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Soft Techniques for Rule Discovery in Data
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This paper introduces a new approach to rule discovery in data with uncertainty and in-
completeness, using soft techniques. This approach is based on a Generalization Distribution
Table (GDT) and its network representation. Inductive learning methods are discussed from
the viewpoint of the value of information. The key features of the approach are as follows:
(1) both the formal value and the semantic value of information are considered, (2) the uncer-
tainty of a rule, including its ability to predict possible instances, can be explicitly represented
in the strength of the rule, and (3) biases can be flexibly selected and background knowledge
can be used in the discovery process for constraint and search control.

1. Introduction

Over the last two decades, many researchers
have investigated inductive methods for learn-
ing if-then rules and concepts from instances.
According to the value of information, these
methods can be divided into two types. The
first type is based on the formal value of in-
formation; that is, the real meaning of data is
not considered in the learning process. ID3 and
Prism are typical methods of this type1):11),
Although if-then rules can be discovered by
using the methods, it is difficult to use back-
ground knowledge in the learning process. The
other type of inductive methods is based on
the semantic value of information; that is, the
real meaning of data must be considered by us-
ing some background knowledge in the learn-
ing process. Dblearn is a typical method of
this type?. It can discover rules by means
of background knowledge represented by con-
cept hierarchies, but if there is no background
knowledge, it can do nothing. The question is,
" “how can both the formal value and the seman-
tic value be considered in a discovery system?”.
Unfortunately, so far we have not seen any in-
ductive method that can consider both the for-
mal value and the semantic value of informa-
tion.

To solve this problem, we would like to dis-
cuss inductive methods from another point of
view, namely, the style of information process-
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ing. From this viewpoint, inductive methods
can be divided into two styles: top-down and
bottom-up. Usually, top-down methods such
as ID3 and Prism can learn rules very fast,
but it is difficult to process data change, to
use background knowledge in the learning pro-
cess, and to perform in a parallel-distributed
cooperative mode. On the other hand, bottom-
up methods such as version-space®'9) and
back-propagation'® are incremental (or semi-
incremental); that is, learning of a concept is
possible not only when instances are input si-
multaneously but also when they are given one
by one.

In version-space, proposed by Mitchell as
a symbolic approach, the learning task is to
search a hypothesis space, subject to con-
straints imposed by the training instances, to
determine plausible generalizations. Although
version-space was a landmark project that led
to some success and provides a good back-
ground for our research, no satisfactory solu-
tions have yet been found to certain issues in
real-world applications such as the following;:

¢ How can rules be learned in an environment
with uncertainty and incompleteness?

e How can unseen instances be predicted,
and how can the uncertainty of a rule, in-
cluding its ability to predict, be represented
explicitly?

¢ How can biases be selected and altered dy-
namically for constraint and search con-
trol?

e How can the use of background knowl-
edge be selected according to whether back-
ground knowledge exists or not?

Back-propagation, proposed by Rumelhart et
al.'® as a connectionist approach, has proved to
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be a powerful and general technique for machine
learning. However, it also has disadvantages,
such as the following;:

o Without the ability to explain its decisions,
it is hard to be confident in the reliability of
a network that addresses a real-world prob-
lem. Although it learns, it does not provide
us with a theory about what it has learned.
It is a simple black box that gives an an-
swer but provides no clear idea as to how
it arrived at these answers%);

e It is rather difficult to incorporate back-
ground knowledge into the back-propaga-
tion networks so that they can learn better;

e The training time needed for back-
propagation networks to obtain a satisfac-
tory result is usually long. This is be-
cause learning in such networks is essen-
tially based on multiple passes over the
training data set.

In view of these disadvantages, back-propaga-
tion has not been considered well suited for dis-
covering if-then rules in databases.

In this paper, we propose a new rule discov-
ery approach based on a Generalization Distri-
bution Table (GDT) and its network represen-
tation, using soft techniques. The key features
of this approach are that both the formal value
and the semantic value of information are con-
sidered, the uncertainty of a rule, including its
ability to predict possible instances, can be ex-
plicitly represented in the strength of the rule,
and biases can be selected for constraint and
search control. We first introduce the GDT as a
hypothesis search space for generalization, dis-
cuss how to select biases based on the three
components of the GDT, and describe how the
GDT can be represented by networks. We then
describe a discovery process based on the net-
work representation, and discuss with the help
of an example how to use background knowl-
edge in the discovery process for constraint and
search control.

