-
tems for Japanese text follow other approaches
that do not use word segmentation methods.
One example is the character-based or n-gram-
based signature file method #1913 which uses
the fact that Japanese text has a large charac-

+ Multimedia Systems Research Laboratory, Matsu-
shita Electric Industrial Co., Ltd.

+1 Systems Integration Business Center, Matsushita
Electric Industrial Co., Ltd.

1098

ter set. Basically, this method uses a 1-gram
signature file to filter out the non-relevant text.
Ogawa'® uses a 2-gram signature file as well,
in order to speed up the whole retrieval pro-
cess. With this kind of approach, a significant
but limited speedup of the retrieval process can
be achieved, because it has to be used with a
full-text scanning process when retrieval with
no false drops is required.

Another route is the n-gram-based index
(inverted) file method. Kikuchi” uses a 1-
gram index file for kanji characters and a 2-
gram index file for kana character sequences.
These index files also contain posting records to
check the adjacency of arbitrary 1-grams and 2-
grams. This approach ensures retrieval with no
false dismissals for arbitrary search strings, as
well as very fast retrieval, because it is a sort of
inverted file method. However, it involves some
problems. One of these is the size of the index
file, which may be several times larger than the
original text, because it has to include posting
records of each occurrence of a l-gram or 2-
gram. Another problem is the retrieval speed.
It has reported that the longer the search string
is, the slower the search speed will be.

In this paper, we propose a new type of word-
based index, which we will call the complete
mazimal word indez ®®), that is suitable for
text of continuous sequence languages. The
proposed index can solve the above-mentioned
problems, since it ensures retrieval with no false

Vol. 39 No. 4

dismissals for arbitrary search strings and very
fast retrieval even for longer search strings,
while its size is relatively small. The remain-
ing sections of the paper are organized as fol-
lows: In Section 2, we explain the specific prob-
lems that arise when we try to apply the naive
word-based index file method to Japanese text.
We then introduce the concept of a complete
mazimal word indez in a formal setting. Sec-
tion 3 describes algorithms for generating and
searching an index. Implementation issues are
mentioned in Section 4, and some experimental
results are given in Section 5. The final section
sumiarizes the paper.

2. Basic Ideas

2.1 Problems and Solutions

Several types of problem are encountered
when a naive word-based index method is ap-
plied to a full-text retrieval system for Japanese
text.

Problem 1. Segmentation failure causes
false dismissals in retrieval.

In general, for ordinary Japanese text, a
vast number of possible word segmentations
exist; thus, the segmentation process is non-
deterministic in nature. While some of the
segmentation methods developed to date, such
as the longest match method, the minimum
morpheme number method, and the minimum
connective-cost method®, have achieved very
high precision, it can never reach 100 per-
cent (we call this the problem of non-
determinacy). Moreover, a text always con-
tains words that are not included in the dictio-
nary used by the segmentation process. This
poses a serious problem for the segmentation
method (we call it the problem of unregis-
tered words). Because of the above problems,
it is not possible to achieve no-false-dismissal
retrieval with a word-based index of Japanese
text.

Problem 2. Word-based indices can only
handle words as search strings (we call this
the problem of searching for an arbitrary
string).

It is true that, with a word-based index, the
search strings must be strings defined as words.
Whereas for English text, words are simply de-
fined as character strings separated by spaces,
for Japanese text, which contains no explicit
word delimiters, words must be defined in some
dictionary, which is then used by the word seg-
mentation process. Since ordinary Japanese

New Indices for Japanese Text 1099

text contains many compound words—that is,
words consisting of a sequence of component
words—the dictionary often contains the com-
ponent words but not the compound word. In
such cases, it is not possible to search for the
compound word by using the index. The dic-
tionary may also contain the compound word
but not the component words. In such a case,
it is not possible to search for the component
words. Moreover, as mentioned earlier, a text
always contains new words, which the system
has to handle as search strings.
The above problems seem inevitable if word-
based indices of Japanese text are used for a
full-text retrieval system, but if we give up at-
tempting to segment the text, then we will ar-
rive at a simple solution. The basic idea of this
solution can be stated as follows:
Word segmentation methods presup-
pose that a text has only one correct
segmentation. This might be true, but
we need not cling to it if the purpose of
using a word-based index is to ensure
fast retrieval with no false dismissals.
What is needed is not a word segmen-
tation of the text, but merely a se-
quence of words occurring in the text
that covers the whole text.

