TEHAEF 2530 PRk 8 &) 2EARS

3—13

Extreme Skew Handling in Right-Deep Multi-Joins

1R=1 Stephen Davis

Masaru Kitsuregawa

University of Tokyo, Institute of Industrial Science

1 Introduction

Execution of relational operations on a shared noth-
ing system is susceptible to various forms of skew due
to the partitioning of tuples amongst the processing
nodes. This skew reduces the overall efficiency of the
multi-join operation. In this paper, we present an al-
gorithm for dynamically handling skew in a right-deep
hash multi-join.

In the right-deep hash multi-join, a right-deep query
execution plan is used to schedule the order in which
the pair-wise hash joins should be performed. The
right-deep query allows the multi-join to proceed in a
pipelined manner. When this pipeline is partitioned
amongst the processors, skew affects the flow of tu-
ples through the processors, allowing some processors
to finish reading all of the tuples on their local disks
much faster than others. Once all of the disk tuples
have been read, the processor will become periodi-
cally idle while it waits for probe tuples to arrive from
another processor. As the skew in the disk read com-
pletion times increases, processor utilization efficiency
decreases which leads to a longer response time for the
multi-join.

Our algorithm makes use of a control processor,
called the foreman, to make decisions about how hash
lines should be migrated in order to balance the disk
completion times, where a hash line consists of the set
of build relation tuples of a particular pair-wise join
which map to the same hash entry in the hash table. A
hash line is a natural unit of migration, since it assures
that all build relation tuples with the same attribute
value are located on the same processor. Load balanc-
ing occurs in two phases, the first phase balances the
pipeline flow for each processor, and the second phase
balances the disk completion times.

2 Processing Model

All of the processors are assigned to work on all of the
pair-wise joins of the multi-join. For each join, the
build relation tuples are partitioned amongst the pro-
cessors, and each of these partitions is called a stage
fragment. Each processor has one stage fragment for
each join (stage) in the right-deep query plan. Because
each processor is working on all joins, a scheduling
policy is required to determine which join a proces-
sor should work on at a particular point in time. A
processor’s stage fragments which are eligible to ex-
ecute are the one’s with probe tuple’s in their input
queues. Of the eligible fragments, the one selected is
the one closest to the output end of the pipeline. This
is to reduce the accumulation of buffers in the proces-
sor’s stage fragment input queues. Thus later stage

fragments have higher priority than earlier ones.

" I Hash Table 3 I ork
g E== Queue 3 _ 5
g Hash Table 2 % 8
@ .8 | Output
T EQueue2 |2
=.
< ¢/ Hash Table 1 =
ut
=3 Queue 1 P

Processor ;

Because of this prioritization, as long as later stage
fragments have buffers in their input queues, earlier
stage fragments within that processor will receive no
execution time. Thus, they are not able to consume
the probe tuples received from other processors, and
to avoid running out of buffers, flow control becomes
necessary. If a later stage fragment takes longer to
process a buffer of probe tuples than another stage
fragment for the same stage, the probability that a
new buffer will be received by one of the later stages
on that processor increases, thus decreasing the likeli-
hood that earlier stage fragments will receive process-
ing time.

If pipeline flow is fairly uniform, then a processor
will spend roughly the same percentage of time work-
ing on a particular stage as do the other processors.
To obtain uniform flow, dynamic load balancing is re-
quired.

3 Pipeline Stage Balancing

The goal of the first load balancing phase is to even out
the pipeline flow amongst the processors. This way,
even if all of the processors are spending more time
processing later stages, flow control is not needed since
earlier stages are uniformly receiving less processing
time.

The load balancing algorithm uses a control pro-
cessor, called the foreman, to gather join processing
statistics from each of the processors and to deter-
mine how hash lines should be migrated to evenly dis-
tribute the stage loads. Statistics gathering begins
either when flow control is activated, or periodically
based on the number of tuples processed. When to
gather is determined by the join processors.

Once the foreman receives a request to begin statis-
tics gathering, it sends a message to all processors re-
questing the statistics. The statistics gathered by the
foreman are the number of probes performed, number
of tuples compared against for matches of the join cri-
terion, and the number of results tuples produced by
each stage fragment.



3—14

3.1 Completion Time Estimation
Based on the statistics received, the foreman estimates
how much time remains for processing a particular
stage fragment. The assumption made by the foreman
is that the distribution of probe tuples attributes al-
ready processed is representative of the distribution of
the remaining probes. The remaining time estimates
are computed on a stage by stage basis, beginning with
the first stage in the pipeline.

