EHAAEE F 25030 CRR 8 £&Y) £EAR

3-3l11

Distributed Membership Management Protocol for Flexible Group

40—6

Communication *

Takayuki Tachikawa, Hiroaki Higaki, and Makoto Takizawa
Tokyo Denki University *
e-mail{tachi, hig, taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed systems are composed of multiple com-
puters connected by communication networks. In dis-
tributed applications like teleconferences and teleclass-
rooms, a group of multiple objects have to be cooper-
ated. The group communication protocol is required
to coordinate the cooperation of the objects in the
group. In the group communication, the following ser-
vices have to be supported: (G1) A message sent by
the member object is received by one or multiple desti-
nation members in the group. (G2) A member object
in the group receives messages in the causal order.

In the teleconferences, some new member joins the

conference and a member leaves the conference. Fur-
thermore, some object may be faulty. If the member-

ship of the group is changed, every member object has
to reach agreement on the membership. By the group
membership protocol, only and all the member objects
make agreement on the membership of the group. Re-
iter [2] discusses a centralized membership protocol
where one coordinator object coordinates the cooper-
ation among the objects and the data transmission is
stopped during the execution of the membership pro-
tocol. In this paper, we would like to discuss how to
support the services (G1) and (G2) without stopping
the data transmission in the presence of the member-
ship change.

2 System Model

A group G is composed of multiple objects Oy, ...,
O, (n > 2) interconnected by reliable high-speed net-
works [Figure 1]. We assume that (1) There is a reli-
able, synchronous communication link between every
two objects. In addition, the transmission delay is
bounded to be é time units. (2) The objects may stop
by fault.

3 Changes in Group

Each object O; in the group G has a view view;(G)
which denotes what objects O; perceives are included
in G. If G is not changed, every member object of
G has the same view. If O; is 1n G or would like to
be in G, O; € mew,(Gz1 view;(G) is changed if O;
finds the membership change of G’ If O; finds that
an object Oy leaves G, O is removed from view;(G).
Even if O; finds Oy ’s leaving, another O; may not find
it. Thus, every pair of views view;(G) and view;(G)
are not always identical. If view;(G) U view;(G) # ¢,
O; and Oj are related. Let rel(O;) be a set of objects
whtch are rela,ted with O;.

[Complete group] For every pair of objects O; and
0j, a collection of objects G = rel(0;) is referred to
as complete group if O; € rel(0;), rel(0;) = rel(0;),

bLPVWI VT BRODOFHE A NERBTOF TN
Ty BT BE MR R R
R

group G

=]
<\
AN \ 7

C Network >

Figure 1: Group
and view;(G) = view;(G). O
The membership of the group G is changed if some
member objects leave G, new objects join G, or mem-
ber objects are faulty. In this paper, we assume that
an object sends join and leaving requests to G if the
object would like to join and leave G, respectively.

[Membership changes]
(1) An object O, 4, joins the group G, ({ Oy, ..., Oy,

‘;\\
[

}, On41) = { 01, ..., On, Opny1 }
(2) An object O; leaves G, ({ Oy, ..., On }, Oy) = {
01, .., Oi-1, Oig1, ..., Op }. O

4 Causally Ordered Delivery

Messages sent in G are required to be delivered in
the causal order —.
[Causal order] A message m; causally precedes my
(my — mg) iff (1) an object sends m; before my, (2)
an object sends my after receiving my, or (3) there
exists a message m3 such that m;y — mz — m,. O

Messages can be ordered by using the vector clock
[1]. In the system of the vector clocks, the time domain
1s represented by a set of n-dimensional vector.
[Vector operations] For every pair of vectors VCy
= (VCii, ..., VC1n) and VCa = (VCay, ..., VCa),
the following relation holds:

1) Ve =VCiff VG = VCqifori=1, ., n

(2) VC < VC,q iff VCi; < VCz; for i = 1, ..,n and
VCyj < VCy; for some j.

(3) maz(VCy, VCq) = (VCai, ..., VC3n). Here,
VCs; = maz(VCy, VCy) fori=1, ., n. O

A vector time VC is given in a vector { Vi, ...,
VC,) where each element VC; represents an object
O; inagroup G = (0y, ..., O). O; has a variable VC;
= (VCi, ..., VCin) denoting a vector time. VCj; is
initially O for j = 1, ..., n. Each message m sent by O;
carries a timestamp m.VC = (m.VCy, ..., m.VC,)
O; sends and receives messages by the following rule.
[Vector clock rule]

(1) Each time O; sends a message m,
VCi :=VCiy +1;, mVC :=VC(C;;

(2) Each time O; receives a message m from O;,
VC; := maz(VC;, m.VC); D

[Proposition] For every pair of messages m; and mg,

3 —312

my — mg iff m;.VC < my . VC. O

5 Membership Management

Here, let O be a set of possible objects. For a group
G, let G be a membership of G, i.e. Gy C O. The
membership G}, of G is changed to G4y (C O) if the
membership is changed. If G} is changed to G4, all
the objects in Gi41 have to agree on Gy4,. Here, G},

is referred to as the kth version of G. The scheme of
the vector clock V'C; denotes the view view;(G) of O;.