2. GDT and Its Network Representa-
tion

This section describes the GDT and its net-
work representation as the basis of our method-
ology.

2.1 GDT

The central idea of our methodology is to
use a variant of a transition matrix, called the
Generalization Distribution Table (GDT), as a
hypothesis search space for generalization, in
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which probabilistic relationships between con-
cepts and instances over discrete domains are
represented 19):21),

We define a GDT for knowledge discovery
as consisting of three components: possible in-
stances, possible generalizations for instances,
and probabilistic relationships between possible
instances and possible generalizations.

The possible instances, which are represented
in the top row of a GDT, are all possible combi-
nations of attribute values in a database. The
number of the possible instances is [, ns,
where m is the number of attributes and n is
the number of different attribute values in each
attribute.

The possible generalizations for instances,
which are represented in the left column of a
GDT, are all possible cases of generalization for
all possible instances. The number of possible
generalizations is [[/~, (n; + 1) = [[1, ni — 1.

The probabilistic relationships between the
possible instances and the possible generaliza-
tions, which are represented in the elements G;;
of a GDT, are the probabilistic distribution for
describing the strength of the relationship be-
tween every possible instance and every possi-
ble generalization. The prior distribution (time
t = 0) is equiprobable, if we do not use any prior
background knowledge for creating the GDT.
Thus, it is generated by the following equation:

G,’j =p (PI]'PGz)
:{ N;ci ifPG,;DPIj (1)
0 otherwise

where PI; is the jth possible instance, PG; is
the ¢th possible generalization, and Npg, is the
number of the possible instances satisfying the
ith possible generalization, that is,

m
N PG; = Hnj, (2)
J
where j = 1,...,m, and j # the attribute con-
tained by the ith possible generalization (i.e.,
j just contains the attributes expressed by the
wild card, as shown in Table 1).

Thus, in our approach, the basic process of
hypothesis generation is to generalize the in-
stances observed in a database by searching and
revising the GDT. Here, we need to distinguish
two kinds of attributes: condition attributes
and decision attributes (sometimes called class
attributes) in a database. Condition attributes
as possible instances are used to create the
GDT, but decision attributes are not. The deci-
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Table 1 GDT for a sample database.
a0b0c0 | aOb0Ocl | aOblcO0 | aOblcl alb2cl
*b0c0 1/2
*b0cl 1/2
*blc0 1/2
xblcl 1/2
*b2c0
xb2cl 1/2
a0xc0 1/3 1/3
alxcl 1/3 1/3
alxcO
alxcl 1/3
a0b0x | 1/2 1/2
a0blx 1/2 1/2
a0b2x
alb0x
alblx
alb2x 1/2
*%C0 1/6 1/6 ..
xxCl 1/6 1/6 1/6
«b0x | 1/4 1/4
*blx 1/4 1/4
*b2x 1/4
a0xx 1/6 1/6 1/6 1/6
alsx 1/6
Table 2 Sample database. \
L a
No [A]BJ[C|D § S LS
T [a0 [ B0 [cl |y g, /\ | §
2 a0 [ bl |ecl ]|y ® | . q g
3 (a0 | b0 |cl |y % | b0co b1c0 | 8
4 | al bl |cO|n o | §
5 a0 | bO {cl | n | i
6 a0 | b2 | cl | y | a0b0c0 alb0c0 a0p1c0 albicO v
. . e based on the formal value of informati
sion attributes are normally used to distinguish (8) based on the formal value of information
which concept (class) should be described in a Canada |
rule. Usually a single decision attribute is all § T 'S
that is required. 8 | §
Table 1 shows an example of a GDT, gen- § ! Western Central 13
erated by using three condition attributes, A, g : /\ : ]
B, and C, in the sample database shown in | | a
{ v

Table 2, where A € {ag,a1}, B € {bo,b1,b2},
and C € {cp,c1}. For example, the real mean-
ing of these condition attributes can be respec-
tively assigned as Weather, Temperature, Hu-
midity in a weather forecast database, or Tem-
perature, Cough, Headache in a medical diagno-
sis database. Attribute D in Table 2 is used as a
decision attribute. For example, the real mean-
ing of the decision attribute can be assigned as
Wind or Flu according to the assigned condi-
tion attributes.