For the first stage, the total number of tuples re-
maining to be probed is the number of unprocessed
tuples from the disks, since selection is not being per-
formed. This can be computed from the total number
of probe tuples originally on the disks minus the num-
ber of tuples already probed at the first stage. The
estimated remaining probe tuples multiplied by the
percentage of total probes probed at the stage frag-
ment is the estimated number of remaining probes to
be performed by that stage fragment.

The estimated remaining time for a stage fragment
is then computed by estimating the number of remain-
ing comparisons and remaining result tuples to gener-
ate, multiplying these estimates by the time required
to perform a comparison and to generate a result.

The remaining times for the stage fragments in the
later stages is computed iteratively, using the esti-
mated output of the previous stage as the number of
tuples to be probed at the current stage.

3.2 Hash Line Migration
If the skew amongst the stage fragments of a stage
is sufficient, hash lines will be migrated amongst the
stage fragments to equalize the remaining times. The
stage’s stage fragments which send hash lines are those
whose remaining times are sufficiently higher than the
average remaining time, and the rest are receivers.
Once the remaining times are determined, the fore-
man requests the hash line statistics (tuples probed,
hash line length, results generated) for all of the hash
lines in the sender stage fragments. For each hash
line, the estimated remaining processing time is deter-
mined. Based on the estimates, hash lines are assigned
from senders to receivers within the same stage so that
the time remaining for the stage is fairly uniformly dis-
tributed amongst the stage’s stage fragments. These
migrations maps are sent to all of the join processors,
and the required hash lines are moved between the
Pprocessors.

4 - Stage to Disk Balancing

After stage balancing has been performed several
times, each stage’s stage fragments are fairly uni-
formly balanced, and the pipeline flow is smooth.
When there are no stages requiring balancing, the disk
completion balancing phase is entered.

When skew is present, flow control gets invoked very
early, thus statistics are insufficient to properly bal-
ance everything, hence stage balancing is performed
several times early on as a result of flow control being

invoked. Once flow has been equalized sufficiently flow
control is no longer necessary. After stage balancing
has been completed, the rate at which each proces-
sor reads from disk will be fairly uniform, however the
variance in the number of tuples remaining to be read
will affect the overall response time. The emphasis of
disk completion balancing is to reduce this variance,
thus increasing the period of time in which all proces-
sors are fully utilized.

5 Disk Completion Balancing
Statistics gathering and estimation of the completion
times are performed as in the stage balancing phase.
However, instead of balancing stage times, overall pro-
cessor completion times are balanced. The remaining
time for a processor is the sum of the remaining times
of each of its stage fragments plus the time spent for-
warding tuples read from disk to the appropriate stage
fragment. The senders are the processors whose re-
maining disk tuples are significantly larger than av-
erage and whose remaining processing time is greater
than the average. The stage chosen to send from is the
one with the largest remaining time and the amount to
send is based on the difference between the processor
time and the average.

6 Experiments

The load balancing algorithm was evaluated through
simulation, with the actual joins being performed.
Each tuple is 256 bytes. The join attributes are four
byte integers. A compare takes 3 time units (TUs),
result generation 256 TUs, send and receives through
the network take a minimum of 1024 TUs, as do reads
and writes from disk. The relation attributes are Zipf
distributed. The number of tuples generated by each
stage fragment in the first and third stages are nearly
uniform. In the second stage, one processor generates
40% of the result tuples. Each of the build relations
has 240,000 tuples, and the initial base probe relation
has 960,000 tuples. The tuples of the build relations
are nearly uniformly distributed amongst the proces-
sors. The execution times are presented in millions of
TUs, measured from the start of the probe phase.

Unbalanced time
443.6

Balanced time
280.2

There were seven load balances (5 stage [3 flow control,
2 periodic], 2 disk completion) moving approximately
2.4MB of build tuples between processors.

7 Conclusion

Evening out pipeline flow and reducing the disk read
completion times improves the multi-join processing
efficiency, reducing the overall response time.

References

[1] D. Schneider and D.J. DeWitt. “Tradeoffs in Process-
ing Complex Join Queries via Hashing in Muitiproces-
sor Database Machines.” Proc. of the 16th Int’l Conf.
on Very Large Data Bases, August 1990.



