Vol. 40 No. 1

Regular Paper

Transactions of Information Processing Society of Japan

Jan. 1999

Quality-based Flexibility in Distributed Systems

TETSUO KANEZUKA," HIROAKI HIGAKI' and MAKOTO TAKIZAWA'

This paper discusses how to make a distributed multimedia object system flexible so as to
satisfy applications’ requirements in change of the system environment. The system change
is modeled to be the change of not only for types of service but also quality of service (QoS)
supported by the objects. A method changes not only the state of the object but also QoS of
the state. We discuss new equivalent and compatible relations among methods with respect
to QoS. By using the relations, we newly discuss a QoS-based compensating way to recover

the object from the less qualified state.

1. Introduction

Units of resources in distributed systems are
referred to as objects'®). An object is an en-
capsulation of data and methods for manipu-
lating the data. CORBA 19 is getting a general
framework to realize the interoperable applica-
tions. The system is required to be flexible in
the change of the system environment and ap-
plications’ requirements in addition to support-
ing the interoperability of autonomous objects.

The service supported by the object is char-
acterized by parameters showing the quality of
service (QoS) like frame rate and number of
colors. Yoshida and Takizawa '®) model move-
ment of a mobile object to be the change of
QoS supported by the object. It is critical to
discuss how to support QoS which satisfies the
application’s requirement in change of QoS sup-
ported by multimedia objects. In MPEG-4%)9)
and MPEG-7, multimedia data is composed of
multimedia objects each of which may support
a different level of QoS.

An object supports applications with service
through the methods. The method may change
not only the state of the object but also QoS
supported by the object. Relations among the
methods are discussed so far with respect to
the states of the objects. For example, a pair
of methods are equivalent if the states obtained
by applying the methods in any order are the
same 1. In this paper, we discuss kinds of rela-
tions among the methods with respect to QoS.
Here, suppose that a state s2 is obtained by
dropping some frames in a state s; of a mul-
timedia object. If s, satisfies the applications’
requirements, s9 is considered to be equivalent

t Department of Computers and Systems Engineer-
ing, Tokyo Denki University

217

with s;. In addition, there are two aspects of
QoS, i.e., state QoS and view QoS. The state
QoS means QoS which the state of the object in-
trinsically supports. The applications can view
QoS of the object only through the methods.
For example, suppose that a multimedia object
supports higher quality image data and a dis-
play method. Here, the application can only
view lower quality image if display can output
only lower quality image. QoS viewed through
display is view QoS of the object.

Effects done by methods computed have to be
removed if applications’ requirements are not
satisfied, e.g., the system is faulty. The effects
can be removed by the compensation™?) of
the methods computed. In multimedia appli-
cations, it takes time to restore a large vol-
ume of high-resolution video data. We can re-
duce time for recovering the system if data with
lower resolution but satisfying the application
requirement is restored instead of restoring the
high-resolution data. In this paper, we discuss
a compensation way where an object o0 may not
be rolled back to the previous state at which
o has been but can be surely rolled back to a
state supporting QoS which satisfies the appli-
cation’s requirement. We can reduce time for
rolling back the objects by this way.

In Section 2, we present a model of the sys-
tem. In Sections 3 and 4, we discuss relations
among the methods and the compensation on
the basis of QoS, respectively.

2. System Model

2.1 Objects

A system is composed of multiple objects dis-
tributed on multiple computers which are inter-
connected by reliable communication networks.
Each object is an encapsulation of data and a
collection of abstract methods opy, ..., op; only

218 Transactions of Information Processing Society of Japan

by which o; can be manipulated. There are
two kinds of objects, class and instance. A
class gives a framework, i.e., set of attributes
and collection of methods. An instance is cre-
ated from the class, which is a tuple of values
each of which is given to each attribute of the
class. From here, let a term “object” mean an
instance.

