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Re-examination of Allen’s Interval-based Temporal Logic

Y OSHIFUMI MASUNAGA'

This paper re-examines Allen’s interval-based temporal logic. First, it is shown that only
three out of Allen’s thirteen temporal relationships are topological invariants. Second, the
topological and the ordering temporal relationship system are introduced to show that Allen’s
temporal relationship system is induced by the combination of these two systems. Third, it is
shown that an arbitrary temporal relationship system such as beginning temporal relationship
system is defined as a canonical surjection induced by a partition of the set of Allen’s thirteen
relationships. Fourth, a dependency structure among temporal relationship systems is shown.
Combined reasoning for arbitrary temporal queries is also investigated based on those results.
Last, it is shown that Allen’s equals and meets relationships are necessary and sufficient to
represent any one of Allen’s thirteen relationships if null temporal intervals are used.

1. Introduction

Allen introduced the interval-based tempo-
ral logic!) to represent temporal knowledge and
temporal reasoning, where a temporal interval
is defined as an ordered pair of time-points with
the first point less than the second. It is shown
that there are at most thirteen temporal rela-
tionships that could hold between two temporal
intervals, which are referred to by equals, before,
after, during, contains, overlaps, overlapped_by,
meets, met_by, starts, started_by, finishes, and
finished_by. Based on this result he developed a
system which can infer new relationships which
might hold when a new relationship is added to
an existing network where the nodes represent
individual intervals.

To represent temporal multimedia data such
as audio and video, Allen’s interval-based tem-
poral logic is very powerful because such data
are regarded as temporal intervals. Many in-
vestigations have been done based on this ap-
proach: Temporal intervals or time-lines have
been used to represent and query historical
databases?), to represent multimedia playback
processes with a modification of Petri net®?4),
to visualize temporal transformations of tem-
poral data and to depict the temporal relation-
ships of a composite temporal object®®) to
graphically describe how media within a pre-
sentation are arranged over time”), and to show
a unified approach to representation, synchro-
nization, and storage of temporal multimedia
data based on an object-oriented approach®).
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Standardization activity on multimedia docu-
ments such as Hyper ODA is also based on this
approach?.

In addition, Allen’s interval-based logic has
been used intensively to represent spatial
knowledge in the research field of geograph-
ical information systems (GIS). For exam-
ple, two-dimensional spatial objects such as
countries, states, towns, lakes are represented
as two-dimensional spatial intervals, which
are referred to minimum bounding rectangles
(MBR)'9).  One-dimensional spatial objects
such as roads and rivers are represented as
a set of one-dimensional spatial intervals, i.e.
lines. Similarly, three-dimensional spatial ob-
jects such as buildings can be represented as
three-dimensional spatial intervals, i.e. blocks
which are named minimum bounding blocks
(MBB)'1. Topological nature of spatial rela-
tionships are extensively investigated by Egen-
hofer, et al.'?. Qualitative spatial reasoning
about distance and direction is investigated by
Frank'®. Heterogeneous spatial reasoning is in-
vestigated by Sharma, et al.'®.

However, in spite of the important roles of
Allen’s interval-based temporal logic in spatio-
temporal multimedia information system de-
sign and implementation, little investigation
has been done to figure out its topological, al-
gebraic, and semantic nature. Without know-
ing its topological nature, for example, we can-
not answer even a very preliminary query like
which one of the thirteen relationships is topo-'
logical invariant. That is, the investigation is
indispensable to design spatio-temporal query
languages, and to show how to organize and
manage spatio-temporal multimedia data.
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In this paper, we re-examine Allen’s interval-
based temporal logic: In Section 2, it is shown
that only three out of Allen’s thirteen tempo-
ral relationships have topological nature; which
are equals, contains, and during. We call a set
of Allen’s thirteen temporal relationships with
transitivity table as Allen’s relationship “sys-
tem.” We introduce the topological and the or-
dering temporal relationship system which con-
sist of a set of eight topological temporal rela-
tionships and a set of three ordering temporal
relationships, respectively. Then, it is shown
that Allen’s relationship system is derived from
the composite combination of these two sys-
tems. In Section 3, we investigate canonical
forms of temporal relationships. It is shown
that temporal relationships are characterized
as partitions of the set of Allen’s thirteen re-
lationships. Then, it is shown that an arbitrary
temporal relationship is induced by a canonical
surjection defined by an arbitrary partitioning,
and that the total number of meaningful tem-
poral relationships does not exceed 27,644,437.
A dependency structure among temporal rela-
tionship systems is also shown. In Section 4,
normal forms of Allen’s thirteen temporal rela-
tionships are investigated. It is shown that any
one of Allen’s thirteen temporal relationships
has its equivalent that is constructed using only
equals and meets relationships if “null temporal
intervals” are used. Based on this result, nor-
mal forms of composite temporal multimedia
objects are investigated. Section 5 concludes
this paper.