The simplest way to realize this idea is as fol-

lows:

1. Include every single character in the dictio-
nary.

2. Register all the words that occur in the
text, together with their occurrence posi-
tions, in the index.

We will call this type of index a complete index
of the text. The complete index of a text is
uniquely defined in relation to a dictionary.

Let us take as an example a text containing
a passage that begins “4r B AR ZFAEFHE I H
%9 %#F3...”, and a dictionary containing
entries such as “@H”, “HAR” <R «ghg
cz/Av’ “3‘%%”, u%%*@wv “c:v’ “H‘ji%”, u»g—;a)n’
“I3”. Tt is possible that the word segmentation
process segments it into a sequence of words,
“/E\H”, uﬁf‘?n’ Lc[i,a, uigg%a&én, “L:”, “Hji%”,
“vg—-;“)n? “53%%”, “Li” Whlle omitting “E]ZIK” and
“ZtE” If the word-based index contains only
these words for the portion of the text, it is
not possible to search for “HZA” or “24:” in
this passage. Here we can see the problem of
non-determinacy. It is also not possible to
search for “& HA”, which is not a word, if we
use this index. Here we can see the problem

1100 Transactions of Information Processing Society of Japan

of searching for an arbitrary string.

These problems can, however, be resolved by
using the complete index. The complete index
of this portion of the text comprises every word
occurring in the text, together with its occur-
rence position. Thus, after adding every single
character to the dictionary, the complete index
contains:

(44/\7- 1) (Lc/\E”) (“B”,Q),

(u E zlgn) (“Z'K”) (“2”(%:77 3)’
(44,—‘»77 4) (“'_L'éE”) (Lcézny 5)’

(¢ ?E”) (Ltﬁ‘T”) (ui%gqgj:én} 6),
(%77) (441:%77) (“L:”, 9)

(c [LH , 10) (c Eln) (L(i%”’ 11)
(“Tn 12)7 (“‘3‘%” 12) (“%)”, 13)7
(“]}_E_” 14) (44:‘%%@7 14) (ugﬁn, 15)’
(“137,16).

Here, the item (“4H”, 1) means that the oc-
currence position of the word “&H” in the text
is 1.

It is obvious that we can search for every word
in this portion of the text. Thus the problem
of non-determinacy can be resolved. More-
over, we can search for arbitrary strings by us-
ing this index. For the search string “&HZ”,
we have to check the adjacency of the occur-
rence positions of the word “&H” and “HA&”.
In the complete index, since we have an adja-
cent sequence of words (“&H”, 1), (“HA”,
2), we get the occurrence position “1” of the
string “&HZA”. It is likely that the search
string is not even a “compound word” in the
usual sense. For example, think of “MEIZ{H”
or “A43%&” as a search string. But it is possi-
ble to take those strings as “quasi-compound
words,” because the dictionary contains every
single character as a word. For the string “#

W, ’chere is a sequence of component words,
“FFE” “2”) “H”. Thus, we can use the com-
plete zndex to search for such strings. As a re-
sult, the problem of searching for an ar-
bitrary string is resolved. It is not difficult
to understand that the problem of unregis-
tered words can also be resolved. Since every
single character is included as a word, the com-
plete index must cover the whole text. Thus,
it contains enough information to locate every
string occurring in the text.

While all the problems mentioned can be re-
solved by using a complete index of the text,
the complete indez is so simple that it has some
defects. One of them is the redundancy of the
information it stores. In the above example, the
complete index includes (“3%£”, 6), and (“EF",

Apr. 1998

6) as well as (“EFH#£”, 6). But what is intu-
itively clear is that the information of (“3%”, 6)
and (“3F”, 6) is not necessary, because “#”
and “&F” occur within the word “#EF#” in
this portion of the text. This means that we
can omit those words that are included by other
words in the text.

Now we propose a new type of index, which
we will call a complete mazimal word index 6%
that removes the redundant information from
the complete index. If we omit all the elements
that are included in other elements from the
above-mentioned complete indez, then we have

only:
(“fE\E”, 1)’ (“D?ii”, 2)’ (“ZIK’_L'”)
(L'PJ-»EJ:») (“_:&E_?*En’ 6), (;c »7779),
(“E{jian) («-a——z)”, 12), (u%%)a, 14),
(“137,16).