Furthermore, “x” in Table 1, which specifies
a wild card, denotes a generalization for in-
stances. For example, the generalization *bgc;
means that the attribute A is unimportant for
describing a concept. In this example, the num-
ber of possible instances in the GDT is 12, and

B.C.  Prairies Ontario Quebec

(b) based on the semantic value of information

Fig. 1 Two types of generalization.

the number of possible generalizations is 23.
Here we would like to distinguish between two
types of generalization from the viewpoint of
the value of information, as described in Sec-
tion 1. The first type is based on the for-
mal value of information, as shown in Fig. 1 (a)
(i-e., a generalization and specialization hierar-
chy such as version-space); the other type is
based on the semantic value of information, as
shown in Fig. 1 (b) (i.e., background knowledge
represented by a concept hierarchy). Basically,
the generalization used in a GDT belongs to the
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first type, but the second type can also be se-
lected for constraint and preprocessing. In par-
ticular, interesting rules occur at a relatively
high concept level in many applications, but
data in databases often contain detailed infor-
mation at primitive concept levels)1®). The
data at a primitive concept level can be first
generalized into a relatively high concept level
by using concept hierarchies like the one shown
in Fig.1(b). This generalized database is then
used to create a GDT.

2.2 Biases

Since our approach is based on the GDT, rule
discovery can be constrained by three types of
bias, corresponding to the three components of
the GDT defined in Section 2.1.

The first type of bias is related to the possible
generalizations in a GDT. It is used to decide
which concept description should be considered
first. To obtain the best concept descriptions,
all possible generalizations should be consid-
ered, but not all of them need to be considered
at the same time. We divide possible general-
izations (concept descriptions) into several lev-
els of generalization according to the number of
. wild cards in a generalization: the greater the
number of wild cards, the higher the level. For
example, all possible generalizations shown in
Table 1 are divided into two levels of general-
ization:

Levely € {xboco,*boc1, ... ,a1ba%}
Levely € {xxcg,*x*cC1,...,a1 * *}.

Thus, we can see that any generalization in a
lower level is properly contained by one or more
generalizations in an upper level. As the de-
fault, our approach prefers more general con-
cept descriptions in an upper level to more spe-
cific ones in a lower level. However, if necessary,
we can use a meta control to alter the bias so
that more specific descriptions are preferred to
more general ones. This issue will be further
discussed in Section 3.2.

The second type of bias is related to the prob-
ability values denoted in G;; of a GDT. It is
used to adjust the strength of the relationship
between an instance and a generalization. If no
prior background knowledge as a bias is avail-
able, as the default, we create the prior distri-
bution of a GDT by considering that the occur-
rence of all possible instances is equiprobable,
as shown in Table 1. However, a bias such as
background knowledge can be used during the
creation a GDT. The prior distributions will be
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Input Hidden Output
Unit Layer Unit Layer Unit Layer
(Instances) (Stimulus units + (Candidates of rules)
Association units)

Fig. 2 Network representation of the GDT for
knowledge discovery.

dynamically updated according to the real data
in a database, and the posterior distributions
will converge to the real data. This issue will
be further discussed in Section 3.2.

The third type of bias is related to the pos-
sible instances in a GDT. In our approach, the
strength of the relationship between every pos-
sible instance and every possible generalization
depends to a certain extent on how the pos-
sible instances are created and defined. This
issue will be further described in Section 4.

2.3 Representing the GDT by Net-

works

We know that the connectivity of a network
represented by a network drawing (a network
representation, for short) can be naturally rep-
resented in a matrix (a matrix representation,
for short) '4). In contrast, a matrix representa-
tion can obviously be changed into a network
representation. Since the GDT is a variant of
a transition matrix, it can be represented by
networks 29).

Figure 2 shows a network representation of
the GDT for our purpose. We can see that the
networks consist of three layers: the input unit
layer, the hidden unit layer, and the output unit
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layer. A unit that receives instances from a
database is called an input unit, and the num-
ber of input units corresponds to the number
of condition attributes. A unit that receives
a result of learning in a hidden unit, which is
used as one of the rule candidates discovered, is
called an output unit. A unit that is neither in-
put nor output unit is called a hidden unit. Let
the hidden unit layer be further divided into
stimulus units and association units. Since the
stimulus units are used to represent the possi-
ble instances, like the top row in a GDT, and
the association units are used to represent the
possible generalizations of instances, like the
left column in a GDT, they are also called in-
stance units and generalization units, respec-
tively. Furthermore, there is a link between a
stimulus unit and an association unit if the as-
sociation unit represents a possible generaliza-
tion of a possible instance represented by the
stimulus unit. Moreover, the probabilistic rela-
tionship between a possible instance and a pos-
sible generalization is represented in the weight
of the link, and the initial weights are equiprob-
able, like the G;; of an initial GDT*.