2. Re-examination of Allen’s Interval-
based Temporal Logic

2.1 Allen’s Interval-based Temporal
Logic

2.1.1 Definitions

Let R be the real line. We regard R as the
time axis throughout this article. A temporal
interval I is defined as an ordered pair of time-
points stp and etp; [stp, etp](€ R x R) with the
first point (= stp) less than the second (= etp).
Start (end) time point of an interval I is denoted
by Lstp (I.etp) using dot notation.

Allen!) showed that there are at most thir-
teen temporal relationships that could hold be-
tween two temporal intervals, which are re-
ferred to by equals, before, after, during, con-
tains, overlaps, overlapped_by, meets, met_by,
starts, started_by, finishes, and finished_by.
Note that they are mutually exclusive by defi-
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nition. Note also that six out of them are the
inverses of other six relationships. For exam-
ple, relationship after is the inverse of before.
Here we summarize the definition of thirteen
temporal relationships, where I and J represent
temporal intervals, and <= is a shorthand no-
tation of “if and only if.”
[Definition of Allen’s Temporal Relation-
ships]
(1) (VI,VI)(equals(1,J) <=
Lstp = J.stp and Letp = J.etp)
) (VI,VI)(before(I,]) <= Letp < J.stp)
(3) (VI,VI)(after(1,J) <= before(],1))
Yy (VL V) {during(1, ]} <
Lstp > J.stp and Letp < J.etp)
(5) (VI,¥I)(contains(I,J) < during(J,1))
(6) (VI,VJ)(overlaps(l,J) <= Lstp < J.stp

and I.etp > J.stp and Letp < J.etp)
(7)  (VLY])(overlapped-by(1,J) <=

overlaps(J,1))
(8) (VI,¥J)(meets(I,J) <= L.etp = J.stp)
(9) (VI,¥J)(met by(l, J) <= meets(J,1))
(10) (VI,V])(starts(l,]) <=

Lstp = J.stp and Letp < J.etp)
(11) (VI,VJ)(started_by(l, J) <= starts(J,I))
(12) (VI,VJ)(finishes(1,J) <

Istp > J.stp and Letp = J.etp)
(13) (VI,VI)(finished_by(1,J) <=

finishes(J, 1))

2.1.2 Allen’s Temporal Relationship
System
The set of all Allen’s thirteen temporal re-

lationships, denoted by Raiien, is “closed” for
temporal intervals in the sense that one and
only one of them holds between an arbi-
trary pair of two temporal intervals. There-
fore, given a set of temporal intervals I =
{I1,1,...,1,}, we can compute a set of in-
stances of Allen’s temporal relationships with
respect to I; Ralten|IXI = {r;]r(1;,1;) = true}.
This set consists of n? elements. Using this set,
a simple query like “Does I meet J7” can be
answered directly by pattern matching method.
However, this set of instances cannot answer a
complex query like “Which interval is before K
which is during J,” where K is a new interval
not in I. In order to answer this query, tran-
sitive relationships should be maintained. For
example, if during(K,J) and before(I,J) hold,
then we can infer that before(I,K) holds. The
“transitivity table” is introduced by Allen to
record inference rules between two temporal re-
lationships!). We denote this table by TAalien-
A similar work for spatial relationships is found
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in GIS research field, where the transitivity ta-
ble is called the composition table!®. To an-
swer simple or complex queries, both Rajjen
and T ajien should be maintained. By Rajjen, =
(RaAllen, T Allen ), Wwe mean Allen’s temporal rela-
tionship “system.” Other relationship systems
will be introduced in the following sections.