With this kind of index, we can find all the
occurrence positions of a certain word W by
searching for W and its extension words in the
index. For example, if the search string is “#
F7 we first find all extension words of “;EF”
in the dictionary; in this case, we have “;EF”
and “EFHE”. Next, we search the index with
those words, and get (“EFHE, 6) and (“3E
F7,14) as the occurrence positions of the string
“;%#%F” in this portion of the text. We can con-
struct a search algorithm for arbitrary strings,
as well; the details of the algorithm will be given
in Section 3.

If the dictionary contains only all the 2-
grams, the complete mazimal word index will
be identical to the usual 2-gram-based index.
Obviously, we can resolve the above-mentioned
problems with this 2-gram index, but the com-
plete mazimal word index using an ordinary
dictionary has several advantages:

(1) Index size
The number of posting records the 2-gram
index would have to contain would be equal
to the number of characters in the text.
However, if we assume that the average
character length of all the maximal words
in the text is N, the number of posting
records in the complete maximal word in-
dexz would be roughly 1/N of the number
of characters in the text. This means that
the size of the complete mazimal word in-
dex would be roughly 1/N of the size of the
2-gram index.

(2) Search speed
In general, most real search strings are
“words” or “sequences of words” (com-

Vol. 39 No. 4

pound words) in the usual sense. With
the 2-gram index, we have to use all the
occurrence positions of each 2-gram in a
search string. But with the complete maz-
imal word indez, we only need all the oc-
currence positions of each component word
in a search string, the number of which is
usually less than the number of occurrence
positions of each 2-gram. This means that
a significant speed-up can be achieved when
a search string is relatively long.

Some comparisons between these two indices

will be given in Section 5.

2.2 Formalization

In this section, we give a formal definition of
the complete mazimal word index.

First, we suppose the following:

e A document is a finite character string.

e A dictionary is a finite set of arbitrary char-
acter strings. When a character string is an
element of some dictionary DICT, we call
the character string a word in DICT.

e When str is a character string, we write
str[i : j] to denote a substring of str that
begins at the i-th character of str and ends
at the j-th character of str.

o We write |str| to denote the length (number
of characters) of the character string str.

Next, we define several extension relations be-
tween words in a dictionary.

Definition1 (extension relation be-
tween word and string). Letabea wordin
a dictionary DICT and b be a character string.
Then

e q is an extension word of b

< b is a substring of a,
e qis a prefic word of b < a = b[1 :|al],
e qis a prefiz extension word of b
& afl b = b,
e q is a postfiz word of b
& a = b[|b| — |a| +1 :]b|], and
e a is a postfix extension word of b
& aflal — [b] +1 :|a]] = b.

For word-based indices such as we are dis-
cussing, the posting record for each occur-
rence of a dictionary word has to be registered.
Therefore, the unit of information of the index
(we will call it the index item) has to be of the
form (w,n), such that w is a word and n is its
occurrence position in the text.

Definition 2 (index item). Index items of
a document DOC with respect to a dictionary
DICT are possible 2-tuples of the form (w,n),
where

New Indices for Japanese Text 1101

e wisa word in DICT,

e n is a character position of DOC, and

e wisa prefiz word of DOC [n:|DOC|—n+1].

An index of a document is then defined as a
set of index items.

Definition 3 (index). An indez of a docu-
ment DOC with respect to a dictionary DICT
is a finite set of index items of DOC with re-
spect to DICT.

An extension relation among index items is
defined as follows:

Definition4 (extension relation be-
tween index items). Let Iy = (wy,n1), [z =
(we,m9) be index items of a document DOC
with respect to a dictionary DICT. Then,

I is an extension index item of I,
& (wy is an extension word of ws) A
(m < 77,2) A (n1+ lelz no+ |’LU2|)

It is obvious that the extension relation
among indez items of some document is a par-
tial order relation of which the maximal element
is naturally defined. Thus, we arrive at a con-
cept of mazimal index items in an index with
respect to this extension relation.

Definition 5 (maximal index item). Let
DOC be a document, DICT be a dictionary,
and IND be an index of DOC with respect to
DICT. Then,

An index item in IND is a mazimal

index item

& it has no extension index items in
IND except for itself.

The complete indez, our first solution to the
problems, is naturally defined as follows:

Definition 6 (complete index). The com-
plete indez of a document DOC with respect to
a dictionary DICT is a set of all possible index
items of DOC with respect to DICT.

Under these definitions, we finally arrive at
the definition of a complete mazimal word in-
dezx.