Methods change the state of an object o and
output data obtained from the state as the re-
sponses. Let op:(s) denote a state of the object
o obtained by applying a method op; to a state
s of 0. A state means a tuple of values in an
instance of o. [op:(s)] denotes the response ob-
tained by applying op; to a state s of o. For
example, [display(s)] shows image displayed on
a monitor or printer from a state s of a multime-
dia object by display(s). op; o op, means that a
method op, is computed after another method
op; is terminated. Here, a conflicting relation)
among a pair of methods op; and op,, is defined
as follows: op; conflicts with op,, if op; o op,(s)
0py © opy(8), [opt(s)] # [opu © opi(s)], or [op;
o 0py(8)] # [opu(s)] for some state s of 0;. For
example, record conflicts with delete in the ob-
ject movie. A method op; is compatible with
op,, unless op; conflicts with op,, in the object o.
The conflicting relation is not transitive. We as-
sume the conflicting relation is symmetric. Let
(s) denote a tuple ([op1(s)], ..., [opi(s)]} of the
responses obtained from a state s, i.e., view of
the state s of an object o.

An object can be composed of other objects.
For example, suppose one movie scene shows a
person driving a car on a road. An object for
the scene is composed of four objects showing a
person, car, road, and background. In MPEG-
4, a multimedia data is composed of multiple
objects like audio/video objects (AVOs) and
sound object.

2.2 Quality of Service (QoS)

Each object o supports applications with
some service. The service can be obtained by is-
suing methods supported by the object 0. Each
service is characterized by parameters like level
of resolution, number of frames, and number of
colors. Quality of service (QoS) supported by
the object o is given by the parameters. Even if
a pair of objects support the same types of ser-
vice, they may provide different levels of QoS.

The scheme of QoS is given in a tuple of at-
tributes {ay, ..., a;,) where each attribute a;
shows a parameter. Let dom({a;) be a domain
of an attribute a;, i.e., a set of possible values

Jan. 1999

to be taken by a; (1 = 1, ..., m). For exam-
ple, dom(resolution) is a set of numbers each
of which shows the number of pixels for each
frame. A QoS instance g of the scheme (a, ...
am) is given in a tuple of values (vy, ..., vp)
€ dom(a;) X ... x dom(a,,). Let a;(q) show
a value v; of an attribute a; in q. The values
in dom(a;) are partially ordered by a precedent
relation < C dom(a;) x dom(a;), ie., a QoS
value v, precedes another QoS value vy (v; =
v2) in dom(a;) if v; shows better QoS than v,.
For example, 120 x 100 < 160 x 120 [pixels]
for an attribute resolution. Let ¢; and ¢ show
QoS instances of the scheme (ay, ..., an): @1
totally dominates g2 (q1 > q2) iff a;(q1) = a:(g2)
for every attribute a;. Let A be a subset (b,
..., bg) of the QoS scheme {ai, ..., a,,) where
each by € {a1, ..., an} and k < m. A projec-
tion [g]4 of the QoS instance q on A is {wy, ...,
wg) where w; = b;(q) fori =1, ..., k. A QoS
instance q; of a scheme A; partially dominates
g2 of Az iff a(q1) > a(ge) for every attribute a
in A1 N As. ¢ subsumes ¢ (1 D @) if @1
partially dominates ¢ and A; D A,. Let S be
a set of QoS instances whose schemes are not
necessarily the same. A QoS instance ¢; is min-
imal in the set S iff there is no QoS instance
go in S such that g2 < ¢1. 1 is minimum in
S iff g1 = ¢ for every qo in S. ¢ is mazrimal
iff there is no ¢ in S such that ¢; < ¢2. ¢ is
mazimum in S iff g5 < ¢; for every g2 in S. ¢
U ¢z and ¢; N g show a least upper bound and
a greatest lower bound of QoS instances ¢; and
g2 in S on <, respectively. ¢; U g2 is some QoS
instance g3 in S such that 1) ¢; < ¢3 and ¢ <
gs, and 2) there is no instance ¢4 in S where ¢;
= g4 2 g3 and g2 X g4 X g3. g1 N g2 is defined
similarly to U.

Applications require an object o to support
some QoS which is referred to as requirement
QoS (RoS). Let v be an RoS instance. Here,
suppose an object o supports a QoS instance
g = (v1, ..., vy) where each v; is a value of
the attribute «a;, i.e., v; € dom(a;). Here, let
A, be the scheme of r and A, be the scheme
of g. The instance q subsumes r (¢ 2 r) iff ¢
partially dominates r and 4, D A,. If ¢ D r,
the applications can get enough service from gq.
Otherwise, q is less qualified than r.