2.2 Topological and Ordering Tempo-

ral Relationships

2.2.1 Topological Temporal Relation-

ships

Topology is a generalized concept of metric
which is one of the most important concepts in
spaces. A set M with a family U of its sub-
sets is called a topological space if the following
conditions are satisfied: (a) M and ¢ (empty
set) are in U, (b) the intersection of any finite
number of members of U is in U, and (c¢) the ar-
bitrary union of members of U is in U. A topo-
logical space M with a topology U is denoted
by (M, U). For any given set M, there are al-
ways two topologies on M. These are: (i) U
consisting of all subsets of M, and (ii) U con-
sisting of only M and ¢. The real line R is a
metric space with metric d(x,y) = |x — y| and
therefore a topological space. The Euclidian
n-dimensional space R™ is a topological space.
Let (M;1,U;) and (M2, Us) be two topological
spaces. If there exists a continuous mapping
f: M; — Mj such that f is a one-to-one and
onto mapping, and f~!: Y — X is continuous,
then these two spaces are called homeomorphic,
and f is called a homeomorphism. Properties
of topological spaces that are preserved under
homeomorphisms are called “topological invari-
ants.” For example, the property of connected-
ness is a topological invariant.

Topological relationships between spatial ob-
jects have been investigated in the GIS research
field. For example, Egenhofer, et al.!®) intro-
duced “4-intersection,” which is a 2 x 2 matrix
defined by using the interior and the boundary
of spatial regions to provide a framework for the
description of topological spatial relationships.
It is shown that there are eight topological re-
lationships between two two-dimensional spa-
tial regions, which are referred to by t_disjoint,
t_contains, t-inside, t_equals, t.meets, t_covers,
t_coveredBy, and t_overlaps. (To distinguish
topological relationships from Allen’s relation-
ships, prefix “¢.” is attached.) It is shown that
topological relationships are topological invari-
ants. Note that they are mutually exclusive
and are closed for regions. Of course results
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are valid for the one-dimensional case except
that the value of the intersection of the second
row and the second column of the 4-intersection
is 1 for two-dimensional case, while it is 0 for
one-dimensional case because two boundaries
have no common element in the latter case.
The following shows the definition of eight topo-
logical relationships for two temporal intervals
I and J. Borrowing the composition table for
topological spatial relationships'® we can de-
fine a topological temporal relationship system
Rtopology = (RtopologyaTtopology)~ TOPOIOgical
temporal relationship definition is given below:
[Definition of Topological Temporal Re-
lationships]
(1) (VLVI)({-disjoint(l, J) <=

Letp < J.stp or Lstp > J.etp)
(2) (VL,VI)(t-contains(l,]) <=

Lstp < J.stp and Letp > J.etp)
(3) (VLVI)(tinside(1,)) <=

t_contains(J,I))
(4) (VI VI)(tequals(1, ) <

Lstp = J.stp and Letp = J.etp)
(5) (VL VI)(t-meets(1,J) <>

Letp = J.stp or Lstp = J.etp)

(6) (VI,VI)(t_covers(l,]) <=
(Lstp = J.stp and Letp > J.etp) or
(Lstp < J.stp and Letp = J.etp))
(7)  (VI,VJ)(t_coveredBy(1,J) <=

t_covers(J,1))
(8) (VL V) (t-overlaps(1,J) <=

(Istp < J.stp and I.etp > J.stp and Letp

< J.etp) or (Lstp > J.stp and Lstp <

J.etp and Letp > J.etp))

2.2.2 Topological Invariants and
Allen’s Temporal Relationships
In this section we examine which temporal

relationships are topological invariants among
Allen’s thirteen temporal relationships.
[Proposition 1] Allen’s temporal relationship
equals is a topological invariant.
(Proof) Suppose that there exists a topological
space S being homeomorphic to the real line R
under f: R — S, where the relationship equals
does not hold in it. Then, there exist temporal
intervals I = [stpl,etpl] and J = [stp2, etp2]
on R under equals such that equals(f(I),f(J})
does not hold in S. Without loss of generality
we assume that f(stpl) = f(stp2) does not hold.
Since f is a homeomorphism, the inverse map-
ping =1 exists so that stpl = f~1(f(stpl)) =
f~1(f(stp2)) = stp2 does not hold in R. This is
a contradiction. Q.E.D.
[Corollary 1] Allen’s temporal relationships.
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contains and during are topological invariants.
(Proof) Proven similarly to Proposition 1.
Q.E.D.
[Proposition 2] Allen’s temporal relationship
meets is not a topological invariant.
(Proof) A mapping f defined by f : R — R;
X - -> —x is a homeomorphism, because g : R —
R; —x - -> x is an inverse mapping of f, and f and
g are continuous. Suppose that I = [stpl, etpl]
and J = [stp2,etp2] are under meets. Then,
stpl < etpl = stp2 < etp2 holds. Now, f
maps I and J to [—etpl, —stpl](= f(I)) and
[—etp2, —stp2](= {(J)), respectively. However
meets(f(I),f(J)) does not hold, which contra-
dicts to the assumption that f is a homeomor-
phism. Q.E.D.
[Corollary 2] Allen’s temporal relationships
before, after, overlaps, overlapped_by, met_by,
starts, started_by, finishes, and finished_by are
not topological invariants.
(Proof) Proven similarly to Proposition 2.
Q.E.D.
[Theorem 1] Only equals, contains and during
are topological invariants among Allen’s thir-
teen temporal relationships.
(Proof) This is true by Proposition 1 and 2,
and Corollary 1 and 2. Q.E.D.

