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1 Introduction

Pipelines are well known structures that increase a
VLSI system’s speed and throughput. In this note we
propose a method for generating two-rail four-cycling
handshaking asynchronous pipeline circuits from Depen-
dency graphs. The method generates an application-
specific hardware where control flow and data flow el-
ements coexist.

2 Preliminaries

The Dependency graph considered here is a directed
graph with 5 types of nodes (namely micro-operation
node, fork node, join node, select node, and merge node),
arcs, and tokens [1]. A Dependency graph that specifies
a division algorithm is shown in figure 1. Nodes represent
an operation or control flow. The arc between two nodes
represents the dependency relation between the two. The
Dependency graph has only one input arc (primery in-
put) and only one output arc (primary output).
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Figure 1: Ar example Dependency graph.

We define, for the Dependency graphs D that the al-
gorithm deals with, the concept of basic block. It is a
subgraph B that can be obtained by the application of
the following procedure. Let b, € B and b € B such
that b, is the only node in B to where arcs from other
subgraphs B’ # B enter (the head node of B), and b; is
the only node in B from where arcs to other subgraphs
B" # B leave (the tail node of B). Let b be the node
where the primary input arc is one of its input arcs.

1. Starting from 0, find all the maximal strongly con-
nected subgraphs of the Dependency graph. Each
such subgraph is a basic block. Remove them from
D.

2. If there are nodes remaining in D do for each disjoint
subgraph Dg:

(a) Let breaa be the node of the subgraph Dy such
that the input arcs does not come from any
node in Dy.

(b) Follow the path from the node bneqd-

i. If the path has a node by where arcs fork
(such as a fork or a select node), then the
subgraph formed by the path breaa~bs is @
basic block. Remove the basic block from
D. Yor each path of by let the first node
be breqaq and do step 2b.

ii. If the path has a node b; where arcs join
(such as a merge or join node), then the

subgraph formed by the path baeqq to the
node prior to b; is a basic block. Remove
the basic block from D. Let the b; be
bheaqa and do step 2b.

iii. If the path finishes in a primary output
arc, then the subgraph formed by the path
from bpeaq to the current node is a basic
block. Remove the basic block from D
and repeat step 2b.

(c) Repeat step 2.
3. End procedure.

The above definition and procedure are based on [2]. In
figure 1 the subgraph formed by node {1} is a basic block,
as well as the subgraph formed by nodes {2,3, 4,5}, and
by nodes {6,7,8,9,10,11,12,13}.

The algorithm presented in the next section gener-
ates asynchronous pipeline circuits based on the pipeline
structure of the asynchronous RISC microprocessor
TITAC-2 [3]. A schematic design of a basic pipeline
stage is shown in figure 2. A synthesized pipeline stage
schematics can vary depending on the type of Depen-
dency graph podes from which the pipeline stage was
derived.
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Figure 2: A basic pipeline stage.

3 The algorithm

Provided a Dependency graph with the characteristics
described in the previous section, the following algorithm
generates an asynchronous pipeline from it. Let B be a
basic block, b € B be the head node of B, and by € B
be the tail node of B.

1. Divide the Dependency graph into basic blocks.
Each basic block corresponds to a pipeline stage.

2. Once the pipeline stages have been defined, place-
ment of the stage latches takes place. The number
of latches between basic blocks 7 and j is equal to
the number of variables that are live and cross the
boundary between ¢ and j.

3. The pipeline stages are synthesized according to the
following set of rules:

(a) If b, is a select node and B is strongly con-
nected, then synthesize the pipeline stage us-
ing the framework shown in figure 4.

(b) If b, is a select node and B is not strongly
connected, then synthesize the pipeline stage
using the framework shown in figure 3.
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(¢) If b is a2 merge node, then synthesize using
the framework of figure 2, and place a multi-
plexer between the input stage latches and the
data-path, connecting appropriately the con-
trol lines.

(d) If by is a join node, then synthesize using the
framework of figure 2, and place a latch be-
tween the input stage latches and the data-
path that opens only when there is valid data
in all the input stage latches.

(e) Otherwise synthesize the pipeline stage using
the framework shown in figure 2.

4. The basic blocks defined as pipeline stages are
synthesized, except for those that corresponds to
branches or loops.

5. The final step is the placement of the control cir-
cuitry in each stage.

In this algorithm loops are synthesized so that the
whole loop body fits into one pipeline stage, and the dif-
ferent instances of the loop execution are not overlapped.
The framework for loops (figure 4) considers that there
is a conditional branch near the head of the basic block.
Any loop can be reduced to this structure by making
transformations to the subgraph.

The data path is synthesized by using a method simi-
lar to 1], where a pre-defined library of functional blocks
is used to synthesize data-paths. Interconnection of con-
trol lines between the pipeline stage latches and the data
path functional blocks is done with the controllers associ-
ated with the basic pipeline structures shown in figures 2,
3 and 4, instead of the controllers used in [1].

The conditional branch decision circuits shown in fig-
ures 3 and 4 implement the conditional branch of select
nodes. They are synthesized using the same approach
for synthesizing such circuits in [1]. The output of this
circuit is a 1-out-of-n control signal (where n is the num-
ber of branches) that controls which pipeline out of the
n will be activated.

A simplified diagram of the circuit obtained by apply-
ing the above algorithm to the Dependency graph in fig-
ure 1 is shown in figure 5. For the sake of simplicity, con-
trol structures have been omitted. Arrows represent the
flow of data, small rectangles represent a pipeline latch,
and the structures labeled “branch” represent the logic
that implements branching decision. Ovals represent the
synthesized data path in each pipeline stage. Stage 2
corresponds to basic block 2 in figure 1, and stage 3 cor-
responds to basic block 3. Since in figure 1 basic block 1
only initializes variables, stage 1 consists only of pipeline
stage latches with data being input.

4 Discussion

The algorithm defined in the previous section pro-
vides a simple methodology to synthesize asynchronous
pipelines. For this simplicity, the algorithm can be easily
implemented as a tool. A characteristic of the circuits
generated by this algorithm is that they are a collec-
tion of small pipelines where the output end of one such
pipeline is connected to the input end of one or more
other pipelines.

5 Conclusion

We have defined a simple, yet easy to implement algo-
rithm for generating asynchronous pipeline circuits from
a Dependency graph. So far, the method can deal with
a limited set of Dependency graphs.
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Figure 5: Schematic description of the circuit generated
from the Dependency graph in figure 1.

The method itself needs improvements in the follow-
ing points: (1) an asynchronous loop pipelining algorithm
must be added to the main algorithm; (2) determine the
exact conditions for the “optimal” throughput pipeline
structure. Future work will concentrate on these two
points and, in addition, on the implementation of the
algorithm and its integration to the tool-set under devel-
opment.
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