Here, we need to distinguish two kinds of
links: ezcitatory links and inhibitory links. A
link is ezcitatory if the stimulus unit corre-
sponding to the link was activated by an in-
stance. In contrast, a link is inhibitory if the
stimulus unit corresponding to the link was not
activated by an instance. Let W, (i, ) be the
weight of the excitatory link that is related to
the ¢th stimulus unit activated by an instance
and the jth association unit (i.e., the jth gener-
alization) over the time period from 0 to ¢, and
let W, (k,j) be the weight of the inhibitory
link that is related to the kth stimulus unit
(i.e., the kth possible instance) and the jth as-
sociation unit (i.e., the jth generalization) over
the time period from 0 to ¢. Furthermore, let
O (j) be the output of the jth association unit.
Figure 3 shows the relationship between stim-
ulus units and an association unit with different
links.

The network representation of the GDT pro-
vides many advantages; for example, the com-
putation of weights can be done in a parallel-
distributed mode, a large GDT can be con-
veniently decomposed into smaller ones, and
space can be saved, because we only need to

* For simplicity, we assume that prior background
knowledge is not currently used.
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Fig. 3 Relationship between stimulus units and an
association unit with different links.

record the values related to excitatory links.
Here we would like to stress that

o In the representation, a network is only
used to represent the possible generaliza-
tions for the possible instances in one of the
levels of generalization that were defined in
Section 2.2. Hence, we need to create n
networks if there are n levels of generaliza-
tion, as shown in Fig. 2. Thus, the number
of networks that should be created, N,,,
is

Nens = attrs — 2, (3)
where Ng;4rs is the number of attributes in
. a database. The merit of this approach is
obviously that rule candidates can be gen-
erated in parallel. For example, we need to
use two networks for the sample database
shown in Table 2.

o Since the creation of the networks is based
on the GDT, the meaning of every unit
in the networks can be explained clearly.
Thus, not only the trained results in the
networks are explicitly represented in the
form of if-then rule with strength, but
background knowledge can also be used
for dynamically revising and changing the
network representation in the discovery
process. Hence, the networks are called
knowledge-oriented networks.

e The networks do not need to be explicitly
created in advance. They can be embod-
ied in the search algorithm, and we only
need to record the weights related to stim-
ulus units activated by instances. In other
words, although the weights of inhibitory
links also need to be calculated and re-
vised in principle, it is not necessary for our
rule discovery process currently. In fact,
the instances collected, in many real-world
databases, are generally a small subset of
all possible instances. Hence, the real size
of the networks is much smaller than the
size of the corresponding GDT.
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3. Rule Discovery

Building on the preparatory in Section 2, this
section describes the fundamental methodology
of rule discovery based on the network represen-
tation of a GDT.

3.1 Rule Representation

In our approach, the discovered rules are typ-
ically expressed in the form

X —» Y with S.
That is, “if X then Y with strength S”, where
X denotes the conjunction of conditions that
a concept must satisfy, Y denotes the concept
that the rule describes, and S is a “measure of
the strength” with which the rule holds.

Sometimes, contradictory rules, which have
the same condition but describe different con-
cepts with nearly the same strength, may be
generated. For example, the rules,

Weather (clear) A Humidity (low)
— Wind (yes) with P = (.25,

and

Weather (clear) A Humidity (low)
— Wind (no) with P = 0.25,

are contradictory rules, because they have same
conditions Weather (clear) A Humidity (low)
and describe different concepts Wind (yes) and
Wind (no) with same strength P = 0.25. The
comments about rule strength will be further
described in Sections 3.2 and 3.3.

3.2 The Discovery Process

We have developed an effective method for
incremental rule discovery based on the net-
work representation of the GDT described in
Section 2.3. One advantageous feature of our
approach is that every instance in a database
is searched only once, and if the data in a
database are changed (added to, deleted, or up-
dated), we need only to modify the networks
and the discovered rules related to the changed
data; the database is not searched again. That
is, unlike back-propagation networks, our ap-
proach does not need multiple passes over the
training data set. We argue that this is a very
important feature for discovering rules in very
large databases. Figure 4 gives an overall
view of the basic process of discovering rules
in databases. We can see that the process is
divided into two main stages.