Relationships which are topological invari-
ants will be called topological relationships in
short.

2.2.3 Ordering Temporal

ships

In addition to topological spatial relation-
ships, other spatial relationships such as direc-
tion relationships, distance relationships, order-
ing relationships have been introduced in GIS
research field. For example, region A is west
of region B if they are related under a direc-
tion relationship West(A,B). Ordering rela-
tionships are also important in temporal multi-
media data modeling point of view. For exam-
ple, we say that temporal interval I “precedes”
(succeeds) temporal interval J if and only if
Letp < J.stp (Lstp > J.etp). Otherwise, I and
J are “unordered.”

Now let define three ordering tempo-
ral relationships; o_precedes, o_succeeds and
o_unordered as follows:

[Definition of Ordering Temporal Rela-
tionships]
(1) (VI,V])(o-precedes(l,J) <
Letp < J.stp)
(2) (VI,VI)(o-succeeds(1,]) <=
Lstp > J.etp)

Relation-
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(3) (VI,V))(o-unordered(1,J) <
(not(o_precedes(1, J))
and not(o_succeeds(I, J)))

Note that these three relationships are mutu-
ally execlusive and are closed for temporal in-
tervals. Therefore, we can introduce an order-
ing temporal relationship system Rordering =
(Rordering, Tordering), Where transitivity table
Tordering is defined as follows, and = is a
shorthand notation of “if.”

[Transitivity Table for Ordering Tempo-

ral Relationship System]

(1) (VI,VI,VK){o_precedes(I,J) and
o_precedes(J,K) = o_precedes(I,K))

(2) (VI,VJ,VK){o_precedes(1,J) and
o_succeeds(J,K) = o_succeeds(I, K) or
o_unordered(I,K) or o_precedes(I,K))

(3) (VI,VJ,VK){o_precedes(I,J) and
o-unordered(J, K) => o_unordered(I, K)
or o_precedes(I, K})

(4) (VI,V¥J,VK)(o_succeeds(1,J) and
o_precedes(J,K) == o_precedes(l,K)) or
o_succeeds(I, K)) or o_unordered(l, K))

(5) (VI,VJ,VK)(o-succeeds(I,J) and
o_succeeds(J, K) == o_succeeds(I, K))

(6) (VI,VJ,VK)(o_succeeds(1,J) and
o.unordered(J, K) => o_precedes(I, K) or
o_unordered(I, K))

(7) (VI VJ,VK)(o-unordered(1,J) and
o_precedes(J, K) = o_precedes(I,K) or
o_unordered(I, K))

(8) (VI,VJ,VK)(o-unordered(I,J) and
o_succeeds(J, K) = o_succeeds(I,K) or
o_unordered(l, K))

(9) (VI,¥J,VK)(o-unordered(1,J) and
o-unordered(J, K) => o_succeeds(I, K) or
o_unordered(I, K) or o_precedes(l, K))

2.3 Characterization of Allen’s Tem-

poral Relationships

As shown in Theorem 1, only three out
of Allen’s thirteen temporal relationships are
topological invariants. How do we character-
ize other ten relationships? In order to an-
swer this question, we note first that from topo-
logical point of view there is no significance
of whether temporal interval I precedes tem-
poral interval J or I succeeds J because the
values of the 4-intersection matrixes coincide
with each other. In other words, distinction
between Allen’s temporal relationship before
and its inverse after is meaningless from topo-
logical point of view. Furthermore, they can
be grouped together as a topological relation-
ship t_disjoint because (VI,VJ)(t-disjoint(1,J)
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Table 1 Characterization of Allen’s temporal relationships.

ordering | o_precedes | o_unordered o_succeeds
topological
t_disjoint before NA after
t_contains NA contains NA
t_inside NA during NA
t_equals NA equals NA
t_meets meets NA met_by
t_covers starts NA finishes
t_coveredBy started_by NA finished_by
t_overlaps overlaps NA overlapped_by

<= before(I,J) and after(I,J)) holds. Dis-
tinctions between Allen’s meets and its in-
verse met_by, overlaps and overlapped_by, starts
and finishes, and started_by and finished_ by are
meaningless by the same reason. They should
be grouped together as t_meets, t_overlaps,
t_coveredBy, and t_covers, respectively.