2.3 QoS of Object

QoS of an object o has two asp cts: state
QoS which is obtained from the state of o and
view QoS which is supported through the meth-
ods of 0. For example, let us consider an ob-

Vol. 40 No. 1

- displa application
20 |fps ,pp

response (20 [fps])

video
30 [fpsh

imuuy

Fig. 1 QoS of video object.

ject video with a display method as shown in
Fig.1. A state s of the object video supports
video data with a rate 30 [fps], which is a state
QoS. Q(s) = 30 [fps]. However, display can dis-
play the view [display(s)] on the monitor of the
video data from the state s only at a rate 20
fps. This is a view QoS. Q([display(s)]) = 20
[fps]. Here, there is a constraint “Q([op:(s)]) =
Q(s)” for every method op; and every state s of
an object 0. The object o cannot support the
applications with higher QoS than supported
by the methods. If Q([op:(s)]) < Q(s) for some
state s of the object o, op; is less gqualified in
the object 0. The method op; is fully qualified
in o if Q({op:(s)]) = Q(s) for every state s of
o. In Fig. 1, the method display is less qualified
for the object video. Let maxQoS(op;) show
the maximum QoS which op; can support, i.e.
Q([op:(s)]) < maxQoS(op;) for every state s of
the object 0. Let s; and sy be states of an object
o. The applications cannot differentiate states
s1 and sg if data viewed by applying a method
op; to s1 and sy are the same, i.e., [opi(s1)] =
[op¢(s2)] in the object o.

[Definition] A state s; is op;-equivalent with
8o in an object o iff [op;(s1)] = [ope(s2)]. a

Q((s)) is defined to be a tuple (Q([op1(s)]),
ooy Qo (9)])), i-e., view QoS of a state s of
an object o which can be obtained through the
methods. Q((s)) shows QoS of o which the ap-
plications can view through the methods.
[Definition] A state s; is method-equivalent
with a state s of an object o iff (s1) = (s3),
i.e., [opt(s1)] = [ops(s2)] for every method op;
of o. a

Even if s; # s9, the applications view a pair
of states s; and ss of the object o to be the
same because the applications get the same re-
sponse through every method. Let maz(@, de-
note maximum QoS to be supported by o, i.e.,
maximum of Q((s)) for every state s of 0. Let
min@Q), denote minimum QoS of o.

A multimedia object movie supports the
movie video including low-resolution image
data (120 x 100 pixels) with a display method.
A hypermovie object supports hyper video

Quality-based Flexibility in Distributed Systems 219

images of high-resolution (160 x 120 pixels)
with more kinds of methods including dis-
play, stop-motion, merge, and divide than
the object mowvie. A state Spyopie includes
the low-resolution video image of a movie
m. Shypermovie Shows the high-resolution
video image of multiple movies including m.
Here, Q(shypermovie) = Q(Smovie)- display
of hypermovie can display the high-resolution
video image with multi-window while display
of movie can just display the low-resolution
video image. Here, Q([display(shypermovic)])
= Q([display(smovie)])- hypermovie supports
higher quality of video image and more fruit-
ful methods than mouvie.

Real objects in the real world have infinite
level of QoS. In order to realize the real ob-
jects in computers, we have to reduce QoS of
the objects. Thus, we model that each object
state is realized by mapping the infinite level
of QoS to the limited level of QoS depending
on the facilities of the computers. The state of
the real object is referred to as a super state.
Let super(s) denote a super state of a state s
of an object o which is realized in the com-
puter. Here, Q(super(s)) = Q(s). We assume
that there exists exactly one super state for each
state s. QoS of every super state is maximum.
[Definition] A state s; is state-equivalent with
a state s; in an object o iff super(s;) =
super(ss). m|

For example, suppose that a state s; of the
object video supports video data of frame rate
30 [fps]. Suppose a new state s, is obtained by
dropping some frames in the state s;. If s is
state-equivalent with s;, s; and sy are derived
from a same super state by reducing QoS but
they support different levels of QoS.