If O; detects the membership change, the vector clock
scheme of V'C; is updated in O; so that the new scheme
represents the new membership. The dimension of the
vector clock is changed according to the update of the
vector clock scheme. If the scheme of the vector clock
is changed, the version of the vector clock is said to be
changed. Each object O; has a variable ver; denotes
the version number of VC;. ver; is updated by the
following procedure.

[Update of version number)

(1) ver; := ver; + 1.

(2) The vector clock scheme of VC; is updated. O

If Op 41 would like to join G, On 41 sends a join re-
quest to one object. Another object which would like
to join G may send the join request to an object. Sim-
ilarly, if O; would like to leave G, O; sends a leaving
request to one object. The faulty object O; is detected
by an object if O; had not received one message from
O; for some predetermined time units, say 26. Then,
O; initiates the membership procedure.

Each object O; has two kinds of variables, L; and J;.
L; denotes a set of objects which are detected to leave
G, and J; denotes a set of objects which are detected
to join G. Initially, L; = J; = ¢ and O; is in a normal
state. While the membership of G is not changed, L;
= J; = ¢. If O; detects O;’s joining and leaving G,
O; is added to L; and J;, respectively. G — L; U J;
denotes a view view;(G) of O; in G.
[Membership procedure] v

(1) ¥ L; or J; is changed, O; sends a membership
message m with L; and J; to all objects in G U
Ji. O; i1s in an updating state.

(2) On receipt of the membership message m with L;
and J; from O;, O; manipulates L; and J; as L;
i=L; UL;and J; 1= J; U J;. Oj isin an updating
state.

(3) If L; and J; are changed, O; sends the member-
ship message with L; and J; to all the objects.

(4) If O receives the membership message with Ly
and J, from every object Op in G — Ly U Jg,
and Ly = L and J, = Jj, then O; updates the
membership of G to G — L U Ji. The version
number ver; is incremented by one. Oy leaves the
updating state and is in a normal state. O

Figure 2 shows an example of a group G = { Oy, ...,
Os }. O3 would like to leave G and Og would like to
join G. O3 sends a leaving request r; to O;. On receipt
of r1, Ly = {Os} and J; = ¢. O; sends the membership
message m; with L; and J; to all the objects, i.e. Oy,
03, 04, and O5. Og sends a join request ry to Oj.
On receipt of r, Ls = ¢ and Js = ¢, and Os sends
the memgership message my with Ly and Js to all the
objects. O3 receives m; and mj. Here, Ly = LiulLsg
={0¢}and J; = J; U Js = { O3 }. Since L and
J; are changed, O, sends the membership message m3
with L, and J; to all the objects in G = G — Ly U

J2 = { 01, 02, 04, 05, 06 } On receipt of mg, L6
and Jg gets { O3 } and { Og } in O, respectively and
O sends the membership message to all the objects.
Every object in { Oy, Oz, Oy4, Os, Og } has the same
VieW. o{ 5

Figure 2: Membership change

6 Delivery of Messages

Messages sent in the group G are ordered by the
following rule.
[Ordering (O) rule] For every pair of messages m;
and mgy, my precedes my if the following condition
holds: (1) if my.ver = mower, m;.VC < my.VC, (2)
otherwise mj.ver < ms.ver. O :

We would like to present a protocol to causally de-
liver messages while the membership of G is being
changed. Each object O; has a variable ver; denoting
the current version number. Suppose that O; receives
a message m from O;. There are following three cases:
(1) m.ver > ver;. (2) m.ver < ver;. (3) m.ver = ver;.

We would like to consider the first case (1) m.ver
> ver;. This means that O; sends m to O; after the
version of the vector scheme is updated while O;’s ver-
sion is not updated yet. O; stores m in the buffer. m
is stored in the buffer until ver; is updated.

The second case (2) m.ver < ver; means that O;
sends m to O; before updating the vector clock while
O; has updated the vector clock. Thus, O; may receive
messages with older version numbers than O;. Here,
O; receives messages from the objects in the new mem-
bership. These messages have the same version num-
ber as ver;. Suppose that O; receives a message m;
from O; where mj.ver = ver;. However, O; does not
deliver m; by the O rule because O; might still re-
ceive messages whose version number is smaller than
ver;. Here, O; stores m; in the buffer. If O; receives
a message with the new vector clock scheme from ev-
ery object in G, the messages stored in the buffer are
causally delivered according to the O rule.

7 Concluding Remarks

In this paper, we have presented the group com-
munication protocol for maintaining the membership
of the group G and supporting the causally ordered
delivery of messages while the membership is being
changed. We have adopted the distributed protocol
where there is no centralized controller.

. References

{1] Raynal, M. and Singhal, M., “Logical time: cap-
turing causality in distributed systems,” IEEE
Computer, Vol. 29, No. 2, 1996, pp. 49-56.

[2] Reiter, M. K., “A Secure Group Membership Pro-
tocol,” IEEE Trans. on Software Engineering,
Vol.22, No.1, 1996, pp. 31-42.