Distinction among three groups;

{before, meets}, { after, met_by}, {equals, during,
contains, overlaps, overlapped_by, starts, started
_by, finishes, finished_by} makes sense from “or-
dering” point of view. Three ordering tempo-
ral relationships are defined, which are referred
to by o_precedes, o_succeeds, and o_unordered.
This is the ordering temporal relationship sys-
tem introduced in the previous section.

Now, we can prove that Allen’s temporal re-
lationships are the results of the combination of
the topological and the ordering temporal rela-
tionship system. This result is stated in the
next theorem and is illustrated in Table 1.
[Theorem 2] Allen’s thirteen temporal rela-
tionships are obtained by the combined com-
position of eight topological temporal relation-
ships and three ordering temporal relationships.
(Proof) Each one of Allen’s thirteen temporal
relationships is characterized as follows:

(1) (VI,VI])(t_disjoint(I,J) and
o_precedes(1,J) <= before(1, J))
(2) (VI,VI])(t_disjoint(1,J) and
o_succeeds(1, J) <= after(1,J))
(3) (VL V))(t-contains(I,J) and
o_unordered(I,J) <= contains(1, J))
(4) (VI,VI)(t-inside(I,J) and
o_unordered(I, J) <= during(l, J))
(5) (VI,VJ)(t-equals(1,J) and
o_unordered(1,J) <= equals(l, J))
(6) (VI,VJ)(t-meets(1,J) and
o_precedes(1,J) <= meets(1, J))
(7)  (VI,V])(t-meets(I,J) and
o-succeeds(1, J) < met_by(1, J))
(8) (VL VI)(t-covers(I,J) and
o_precedes(1, J) <> starts(1, J))

(9) (VI,¥I)(t_covers(I,J) and
o-succeeds(l, J) <= finishes(I, J))

(10) (VI,VI)(t-coveredBy(1,J) and
o-precedes(1,J) <> started_by(1, J))

(11) (VI,VJ)(t-coveredBy(1,J) and
o_succeeds(l, J) <= finished_by(1, J})

(12) (VI,VI)(t-overlaps(1,J) and
o_precedes(l, J) <= overlaps(1, J))

(13) (VI,VJ)(t-overlaps(1,J) and
o-succeeds(l, J) <= overlapped_by(I, J))

Q.E.D.

3. Support of Arbitrary Temporal Re-
lationships

3.1 Canonical Forms of Temporal Re-

lationships

It is possible to define other temporal rela-
tionships in addition to topological, ordering,
and Allen’s temporal relationships. For exam-
ple, we can define “beginning” temporal rela-
tionships as follows, where I and J are temporal
intervals:

(1) (VL,VI)(beginsEarlierThan(l,J) <
Lstp < J.stp)

(2)  (VL,V])(beginsSameTime(1,J) <
Lstp = J.stp)

(3) (VI VJ))(beginsLater Than(l,J) <
Lstp > J.stp)

By definition, these three relationships are
mutually exclusive and are closed for tempo-
ral intervals. Therefore we can define begin-
ning temporal relationship system Rpeginning
as follows: (Of course, “ending” temporal re-
lationships {endsEarlierThan, endsLaterThan,
endsSameTime} can be defined in the same
manner.)