The first stage is that of deciding the form
of the network representation and revising the
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stagel:

Decide the net. Learn in the net.
p i and/or revise the
form of GDTs representation
stage2:
Extract rule Select Rules
candidates from |—— from the rule
the trained nets. did.

Fig. 4 Block diagram of the basic process of rule
discovery.

weights by learning in every network in parallel.
The main steps are as follows:
Step 1 : Create the initial networks according
to the attribute values in a database. Before
learning (i.e., at time ¢ = 0), all the units and
links are in the inhibitory state and
. 1
Wi J) = Fary )
where NJ(j) is the number of inhibitory links
related to the jth association unit.
Step 2: Put an instance obtained from a
database* in the input unit layer and set ¢t =
t + 1. As a result of this operation, the stimu-
lus units corresponding to the instance are ac-
tivated.
Step 3 : Revise the weights of the corresponding
excitatory and inhibitory links in Egs. (5) and
(6), respectively**:
Weae(is 5)
1+ aN}

ms-new (’&)

—NEG) + NG G) + ol ()

(t>0), (5)
Wmh(k ) = 1- Zi:adx;;t(;d) ewc(z .7),
(t>0), (6)

where NY(j) and N}(j) are respectively the
number of excitatory lznks and inhibitory links
related to the jth association unit over the time
period from 0 to t; N}, ,_,..;(7) is the number of
instances that have already been obtained from
the input unit layer and that are related to the

jth association unit over the time period from

* Only the values belonging to condition attributes
are considered at this time.

wh Although in principle the weights of inhibitory links,

o (s _]) need to be calculated and revised in

6), it is not necessary at present for our rule dis-

covery process. However, for theoretical complete-

ness, we describe here how to calculate and revise
the weights of inhibitory links.
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0 to t; Nf , e (i) is the number of instances 1.000 : :
that are the same as the newly input instance 0.950 L4 — o-ot
at time ¢ and that are related to the ith stim- 0.900 4 - oeom
ulus unit over the time period from 0 to ¢; and £ 0850 T
a is a constant representing the learning rate g 0.800 7
for controlling the speed at which W}, (i, 7) ap- g O7%0 i
proaches 1. 3 2';22 ]
Step 4 : If there are still instances that have not 0.600 ]
been processed, then go back to Step 2. Other- 0850 b\ emmemT N
wise, regard the W/, (i, j) revised over the time 0500 === i

0 100 200 300

period from 0 to ¢ as the posterior distribution,
t = T, and start the second stage of the process.

The second stage of the discovery process is
that of generating if-then rules, which is based
on the posterior distribution learned in the first
stage. The main steps are as follows:

Step 1: Extract the rule candidates from the
association units with excitatory links and com-
pute the strengths of the rule candidates in
Eq. (7). Then put them in the output unit layer.

0.(j) = ( Z Wga;c(za]))
icactivated

N’t':’lr;,s-T'Elc (J)
Ng‘zs—rel (-7)

(7)
where c is the class number, Nz?;; s-ret(J) is the
number of instances related to the jth general-
ization over the time period from 0 to T, and

Fs-re1, (7) is the number of instances that are
related to the jth generalization and belong to
the class ¢ over the time period from 0 to 7.
Step 2 : Select if-then rules from the rule can-
didates generated in Step 1 by heuristic search-
ing.

Here we would like to stress that our ap-
proach is very soft. There are several possible
ways of selecting rules. For example,

o Selecting the rules that contain the most

instances

¢ Selecting the rules in the highest possible
levels

o Selecting the rules with the greatest
strengths.

The method of rule selection used here can be
briefly described as follows:
¢ Adjust the threshold value to distinguish
contradictory rules and noise dynamically.
e Rules that contain fewer instances are
deleted if a rule that contains more in-
stances exists.
e Since we prefer simpler results of general-
ization (i.e., more general rules), we first

number of instances

Fig. 5 Controlling the learning rate by adjusting a.

consider the rules corresponding to an up-
per level of generalization, and delete re-
dundant rules between different levels.

o Rules with greater strengths are first se-
lected as the real rules, and contradictory
rules are deleted.

In Section 4, we will further discuss how to

use background knowledge as a bias for rule se-
lection.