Definition 7 (complete maximal word
index). The complete mazimal word index of
a document DOC with respect to a dictionary
DICT is the set of all mazimal index items
in the complete index of DOC with respect to
DICT.

We have one and only one complete mazimal
word index of DOC with respect to DICT.
From this definition, the following claims are
deduced:

Claim 1. Let IND be the complete mazimal
word indez of a document DOC with respect to
a dictionary DICT. Then, for each occurrence

1102 Transactions of Information Processing Society of Japan Apr. 1998

procedure make_index(DOC,DICT,IND)
add every single character as a word to DICT, forming DICT'

W:={w | w is a prefiz word of DOClhead : l] in DICT" }
lprefiz := the longest word in W}
if head + |l_prefiz| > tail then begin

register (I_prefiz, head) to IND;

0

1

2 begin

3 tail := 1; 1 := |DOC|

4 for head=1 to [do begin
5

6

7

8

9 tail := head + |l_prefiz|;
10 end;

11 end;

12 end { of make-index };

Fig.1 Algorithm for generating a complete maximal word index.

position n in DOC of a word w in DICT, either

(a) or (b) holds:

(a) (w,n) € IND.

(b) 3(w',n') € IND s.t. (w',n') is an exten-
sion index item of (w,n).

This claim means that when we search for a
word w in a text by using the complete mazimal
word index, every occurrence of w in a text is
registered in IND as of the form (w,n) or of
the form (w',n'), where w' is an extension word
of w.

Claim 2. Let IND be the complete mazimal
word indezx of a document DOC' with respect to
a dictionary DICT, and let W be some set of
words in DICT. We define the set of possible
occurrence positions PP of W as follows:

PP (W) = {p| ((w,n) € IND)A
(weW)A
(n<p<ntw))}
We also define the set of extension words of a
string str as follows:
E (str) = { w' | w' is an eatension word
of str in DICT }.
Then, all the occurrence positions of w in DOC
are included in PP (E (w)).

This claim means that when we search for a
word w in a text with the complete mazimal
word indez, all we have to do is to find all the
occurrence positions of all the extension words
of w in the index.

3. Algorithms

3.1 Algorithm for Generating a Com-
plete Maximal Word Index

The algorithm for generating a complete maz-
imal word indexr for a document DOC, using a
dictionary DICT, is shown in Fig. 1.

In line 6, the algorithm finds the longest
word [_prefir of all the possible words that
begin at each character position head in the

text. Then at line 8, it registers the index item
(I_prefiz, head) in the index if the index item
has no extension index items in the index.

It is easy to prove that each registered en-
dex item is mazimal, and that all the mazimal
index items are indeed registered by this algo-
rithm. Thus, this algorithm produces the com-
plete mazimal word index.

3.2 Algorithm for Searching for Arbi-
trary Strings with the Complete
Maximal Word Index (Outline)

While the process of searching for words is
very simple, it might become slightly compli-
cated if the search string is not a word. We
will therefore give an outline of the searching
algorithm here.

Let DOC be a document, DICT be a dictio-
nary, IN D be the complete mazimal word index
of DOC with respect to DICT, and str be the
search string. First, we define several words,
sets of words, and numbers relative to str, for
convenience in the following discussion.

L(str) = { w| w is a postfiz extension word
of str in DICT 1},
R (str) = { w | wis a prefiz extension word
of str in DICT },
p (str) = the longest of all the
prefiz words of str,
s (str) = the longest of all the
postfiz words of str,
i = lp(str)l, § = |s (str)], n = |str], and
m=n-—7+1

As explained in Section 2.2, when the search
string str is a word in DICT, what the algo-
rithm has to find is PP (E (str)). (This is a
direct result of Claim 2.) To pinpoint the ex-
act occurrence positions of str, it has to ex-
amine PP (E (str)) and adjust the occurrence
position of each ezxtension word in E (str) to

Vol. 39 No. 4

Occurrences of
search string

1

1 1 i |I
LN N B N

Document |

Maximal Index Items

Fig. 2 Situation in which the search string is not a
word.

the real occurrence position of str*. We write
P (E (str)) as a set of all occurrence positions
of str, each element of which is adjusted from
the occurrence position of each word in E (str).
Then, we write Py to denote all the exact oc-
currence positions of str.

Py = P (E (str))™*

When str is not a word, the algorithm has
to find all the possible sequences of index items
from IN D, each of which covers str. As shown
in Fig. 2, some occurrence of a search string
might be covered by a sequence of three index
items in I N D, while another occurrence might
be covered by a sequence of two indez items.