Beginning temporal relationships are charac-
terized by Allen’s temporal relationships:

(1) (VI,VI)(beginsEarlierThan(l,J) <=
before(I,J) or meets(I, J) or
overlaps(1, J) or contains(1, J) or
finished_by(I, J))

(2)  (VI,VJ)(beginsSameTime(l,J) <=
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equals(l, J) or starts(I,J) or
started_by(1,J))

(3) (VI,V)(beginsLaterThan(1,J) <
after(1,J) or met_by(L,J) or
overlapped_by(1,J) or during(l,J) or
finishes(1, J))

Notice first that any Allen’s temporal relation-

ship appears only once in either one of three

beginning temporal relationships, and second,
only disjunctive operator “or” is used to join

Allen’s temporal relationships appeared in the

right hand side of each beginning temporal re-

lationship. That is, the set of three begin-
ning temporal relationships induces a partition
of the set of all Allen’s thirteen relationships

R allen, where each class of this partition corre-

sponds to a temporal meaning defined by the

disjunction of Allen’s temporal relationships
belonging to that class.

In general let Rapen = {equals, before, after,
during, contains, overlaps, overlapped_by, meets,
met_by, starts, started_by, finishes, finished_by}
be the set of all Allen’s thirteen temporal re-
lationships. Suppose that 7 is a partition of
RAllen into 7 classes (1 <@ < 13); ¢y,Cay ..., Ci5
where ¢; = {r;,,7i.,- .., "4,.}.- Then, the quo-
tient set of Rajen With respect to 7 is defined;
Rallen/™ = {¢1,¢a,...,¢}. Therefore, we can
define a canonical surjection ¢, : Rajlen —
Ralen/m;7 - -> ¢, where r € ¢.  Furthermore,
let define a temporal relationship p; of class ¢;
as; p =r;, orry, or ... orry .. Then, a tem-
poral relationship system of R 4., induced by
m is defined as; Ry = Rapen/7 = (Ry, Tr),
where R, = {p,,p.,...,p:} and T, represents
the transitivity table of this system which is cal-
culated using Allen’s transitivity table. R, is
well-defined because R, is mutually exclusive
and is closed for temporal intervals by defini-
tion. It is easy to show that all previously intro-
duced temporal relationship systems are char-
acterized by this approach:
[Characterization of Riopologys Rorderings
and Rbeginning]

(1) Riopology is induced by partition meopology
= {{equals}, {before, after}, {during},
{contains}, {overlaps, overlapped_by},
{meets, met_by}, {starts, started_by},
{finishes, finished.-by}}.

(2) Rordering is induced by partition ordering
= {{before, meets}, {after, met_by},
{equals, during, contains, overlaps,
overlapped_by, starts, started_by, finishes,
finished_by}}.
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Arbitrary Temporal Relationships: R gy, /7
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ArbitraryPartition 7T

Allen's 13 Temporal Relationships: R 4 110,

7/

Partition Ty 00106y Partition T, gering
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8 Topological Temporal Relationships: 3 Ordering Temporal Relationships:

R topology Rurdering

Fig.1 Dependency structure among temporal
relationships.

(3) Rbeginning 1s induced by partition
Theginning = 110efore, meets, overlaps,
contains, finished by}, {equals , starts,
started_by},{ after, met_by, overlapped_by,
during, finishes}}

Two particular temporal relationship sys-
tems are Allen’s system itself Rajen, and
a universal relationship system Ryniversal
which are defined by partitions 7ajen =
{{equals} { before} { after},{ during},{ contains},
{overlaps}, { overlapped_by}, { meets}, {met_by},
{starts}, { started_by}, { finishes}, { finished_by}}
and Tuniversal = {equals, before, after, during,
contains, overlaps, overlapped_by, meets, met.
by, starts, started by, finishes, finished_by}, re-
spectively. Figure 1 depicts the dependency
structure among temporal relationship defini-
tions.

Formally any temporal relationship system
can be defined according to an arbitrary par-
tition of Rajen. Let Sy, (3) be the total number
of partitions of a set of n distinct elements into
1 disjoint classes. The numbers Sy, (%) are often
called the Stirling numbers of the second kind.
Then B(13) = S13(1) + S13(2) + ... + S13(13)
gives the maximum number of the different sets
of temporal relationships which can be defined
on it since the cardinality of Rajen is 13. The
numbers B(n) are often called Bell numbers,
and B(13) is calculated at 27,644,437. However,
it is not true that every arbitrarily defined tem-
poral relationship has a practical meaning. For
example, we can define a partition Thonsense =
{{equals, before}, { finishes, overlapped_by},
{meets, contains}, {overlaps, met_by, starts,
finished_by}, { started_by, during, after}}, but it
is hard to assign a practical meaning of this par-
titioning. That is, the total number of mean-
ingful temporal relationships does not exceed
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Structure of combined transitivity table for Allen’s temporal rela-

tionship system and “beginning” relationship system. a, b, a, d, ¢,
0, ob, m, mb, s, sb, f, and fb represent Allen’s temporal relation-
ship equals, before, after during, contains, overlaps, overlapped_by,
meets, met_by, starts, started_by, finished, and finished_by, respec-

bET, bST, and bLT represent beginsEarlierThan, be-

ginsSameTime, and beginsLaterThan, respectively.