Here, we would like to further explain Egs. (5)
and (6). Equation (7) will be explained in Sec-
tion 3.3. Equations (5) and (6) can be con-
sidered variants of the Hebbian learning rule®.
The basic ideas can be summarized as follows:

o If an instance is observed, the weight that
represents the probabilistic relationship be-
tween the observed instance and its possi-
ble generalizations should be strengthened
in Eq. (5), and the greater the number of
identical instances are observed, the more
the weight is strengthened. In contrast,
weights that represent probabilistic rela-
tionships between unobserved possible in-
stances and their possible generalizations
should be weakened in Eq. (6).

e « in Eq.(5) is a constant representing the
learning rate. In our applications, we may
in some cases need to approach 1 at a lower
speed by setting a lower value of ¢, and in
other cases, we may need to approach at a
higher speed by setting a higher value of a.
In other words, « is a bias for controiling
the search and rule discovery. Figure 5
shows an example of how to control the
learning rate by adjusting a. For simplic-
ity, in the rest of the paper, we assume that
a=1. :

e If we do not consider that changes in data
(e.g., addition to, deletion of, or updat-
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Candidates of Rules
(If-Then Rules with Strengths)

1b0cT -, 0.267 !
1 boct >y, 0.533 ,
b1c0 > n, 0.667
bict ->y, 0.667

Level-1:

Rules Discovered
(If-Then Rules with Strengths)

1
1a0b0 -> n, 0.267 !
180b0 ->y, 0.533

20b1 -> y, 0.667
atb1->n, 0.667

blct->y, 0.667

aobt ->y, 0.667

aob2 > y, 0.667
b2ct -> y, 0.667

at->n, 0.286

Level-2: ¢0->n, 0.286

at->n, 0.286
c0-> n, 0.286

b2 ->y, 0.429

b2->y, 0.429

Fig. 6 Rules discovered in a sample database.

ing of the data in a database) may cause
modification of the network representation,
Egs. (5) and (6) can be represented in an it-
erative form such as
Weta:c (i7 j)
Wese (i,4) + aWez' (i, 5)
L+ oWk (3, 5)

(t>0), (8)

Wian (k)
1+ anz_cl (i,j) ’

(t>0). (9)
However, the iteration relationship be-
tween W* and W*~! will not hold if the net-
works are dynamically modified along with
data change. Hence, Eqgs. (5) and (6) are
used in our system.

Figure 6 shows examples of rules discovered
in the sample database in Table 2 by using the
above method. It includes the rule candidates
extracted from the networks and if-then rules
selected from the candidates. In this example,

?

Witnh(k>j) =
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we prefer more general rules. Thus, we first
consider selecting the rules from Level-2 of the
rule candidates. Since the rules in Level-2 that
are framed by dotted lines, such as

B(b1) —» D(n) with P = 0.333
and

B(b;) = D(y) with P = 0.333,
are contradictory, they are rejected, and the
rules, contained by the contradictory rules de-
scribed above, in Level-1,

r0.1: B(b1)AC(co) = D(n) with P=0.667,
T0.2: B(bl)/\C(Cl) — (y) with P=0.667,

T0.3: A(O,())/\B(bl) —)D(y) WlthP=0667,
ro.a: A(ar)AB(b1)— D(n) with P=0.667,

are considered. Furthermore, since the rules
T0.1 and rg 4 are respectively contained by rules
in Level-2, namely,
ro.5: C(cp) = D(n) with P = 0.266
and
ro.6: A(a1) = D(n) with P = 0.266,

the rules rg; and rg4 are deleted. In other
words, r9.9 and 7g.3 are selected as two of the
discovered rules, as shown in Fig. 6.

3.3 Rule Strength and Unseen In-

stances

One of the main advantages of our approach
is that it can predict unseen instances, because
the search space based on the GDT considers
all possible combinations of instances. Thus,
according to the quantity and the quality of
observed instances, and considering unseen in-
stances in the discovery process, the uncer--
tainty of a rule, including its ability to predict
unseen instances, can be explicitly represented
in the strength P of this rule given by Eq. (7).
We can see that Eq. (7) can be divided into two
parts. The first part is

Zi:activated Wg;:c (Za ])a

which is used to describe the strength of a rule,
including its ability to predict unseen instances.
For example, after learning from the database
shown in Table 2 by using the method given in
Section 3.2, we obtain the rule

1.1 A(ao)/\B(bl)—) D(y) with P = 0.667.

This rule is acquired by generalizing the in-
stance agbic;. The reason why the strength of
the rule is 0.667 is that we only observed one
of two possible instances, which can be gener-
alized into A(aop) A B(b1). In other words, an-
other possible instance agbicg is not found in
the database. Hence, we first revise the weights
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related to the generalization A(ag) A B(b;) into
0.667 and 0.333 in Egs. (5) and (6) respectively,
and then obtain the strength of the rule r; in
the first part of Eq. (7). Furthermore, if the in-
stance agbycoy is added in the database shown
in Table 2, then we can revise the weights into
0.5 in Eqs. (5) and (6) respectively, and then in-
crease the strength of the rule to 1 in the first
part of Eq. (7).