Such a possible sequence can be divided into
two parts: one of them covering the prefix of
str, and the other covering the postfix of str.
We call these parts of the sequence the left-hand
extension sequence and the right-hand exten-
sion sequence. All the occurrence positions of
str can be calculated from those parts of the
sequence. That is, the occurrence positions of
str must be the positions of the adjacent pair of
the left-hand extension sequence and the right-
hand extension sequence. We will represent this
fact as follows:

PE (str,a,b) = PL (str,a) N PR (str,b).
Here, PE (str,a,b) is the set of occurrence po-
sitions of str that are the positions of the adja-
cent pair of the left-hand extension sequence,
which as a whole is the postfiz extension of
str{l : a], and the right-hand extension se-
gquence, which as a whole is the prefix exten-
sion of str[b : n]. PL(str,a) and PR (str,b)
are the normalized positions of the left-hand ez-
tension sequence and the right-hand extension
sequence. Figure 3 shows this situation.

PL (str,a) and PR (str,b) can be calculated
as follows:

* When str (for example, “abc”) has some eztension
words that contain iterative occurrences of str (for
example, “abcdabc”), one occurrence of the exten-
sion word could produce multiple occurrence posi-
tions of str.

% We represent P (X) for any string X or set of strings
X as the set of all occurrence positions for the string
or set of strings, each occurrence position of which is
adjusted to the beginning point of the search string.

New Indices for Japanese Text 1103

Right-hand extension sequence @
t

l/ str{1:a] ‘ a

Search string f Y
i

I

]
\.‘ str[b:n] /‘

Fig.3 Adjacent pair of extension sequences.

PL(str k)=

P (L (str[l : k}))

P (L (str[l : k]))U

$ (P s (strlL RD)O
pl (max (i, k—|s (str[l : k])]), k))

L when z<k<n,

PR(str,k)

P (R (str[k : n]))

P (R (str[k : n]))U

(P (p (str[k : n]))N

pr (k,min (m, k+p (str[k : n])[)))

when k = 1,

when k£ = m,

. when 1<k <m,
where
pl(t,e) = Usj<ice PL (str,1),
pr(te) = Ut<l<e PR (str,l).

Here again, P (L (str[l: k])), P (s (str[1: k])),
P (R (str[k : n])), and P (p (str [k : n])), are the
set of occurrence positions, which are adjusted
to the real occurrence positions of str.

PE (str,a,b) has to be calculated for all pos-
sible a and b. Thus we define P; as follows:

P, =, , PE (str,a,b),
whereiga’<n,1<b§m,a§b—1.
Finally, the occurrence positions P of the
non-word string str can be calculated as the
union of Py and P;.
P=PyUP;.

-This is an outline of the searching algorithm.
With this algorithm, we can obtain every oc-
currence position of arbitrary strings systemat-
ically.

4. Implementation Issues

4.1 Configuration of the Index File

As explained in Section 3.2, it is often neces-
sary to find all the eztension words of a certain
substring of a search string. L, R, and E, which
are defined in Sections 2.2 and 3.2, correspond
to such an operation. The structure of the index
file should ensure fast retrieval of such ezten-
sion words. Figure 4 shows the configuration
of the index file. It contains an occurrence
word table in which the words in the complete
mazimal word index are sorted in lexicograph-

1104 Transactions of Information Processing Society of Japan

5 \

Head Character Table . f

[
\Posting Records

1of Each Word
T
'

----- C —= T X

Posting Records

Occurence Word Table

Reverse-order Word Table
Tail Character Table

Fig.4 Configuration of the index file.

1 AL
A 4+ 2 AL
B 2 A ...
C 3 A

5 AL

Single Character Table

Character Position Table

Fig.5 Configuration of the additional structure.

ical order together with the posting records for
each word. It also contains the head charac-
ter table, each character of which points to
the first word in the occurrence word table
that begins with that character. This structure
enables us to find all the prefiz extension words
of an arbitrary string quickly. It also contains
a tail character table and a reverse-order
word table in order to ensure fast retrieval of
all the postfix extension words of an arbitrary
string.

Figure 5 shows an additional structure to
ensure fast retrieval of extension words in gen-
eral. The single character table contains ev-
ery character, with a pointer to the portion of
the character position table in which all the
dictionary words including that character are
listed. The character position table contains
all the words that include a character, together
with the position of the character in each word.
This structure enables us to find all the exten-
sion words of an arbitrary string.