mb

s | b [bET IbET | bST bLT

le

TAlent>
bepinning

ng

> A

- Tbeginnfing

tively.
K
amnde P B § ofob|m
e
b
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¢
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ob A
- 4
mb
s
sb
f
b
bET]
bST 1begmn
bLT 1

27,644,437.

3.2 Combined Reasoning for Tempo-

ral Queries

A single temporal relationship system is not
capable enough of answering arbitrary tempo-
ral queries. For example, Allen’s temporal re-
lationship system is not able to answer a query
like “which temporal intervals do precede tem-
poral interval I?7” because it doesn’t support re-
lationship o_precedes. Therefore, it is necessary
to combine different types of relationship sys-
tems so that the combined system can answer
a variety of queries.

For example, suppose that Allen’s relation-
ship system Rape, and beginning temporal
relationship system Rpeginning are combined.
Then, a combined transitivity table between
two sets of relationships; Ralien and Rpeginning
is defined in addition to two individual tran-
sitivity tables; Tapen and Tbeginning~ In
this example the combined transitivity table
of 16 x 16 is defined. Table 2 depicts its
global structure. Two essential subparts for
combined reasoning are; TAllen—beginning and
Theginning— Alien- A couple of interesting com-
ponents of T Alien—. beginning 1S shown below. The
rest of the matrix components are computed
similarly.

(a) (VLVJ,VK)(before(I,J) and

beginsEarlierThan(J,K) =

before(I,K) = beginsEarlier Than(I, K))

(VI,VJ,VK)(during(1, J) and

beginsSame Time(J, K) =

during(I, K) or overlapped_by(1,K) or

after(l, K) = beginsLater Than(1,K))
Now, it is possible to answer a query like “re-

trieve a temporal interval I which meets J, and

J begins earlier than K.” A straightforward im-

plementation of such query processing system is

possible by using a logic programming language

like Prolog.

(b)

4. Normal Form Issues of Allen’s
Interval-based Temporal Logic

4.1 Introduction of Null Temporal In-
tervals

Suppose that two temporal intervals I and
J are related under Allen’s temporal relation-
ship before(I,J). Then there is a suspension
time between them because Letp < J.stp. To
represent suspension, we have introduced “null
temporal intervals”'”. In this case, the null
temporal interval N is defined as a time inter-
val, provided that lL.etp = N.stp and N.etp =
J.stp. Therefore, a new composite temporal re-
lationship meets(meets(I,N), J) is defined. We
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Table 8 Equivalents of Allen’s temporal relationships when null temporal

intervals are used.

Allen’s Seven Primitive
Temporal Relationships

Equivalents

equals(I, J)
before(1, J)
during(l, J)
overlaps(l, J)
meets(1, J)
starts(1, J)
finishes(1, J)

equals(1, J)

(3N)(meets(meets(I, N), J))
(IN1)(3N2)(equals(meets(meets(N1,1), N2),J))
(IN1)(IN2))(equals(meets(I, N1), meets(N2, J)))

meets(1, J)

(3N) (equals(meets(I,N), J))
(3N)(equals(meets(N, 1), J))

say that relationship before(1,J) is equivalent
to composite relationship meets(meets(I, N}, J)
because we can prove that (VI,VJ)(before(,J)
<= (IN)(meets(meets(I,N),J))). In general,
we can show the next result.
[Theorem 3] Any one of Allen’s thirteen tem-
poral relationships has its equivalent obtained
by using only the relationships equals and/or
meets when null temporal intervals are used.
(Proof) The proof is trivial for equals and
meets. Therefore, let us prove the theorem
for relationships before, after, during, contains,
overlaps, overlapped_by, met by, starts, started
_by, finishes, and finished_by. First, we exam-
ine before defined by (VI,VJ)(before(1,]) —
Letp < J.stp). Now, let us introduce a null
temporal interval N such that L.etp = N.stp
and N.etp = J.stp. Construct a predicate
(IN)(meets(meets(I,N),J)), then it is easy to
see that (3N)(meets(meets(I,N),J)) holds if
and only if before(I, J) holds for any I and J, i.e.
they are equivalent. Proofs are similar for the
other ten temporal relationships and are omit-
ted here. Q.E.D.