We argue that the ability to predict unseen
instances is an important function for discover-
ing rules in real-world databases. In most cases,
the set of instances collected in a database rep-
resents only a subset of all possible instances.
This is reasonable, because we expect to learn
rules without first collecting every possible in-
stance (just as physicians learn how to diagnose
diseases without first having seen every possi-
ble patient)'®). However, it also means that
the learning task is ill-posed, because for previ-
ous inductive approaches, without some other
source of constraint, there is no way of knowing
instances of a concept that has never been ob-
served. Our approach, based on the GDT and
its network representation, provides a capabil-
ity for predicting unseen instances and for ex-
plicitly representing the strength of a rule that
includes the prediction. In other words, our ap-
proach tries to find descriptions of concepts not
only from the instances observed during learn-
ing but also from unseen instances.

The second part of Eq. (7) is

N, gzs-relc (.7 )

N, %s-rel (-7 ) )
This part is significant only when a rule is ac-
quired from the instances or their generaliza-
tions with different classes. It shows the quality
of classification, that is, how many identical in-
stances or generalizations of them as conditions
that the rules must satisfy can be categorized
as belonging to the same class. We distinguish
the following three cases according to the ratio
of the second part of Eq. (7)*:

e If the ratio is 1, there are no noisy data.
That is, all instances as conditions that the
rules must satisfy are categorized as be-
longing to the same class. In this case, the
second part of Eq. (7) does not influence the
strength of a rule.

e If the ratio is close to 0.5, then the rules are
contradictory or the attributes now avail-
able are insufficient for describing some
concepts. That is, we may guess that there
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is a hidden attribute for describing the con-
cepts, which has not been collected.

o If the ratio is neither 1 nor near to 0.5 then
we conclude that there are noisy data in
the current database for the classification.

We again use the example of the first part of
Eq. (7). If we only observed one of two possible
instances that are generalized into A(ao)AB(b;)
(i.e., the instance agpbic;) from the database
shown in Table 2, and we know that its clas-
sification is y, then we can acquire the rule r; 1.
In other words, at this time, since another pos-
sible instance agbicp is not found, we do not
know what its classification is. However, if the
instance agbicp is added to the database, and
its classification is y, then all possible instances
for the generalization A(ag) A B(b;) are catego-
rized as belonging to the same class y. In this
case, the ratio of the second part of Eq.(7) is
1. Conversely, if the classification of the new
added instance is n, then the ratio of the sec-
ond part of Eq. (7) will be changed to 0.5, and
the rule candidates will be changed from r; ; to
T2.1 and T2.9:

r2.1: Aag) A B(b1) - D(y) with P = 0.5,
and

ro.9: A(ao) A B(b1) - D(’I’L) with P = 0.5.
This means that both of the rules ro; and 759
must be deleted, because they are contradic-
tory.

On the other hand, if 40 identical instances
a1boc; are added, and only one of them is clas-
sified as belonging to n, while the other 39 in-
stances are classified as belonging to y, then the
following rules,

r3.1: B(bo) — D(y) with P = 0.872,
and

rs.2: B(bs) = D(n) with P = 0.04,
can be generated. We can see that the ratio of
the noise affects the strengths of these rules. In
this case, we infer that the instance a;bgc; with
the classification n is a noisy data, because the
strength of r35 is much smaller than that of
r3.1. Hence, rule r3 5 is deleted.

4. An Example

We have tested or are testing our approach
with some databases containing data on postop-
erative patients, weather, breast cancer, and so
on. We would like to use the postoperative pa-
tient database as an example '”). This database

* For convenience, the classification is limited to two
classes.



