BRI A R54E (PR O FRIH ) 2EXS

1 —153

Synthesis Algorithm for Asynchronous Circuits from STG

2H—9
Mohit Sahni

specifications

Takashi Nanya

Computer Science Department Research Center for Advanced Science & Technology

Tokyo Institute of Technology

Abstract

In this paper we propose methods for synthesis of asyn-
chronous logic from graph theoretic specifications (STG).
Our methods operate purely at the STG level and can
handle non-persistent STGs with choice operation.

1 Introduction

The role of asynchronous design is gaining im-
portance due to inherent limitations of synchronous
circuits[1]. Signal Transition Graphs(STGs), which
can be used to specify the behaviour of asynchronous
control circuits, were first introduced by Chu[2].
STGs can efficiently capture the concurrent, sequen-
tial, conflict or choice relations between signal tran-
sitions and thus can consisely describe the behaviour
of asynchronous circuits.

There has been considerable research to gener-
ate asynchronous logic automatically. Some use the
State Graph(SG) of exponential complexity as an in-
termediate step and other methods work directly on
the STG. Our algorithm also uses the STG as the
main data structure and can generate circuits from
a large domain of STGs.

2 Preliminaries

Speed-independent circuits are defined to be a
class of asynchronous circuits that operate correctly
in the presence ¢f unbounded gate delays and zero

wire delays. In this model the circuit may not be .

stable when new inputs are applied.

2.1 STG

An STG is an interpreted Petri net whose transi-
tions are interpreted as the rising and falling of sig-
nals in a circuit. Each place in the Petri net is used
for specifying choice operation and is eliminated in
the corresponding STG if it has one predecessor tran-
sition and one successor transition. Fig. 1 shows an
STG. The input signals are underlined to distinguish
then from the non-input (internal and output) sig-
nals.

Each transition of a signal is represented by the
signal name and a direction eg. ¢+ (¢~) reprents the
rising (falling) of the signal ¢. If there are two or more
rising (falling) transitions of the same signal, num-
bers are assigned to distinguish the different transi-
tions. If transition t* follows directly after transition
s* then s* is called the frigger transition of ¢t*: A
transition is said to be enabled when all it’s trigger

University of Tokyo

01110 110 11
2211 - Z1-2 w25 -— 2412

oxxx/ \(O!XO xxu/ ; 101XX
P 24

- ziw
oxxool 1 X000 xme foo:xx
Zi+N 2] 5+ 2n
txxoo\\ wao ’Uﬂﬂx AI 1xx
i 1100 z

Figure 1: An STG

transitions have fired.

2.2 Properties of STGs

Definition 1.{2] A simple-cycle in an STG is a cycle
which includes all the rising and falling transitions
of a particular signal.

Definition 2[2] An STG is live if

1. every simple cycle has exactly one token

2. it is a strongly connected graph

3. the rising and falling transitions are alternated.
Definition 3[4] A live STG satisfies the
CSC(complete state coding) property, iff

1. every state has a unique code or

2. if two states have the same code then all the signal
transitions enabled in these states are the same.

Liveness and CSC are the only two necessary con-
ditions for the given STG to be implementable how-
ever other methods may impose other severe restric-
tions. From now on we assume that the given STG
satisfies these two properties.

3 Basic Circuit Structure

We use a generalized circuit structure (Fig. 2) for
synthesizing the circuits. For each non-input signal
we construct a partial circuit and the total circuit
consists of all the parial circuits. The partial cir-
cuit consists of set(reset) region networks and the
setreset) acknowledgement networks.

Definition 4 Set/Reset Region: The maximum
set of transitions firable after ¢t+/*(t~/*) is enabled
and before the next transition of ¢ is enabled is called
the set(reset) region of t+/*(t=/*).