Although the number of indez items in the
complete mazimal word index is much smaller
than the number of the complete index, the size
could be very large, because the index file con-
tains their posting records as well. In order

Apr. 1998

A
N
/ A
4 B \ Word
N

B) Group N

Word Group Table B

Head Character Table

T
!

|
T
1
'
T
!
] N
1
1
1
1

J
l%’osting Records
of Word Group N
T

1
1

Posting Records Occurence Word Table

Fig.6 Configuration of the index file (low-frequency
words).

to compress the index file, the posting records
are registered in ascending order, and the dif-
ferences among subsequent postings, instead of
the postings themselves, are registered. Since
the difference is usually much smaller than the
posting itself, the posting records can be com-
pressed. But for the posting records of low-
frequency words, it is possible that the differ-
ences among subsequent postings are relatively
big, which results in a low compression rate. In
order to avoid such results, the words in the
occurrence word table are divided into two
sets, a set of high-frequency words and a set of
low-frequency words, and the index for a set of
low-frequency words is constructed as shown in
Fig. 6. Here we have the word group table
as well, each entry of which corresponds to a
group of low-frequency words. Each element of
the posting records contains postings of all
the words in a group.

Those configurations are chosen to ensure a
compact index and fast retrieval of extension
words.

4.2 Revision of the Dictionary

In the n-gram-based index file method, the
search speed decreases when the length of the
search string is greater than n. The same thing
happens in the complete mazimal word index
file method when the search string is longer
than a word: that is, when it is a compound
word.

As explained in Section 3.2, in order to search
a compound word, it is first necessary to find
every occurrence position of each component
word, then to check the adjacency of all the
occurrence positions of each component word.
For example, in order to search for “H H&”,
which is not a word in the dictionary, we have to
search for “38” and “HZA”, and then check the

Vol. 39 No. 4

adjacency of all the occurrence positions of “¥”
and all the occurrence positions of “HZA". The
search time depends on the sum of the num-
bers of occurrences of “3” and “HA”. Typical
problematic cases are those in which the com-
ponent word is very frequent but the compound
word is not. In the above example, it is likely
that the component words “H” and “HA” are
indeed frequent but the compound word “3 H
A7 is not. A relatively long search time will be
needed for search strings of this type.

In this problem, we can improve the situation
drastically by revising the dictionary. The basic
idea of the revision is as follows:

For each word that is very frequent in

the text, add some extension words to

the dictionary as dummy words.
The problem is that ordinary text contains
some very frequent words. If we can remove
such words from the mazimal word indez, then
the search time will be improved. One way of
doing this is to add to the dictionary all the
strings consisting of the frequent word and an
arbitrary single character. In the above exam-
ple, a set of new words,

{HE, VWE,...., ®Bd, ...},
is added to the dictionary. If we use the re-
vised dictionary to create a complete mazimal
word indez, the occurrence positions of “3” are
split into the occurrence positions of { &, \»
B, Bd, B\ ...}, This revision drastically
reduces the frequency of the word “¥”, thus
eventually reducing the search time for a search
string containing “B”.

We will see some effects of this revision in
Section 5.3.

5. Experiments

An experimental system was implemented on
a SUN SS20 workstation (CPU: SuperSPARC x
2/50 MHz, 128 MB main memory). To evaluate
the performance of the system, we used data
sets taken from newspaper articles, the largest
of which contained about 400 MB of text.

We conducted two experiments in order to
compare the complete mazimal word index with
the usual n-gram-based index.

5.1 Size of the Index File

Figure 7 shows the size of the complete maz-
imal word index generated by the system. The
horizontal axis represents the ratio of the num-
ber of high frequency words to the total number
of words registered in the index. The vertical
axis represents the ratio of the index size to the

New Indices for Japanese Text 1105

1.4

INDEX SIZE(in proportion to size of original document)
=3
EN
i
I

0 10 20 30 40 50 60 70 80 90 100
PERCENTAGE OF HIGH-FREQUENCY WORDS

Fig.7 Index size.

e

e

°

AVERAGE RESPONSE TIME (miliseconds/occurences)
°
3
8

i
1 2 3 4 5
CHARACTIR LENGTH OF SEARCH STRING

Fig.8 Average response time for searching for words.
original document size.