Table 3 summarizes the equivalents proved
in Theorem 3.

4.2 Normal Forms of Composite Tem-

poral Multimedia Objects

Here we discuss an application of Theorem 3
to composite temporal multimedia object rep-
resentation. Multimedia objects such as audio
and video are represented by temporal inter-
vals. Usually, multimedia objects are composed
of several other component multimedia objects.
For example, a composite video before(V1,V2)
can be defined as a composition of two com-
ponent videos V1 and V2, respectively, related
under Allen’s temporal relationship before. No-
tice that temporal relationships are considered
as “composition operators” as well to combine
component objects. Now, suppose that null
temporal interval N represents the suspension
time between V1 and V2. It is interpreted as

a null video, which consists of a sequence of
black frames — a frame totally filled with black.
Therefore, no distinction can be seen when
before(V1,V2) and meets(meets(V1,N), V2) are
played back by a video player, i.e. two compos-
ite temporal videos are “equivalent.” This is
a practical meaning of null temporal intervals.
The same argument holds for audio case.

In general, let T and M be a set of temporal
intervals and a set of media, respectively. We
associate a temporal interval with medium in-
formation defined by a function g : I — M in
such a way that p(I) = video if I is a (null)
video interval. Suppose that before(I,J) holds.
If u(dy = p(J), then (VI,VI)(before(1,J) <
(3N)(meets(meets(I,N),J))) holds. Otherwise,
(VI, V) (before(l, J) <= (N1, 3N2)(equals(meets
(I,N1), meets(N2,J)))) holds. The reason why
we distinguish these two cases is that if u(I) =
1(J) does not hold (denoted by u(I) <> u(J)),
then the composite object meets(meets(I, N), J)
cannot be played back correctly either by a
video player or an audio player. To play it back
correctly, meets(I, N1) and meets(N2, J) are fed
to a video and an audio player, respectively,
provided that their playbacks start at the same
time, i.e. synchronously. Figure 2 shows two
different equivalents of before(1, J) correspond-
ing to the difference of media.

Based on this equivalence result, we can
show normal forms of seven primitive tem-
poral multimedia objects, which are de-
fined by equals(I,J), before(1,J), during(l,J),
overlaps(1,J), meets(1,]), starts(I,J), and
finishes(I,J) corresponding to Allen’s seven
temporal relationships, where I and J represent
temporal multimedia intervals such as video
and audio. Normal forms of other six primitive
objects corresponding to the inverse relation-
ships; after, contains, overlapped_by, met. by,
started_by, and finished.by are defined simi-
larly and are omitted here. Figure 3 shows
the normal forms of seven primitive composite
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Fig.3 Normal forms of seven primitive composite
temporal multimedia objects.

temporal multimedia objects.

Normal forms of more complex composite
temporal relationships can be calculated by
applying the normal form translation rules
depicted in Fig.3 recursively. For exam-
ple, the normal form of meets(meets(1,J), K)
is equals(meets(meets(I,N1),K), meets(meets
(N2,J),N3)), provided that u(I) = p(K) <>
u(J) for some N1, N2, and N3.

Apr. 1998

5. Conclusions

Allen’s temporal logic was re-examined in
this paper. We first investigated its topolog-
ical nature, and showed that only three out
of Allen’s thirteen temporal relationships are
topological invariants. The topological and the
ordering temporal relationship were introduced.
It is shown that Allen’s temporal relationship
system is induced by the combination of these
two relationship systems. We have shown that
any temporal relationship system such as be-
ginning temporal relationship system is defined
as a canonical surjection induced by a parti-
tion of the set of Allen’s thirteen temporal re-
lationships. It is shown that the total number
of meaningful temporal relationships does not
exceed 27,644,437. Combined reasoning for ar-
bitrary temporal queries is also shown.

Normal forms of Allen’s temporal relation-
ships are investigated by introducing null tem-
poral intervals. It is shown that any one of them
has its equivalent which is defined by using only
two Allen’s temporal relationships, which are
equals and meets. Based on this result, nor-
mal forms of composite temporal multimedia
objects were shown so that they can be played
back correctly.

Future works include an expansion of our
work to spatio-temporal paradigm so that an
entire framework for a multimedia data model-
ing and implementation can be achieved.
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