2590 Transactions of Information Processing Society of Japan

consists of several condition attributes such as

(1) L-CORE (patient’s internal temperature):
high (>37), mid (C>36 and <37), low (<36);

(2) L-SURF (patient’s surface temperature in C):
high (>36.5), mid (>36.5 and <35), low (<35);

(3) L-O2 (oxygen saturation in %):

“excellent (>98), good (>90 and <98), fair (>80
and <90), poor (<80);

(4) L-BP (last measurement of blood pressure):
high (>130/90), mid (<130/90 and >90/70),
low (<90/70);

(5) SURF-STBL (stability of patient’s surface tem-
perature): stable, mod-stable, unstable;

(6) CORE-STBL (stability of patient’s core temper-
ature): stable, mod-stable, unstable;

(7) BP-STBL (stability of patient’s blood pressure):
stable, mod-stable, unstable;

(8) COMFORT (patient’s perceived comfort at dis-
charge): high, mid, low.

and a decision attribute,

ADM-DECS (discharge decision): (patient
sent to Intensive Care Unit); S (patient
prepared to go home); A (patient sent to
general hospital floor).

The discovery task in this database is to
determine where patients in a postoperative
recovery area should be sent to next. Be-
cause hypothermia is a significant concern after
surgery V), the attributes correspond roughly
to body temperature measurements. From the
postoperative patient database, the following
rules,

r4.1: L-BP (low) - ADM-DECS (A)
with P = 0.002058.
r4.2: CORE-STBL (mod — stable)
— ADM-DECS (A)
with P = 0.000446.
r4.3: CORE-STBL (stable)
A COMFORT (mid)
— ADM-DECS (A)
with P = 0.172296.
r4.4: L-02 (excellent)
A CORE-STBL (stable)
— ADM-DEC (A)
with P = 0.160787.
T4.5: L-CORFE (mzd)
A CORE-STBL (stable)
— ADM-DECS (A)
with P = 0.002058.
r4.32: L-BP (high) A COMFORT (high)
— ADM-DECS (S)
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with P = 0.002056.
r4.33: BP-STBL (stable)
A CORE-STBL (high)
— ADM-DECS (S)
with P = 0.002056,

can be generated by using the method described
in Section 3.

Here we would like to describe how to use
background knowledge as a bias in the discovery
process described in Section 3.2. First, if we use
the background knowledge,

“when the surface temperature of a patient
is high, it is not possible that the internal
temperature of the patient is low”,
then we do not consider the possible instances
that contradict this background knowledge in
all possible combinations of different attribute
values in a database for creating a GDT and
its network representation. Thus, we can get a
more refined result by using background knowl-
edge in the method described in Section 3. Fur-
thermore, in the second stage of the discovery
process described in Section 3.2, if we also use
the background knowledge,
“the decision is difficult if we use the rule
in which there is only one attribute value
as a condition”,
then r4.1 and r4.o should be replaced by the new
rules:
r4.1': L-BP (lO'llI) A COMFORT (mzd)
-~ ADM-DECS (A)
with P = 0.16239%4.
r4.20: CORE-STBL(mod — stable)
"A L-BP (mid)
— ADM-DECS (A)
with P = 0.173625.

This example shows that our approach is a
soft one that can use background knowledge
as biases for controlling the creation of a GDT
(and its network representation) and the dis-
covery process.

5. Conclusions

In this paper, we presented a new approach to
rule discovery in data with uncertainty and in-
completeness, using soft techniques. The main
features of our methodology can be summarized
as follows:

e It is basically an incremental, bottom-up
learning approach, but it also has some of
the advantages of the top-down style;

e It can predict unseen instances and repre-
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sent explicitly the uncertainty of a rule, in-
cluding the ability to predict possible in-
stances, in the strength of the rule;

o It can flexibly select biases for search con-
trol;

o It can use background knowledge for dy-
namically revising and changing the net-
work representation of the GDT in the dis-
covery process;

o It can discover if-then rules in an evolution-
ary, parallel-distributed cooperative mode.

We showed that the problems and disad-
vantages of both version-space and back-
propagation, described in Section 1, can be
systematically solved or overcome through the
methodology proposed in this paper.

The ultimate aim of the research project
is to create an agent-oriented and knowledge-
oriented hybrid intelligent model and system
for knowledge discovery and data mining in
an evolutionary, parallel-distributed coopera-
tive mode. In this model and system, the
typical methods of symbolic reasoning such
as deduction, induction, and abduction, as
well as the methods based on soft comput-
ing techniques such as rough sets and fuzzy
sets, can be cooperatively used by taking the
GDT, the transition matrix in stochastic pro-
cess, and their network representation as the
media ®:19~21) The work presented in this pa-
per is one step toward such a model and system.
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