The index size varies according to how many
words are registered as high-frequency words.
It is shown that for a high-frequency word ra-
tio of between 20 percent and 90 percent, the
index is smaller than the original text, which is
a considerable improvement over the size of an
n-gram-based index.

5.2 Response Time for Searching for

Words

Figure 8 shows the response time for search-
ing for words in the dictionary. Words were
classified according to their character length.
We measured the average response time for each
class of words. The horizontal axis represents
such classes of words with length 1 to 5, and
the vertical axis represents the average response
time for searching for one occurrence of each
word in these classes of words.

As we expected, the average response time is
constant, which means that it depends only on
the number of occurrences of the search word
and not on the length of the word. With the n-
gram-based index, the response time would in-
crease in proportion to the length of the search
string. With the complete mazimal word in-

1106 Transactions of Information Processing Society of Japan Apr. 1998

400

300

AVERAGE RESPONSE TIME(miliseconds)

0 20000 40000 60000 80000 100000
SUM OF OCCURRENCES OF EACH COMPONENT WORD(occurrences)

Fig.9 Average response time for searching
compound words.

dez, the response time for searching for an ar-
bitrary string is much improved provided the
string is a word in the dictionary. When we
use a very equipped dictionary in which almost
all the search strings are registered as words,
the proposed index would greatly improve the
entire performance of the retrieval system.

5.3 Response Time for Searching for

Compound Words

Figure 9 shows the response time for search-
ing for compound words each of which com-
prises two words. Before the experiment, a re-
vision of the dictionary, which we described in
Section 4.2, for top 300 high-frequency words
has been done.

In searching for compound words, the re-
sponse time would roughly be the sum of the
search time for each component word. From
Fig. 8, it appears that the response time for a
component word is proportional to the number
of occurrence in the text. Thus it can be logi-
cally inferred that the response time for search-
ing for a compound word is proportional to the
sum of the numbers of occurrences of its com-
ponent words.

For this experiment, compound words were
first classified so that each compound word in
one class had almost the same sum of the num-
bers of occurrences of its component words.
The response times for all compound words in a
class were then averaged. In Fig. 9, the horizon-
tal axis represents classes of compound words,
depicting the sum of the numbers of occurrences
of each component word. We could predict that
the dots should be plotted in a line. In fact, in
the left-hand part of this graph, the dots are
roughly in line*. But in the right-hand part,
they drop away suddenly and then level out
gradually. Here we see the effect of the revi-
sions of the dictionary that we mentioned in

Section 4.2. Each compound word in the classes
plotted here has a very frequent word as one of
its components. But the number of occurrences
of such frequent words decreases as a result of
the revision, as shown in the right-hand side of
the graph.

As stated in Section 2.1, we added every sin-
gle character to the dictionary before we con-
structed the index, so that every search string
can be seen as a compound word. Thus, the
proposed index is practical even for search-
ing for compound words (which is identical to
searching for arbitrary strings), if this kind of
revision of the dictionary is done correctly.

6. Conclusion

We have proposed a new type of word-based
index, called a complete mazimal word index,
suitable for texts of continuous sequence lan-
guages such as Japanese and Chinese. This in-
dex solves the problems of using the current
word-based index file method in full-text re-
trieval systems for such types of text.

The formal definition of a complete mazimal
word index was given, and its generating algo-
rithm and searching algorithm were then de-
scribed.

We described some experimental results and
confirmed that this approach is in fact effec-
tive and practical. The conventional n-gram-
based index file method has several problems
as regards its index size and search speed. We
showed that our approach can offer a solution
to these difficulties.

IR systems based on inexact-match retrieval
models, such as probabilistic or vector space
models, are now in practical use. Those systems
have a relevance ranking or relevance feedback
function that uses word frequency information
in the stored text. The proposed method is
promising in that it can be applied to such sys-
tems without any computation, because the in-
dex is word-based, which means that it contains
word frequency information**.

* As in Fig.8, all the words that included low-
frequency words as well as high-frequency words
were tested. In the case of low-frequency words, the
response time has a certain overhead, so the average
response time would be somewhat larger than the
exact value. That is why the average time per oc-
currence depicted in Fig. 8 is somewhat larger than
the value we can calculate from Fig. 9.

**% Some reports state that n-gram based information

is also useful for such inexact match retrieval mod-
els 20:11),

Vol. 39 No. 4

Acknowledgments We would like to ex-
press our thanks to anonymous referees for their
helpful comments on earlier version of this pa-
per.