A set(reset) region network is associated with each
rising(falling) transition of a signal. Under speed in-
dependent conditions, the output of the set/reset re-
gion network for transition t* will become 1 when the
t* is ready to fire and it remains 1 for sometime after
t* fires but will become 0 before the next transition
of ¢ is enabled.



1 —154

Set region network

A eregubeiebe s pptnberstts st .

network

Reset acknowledgeme
network

Reset region network

Figure 2: Generalized Signal Network

4 Speed Independent Imple-
mentation

In this section we first define some lock relations.

Note that A denotes the sum or product of some lit-
erals. .
Definition 5 Partial Lock: A signal t is partial-
locked with A if between two consequtive transitions
of signal ¢ the value of A either remains constant or
changes only once.
Definition 6 Region Lock: A function f has a
region-lock with ¢*/¢ if the value of the function be-
comes 1 when ¢*/% is enabled. And in the region after
the firing of t*/ and before the firing of the next tran-
sition of ¢, the value of the function becomes 0 and
remains so until ¢*/? is enabled again.

Our synthesis procedure is basically a means of
finding a region network such that all the AND gates
in set/reset region network have a region lock with
the corresponding transition, and all the OR gates in
the set/reset region network have a partial-lock with
the corresponding signal. If these two conditions can
be satisfied then it can be guaranteed that no change
in the output of a gate goes unrecognized and hence
we get a hazard-free speed-independent circuit.

Extended Graph(EG): All the computation is car-
ried on the STG by transforming the original petri
net into an Eztended Graph[5] as shown in the Fig. 1.
Codes with dont cares are assigned to each place in
the petrinet.

The EG by definition is equivalent to the SG so
there is no need to generate the SG as all computa-
tion can be carried on the EG. .

Region Network Synthesis: The literals needed
for the AND gate to establish a region-lock can be se-
lected by simple traversals on the EG. For finding the
the set 4 for partial-locks we use simple heurestics as
the problem tends to be NP-complete. The steps in
the synthesis method can be briefly stated as below.
Let t*/* be the non-input transition under consider-

ation
1. Starting from the trigger transition signals try

to add literals until the cube is region-locked
with t

2. If no such cube exists then we also need to con-
sider signals which are parallel to ¢*/¢.

(a) Find a set of literals A from the signals
which are parallel to t*/* such that A is
partial-locked with ¢ through t*/* and A
has not been tried before. If no such literals
exist return LockError. '

(b) Consider A as a literal and goto Step 2.

(c) Add acknowledgement forks appropriately.

3. Optimization
The circuit for the STG in Fig. 1 is shown in Fig. 3.

Figure 3: Circuit of STG in Fig.1

5 Conclusion

We propose a new polynomial time complexity
method to generate asychronous logic from STGs
which are live and have the CSC property. We do
not assume the STG to satisfy any other sufficent
conditions like persistency and neither do we assume
the availability of complex gates which may have in-
ternal hazards. Hence we can generate circuits from
a wide domain of STGs. As far as we know, existing
methods can’t handle the STG in Fig. 1.

References

[1] T.Nanya, ”A new perspective on asynchronous
VLSI system design (invited paper)”, Proc. of
3rd Asia Pacific Conf. on Hardware Description
Languages, pp.120-127 (Jan, 1996)

[2] T.Chu, ”Synthesis of self-timed VLSI circuits
from graph-theoretic specifications”, PhD The-

sis, Massachusetts Institute of Technology, June
1987.

(3] S.Park and T.Nanya, ”Synthesis of Asynchronous
Circuits from Signal Transition Graph Specifica-
tions”, To appear in IEICE Trans. Information
and Systems, March 1997

[4] C.W.Moon, ”Synthesis and verification of asyn-
chronous circuits from graphical specifications”,
PhD thesis, Univ of California at Berkeley, 1992

[6] E.Pastor, J.Cortadella,
A.Kondratyev and O.Roig, ”Structural methods
for the synthesis of speed-independent circuits”,

Proc. of European Design and Test Conference,
1996