References

1) Frakes, W.B. and Baeza-Yates, R.A. (Eds.):
Information Retrieval: Data Structures and Al-
gorithms, Prentice-Hall, Englewood Cliffs, NJ
(1992).

2) Fujii, H. and Croft, W.B.: A Comparison of
Indexing Techniques for Japanese Text Re-
trieval, Proc. 16th ACM SIGIR Conference,
pp-237-246 (1993).

3) Gonnet, H.G., Baeza-Yates, R.A. and Snider,
T.: New Indices for Text: PAT Trees and PAT
Arrays, in Ref. 1), pp.66-82 (1992).

4) Hatakeyama, A., et al.: Implementation of
Software Text Search Machine (in Japanese),
Special Interest Group Notes of the IPSJ,
Vol.F125, pp.19-26 (1992).

5) Hisamitsu, T. and Nitta, Y.: A Gener-
alized Algorithm for Japanese Morphologi-
cal Analysis and Comparative Estimation of
Some Heuristics (in Japanese), Trans. IEICE,
Vol.J77-D-II, No.5, pp.959-969 (1994).

6) Inaba, M., Kurachi, K., Noguchi, N. and
Kanno, Y.: New Indices for Japanese Text:
Their implementation, experiments and eval-
uation (in Japanese), Proc. 50th Annual Con-
vention IPS Japan, pp.4-43-4-44 (1995).

7) Kikuchi, C.: A Fast Full-Text Search Method
for Japanese Text Database (in Japanese),
Trans. IEICE, Vol.J75-D-1, No.9, pp.836-846
(1992).

8) Kurachi, K., Inaba, M., Noguchi, N. and
Kanno, Y.: New Indices for Japanese Text: The
principle of making an index and searching in-
dex (in Japanese), Proc. 50th Annual Conven-
tion IPS Japan, pp.4-41-4-42 (1995).

9) Nomoto, M. and Noguchi, N.: A Ranking
Strategy Incorporating Document Structure
and Cooccurrence (in Japanese), Proc. 52nd
Annual Convention IPS Japan, pp.4-203-4-204
(1996).

10) Ogawa, Y.: A New Character-based Index-
ing Method using Frequency Data for Japanese
Documents, Proc. 18th ACM SIGIR Confer-
ence, pp.121-129 (1995).

11) Ogawa, Y.: An Efficient Document Ranking
Retrieval Method Using n-gram-based Signa-
ture Files, Trans. IPS Japan, Vol.38, No.11,
pp-2286-2297 (1997).

12) Salton, G. and McGill, M.J.: Introduction to
Modern Information Retrieval, McGraw Hill,
New York (1983).

New Indices for Japanese Text 1107

13) Tomohiro, S., et al.: Bibliotheca/TS: Japanese
full-text retrieval system (in Japanese), Online
Kensaku, Vol.13, No.3, pp.142-147 (1992).

(Received September 9, 1996)
(Accepted February 2, 1998)

Naohiko Noguchi was born
in 1960. He received his M.E.
degree from Tokyo Univ. in
1985. He has been working in
Matsushita Electric Industrial,
Co., Ltd. since 1985 and has
been engaging in research on
natural language processing, discourse under-
standing, semantics and pragmatics of natural
language, and information retrieval. Since 1990
until 1992 he had been a visiting researcher of
Stanford University. He is a member of IPSJ,
JCSS, ACL, ACM, and AAAL

Yuji Kanno was born in
1960. He received his M.S. de-
gree from Tohoku Univ. in 1985.
He has been working in Mat-
sushita Electric Industrial, Co.,
d Ltd. since 1985 and has been en-

: gaging in research and develop-
ment on natural language processing, expert
systems, string matching algorithm, and infor-
mation retrieval. He is also interested in Shougi
playing algorithm. He is a member of IPSJ.

Mitsuaki Inaba was born in
1967. He received his B.E. de-
gree from Tokyo Univ. in 1991
and his M.E. degree in 1993.
He has been working in Mat-
sushita Electric Industrial, Co.,
Ltd. since 1993 and has been en-
gaging in research on information retrieval and
in development of text retrieval systems. He is
a member of IPSJ.

Kazuaki Kurachi was born
in 1968. He received his B.E. de-
gree from University of Electro-
Communications in 1991. He
has been working in Matsushita
Electric Industrial, Co., Ltd.
since 1991 and has been engag-
ing in research on information retrieval. He is
a member of IPSJ.