There are two aspects of objects to be con-
sidered, i.e., states and QoS of the objects.
Hence, each object supports two types of prim-
itive methods, one for manipulating the state
of the object and the other one for manipulat-
ing QoS of the object. The former is a state
method and the latter is a QoS method. The
method drop is a QoS method because it only
changes QoS of the object video. For a QoS
method op, a state op(s) is state-equivalent with
every state s of an object o, i.e., super(op(s))
= super(s). For a pair of QoS methods op;
and opy, op:(s) and [op;(s)] are state-equivalent
with opy(s) and [op,(s)], respectively, for every
state s of an object o because they only change
the QoS of the object 0. On the other hand,

220 Transactions of Information Processing Society of Japan

YT ®

Q@

— state

Fig. 2 Transition diagram.

for a state method op, Q(op(s)) = Q(s) while
s # op(s). Here, we introduce a transition di-
agram to show the change of states and QoS
as shown in Fig. 2, where a node shows a state
and a directed edge indicates a state transition.
A horizontally directed edge s — s; indicates
that a state s is changed to another state s;
by a state method which manipulates the state
of the object o. Here, QoS of the state s; is
the same as the state s, i.e., @(s1) = Q(s). On
the other hand, a vertically directed edge s —
s shows that a state s is obtained from s by
changing QoS of s through a QoS method. For
example, ss is obtained by increasing number of
colors of s. Applications can consider s and sg
to be the same except for the number of colors.
That is, s, is state-equivalent with s. A public
method is implemented by using these primi-
tive methods, i.e., changes not only the state
but also QoS of the state. In Fig.2, an oblique
edge s — s3 denotes that a method op obtains
a state s3 by changing both state and QoS of
the state s.

3. QoS Relation Among Methods

We discuss how methods op;, ..., op; sup-
ported by an object o are related with respect
to QoS.

3.1 Equivalency

A method op; is equivalent with another
method op, in an object o iff op(s) = opy(s)
and [op¢(s)] = [opu(s)] for every state s of o.
That is, the methods op; and op, not only out-
put the same response data but also change the
state of o to the same state.

Suppose an object movie is composed of two
subobjects, an advertisement object and a con-
tent object. The advertisement object is re-
moved from the object movie by a method
delete. An application does not care the differ-
ence between the original version and the up-
dated version of movie since the application is
interested only in the content part of mouie.
The updated version is semantically equivalent

Jan. 1999

2o
(=6

Oopy¢
OPy

@ 1 super state

Fig. 3 Semantically state-equivalent method.

with the original version because the two ver-
sions are considered to be the same from the
application point of view. That is, the super
states of the original and updated versions are
considered to be the same. The two versions
support the same QoS.

Suppose that a pair of super states s; and s,
of an object o are considered to be the same in
some applications. Suppose s; = ops(s) and s,
= opy(s) for a state s of o. If s} and s, are
super states of s; and s,, respectively, i.e., s}
= super(s;) and s, = super(s,). The states s;
and s, are obtained by reducing QoS of s} and
st . Here, s; and s, are semantically equivalent
(Fig. 3). It is noted that Q(s;) = Q(s4)-
[Definition] A state s; is semantically equiv-
alent with ss in an object o iff super(s;) and
super(ss) are considered to be the same by the
application. O
[Definition] A method op; is semantically
equivalent with another method op, in an ob-
ject o iff ops(s) is semantically equivalent with
opu(s) and Q(opi(s)) = Qopu(s)) for every
state s of o. a

Here, suppose the object movie supports
two versions old-display and new-display of a
method display. new-display can display the
same video image as old-display while new-
display can display at a faster rate than old-
display. mew-display is considered to be the
same as old-display because they output the
same image data and do not change the state
of movie. However, they support different lev-
els of QoS, i.e., new-display is more qualified
than old-display with respect to the display
speed. That is, Q([old-display(s)]) X Q([new-
display(s)]) for every state s of movie.
[Definition] A method op; is more gqualified
than another method op, in an object o iff
Qlope(s)) = Q(opu(s))) and opy(s) is state-
equivalent with op,(s) for every state s of the

Vol. 40 No. 1

Fig. 4 RoS-equivalent method.

object o. 0
Let R be QoS which an object is required to
support for an application, i.e., RoS. The appli-
cation does not mind which method old-display
or new-display is used to display the movie if
the application does not care the display speed
in the object movie. Two methods old-display
and new-display are considered to be equiv-
alent with respect to R if they support QoS
subsuming R even if Q([old-display(smovie)]) #
Q([new-display(smovie)]) for a state spmovse Of
the object movie.
[Definition] A state s; is RoS-equivalent with
sy on RoS R in an object o (s; —g su) iff
Q(ops(s)) N Qopu(s)) 2 R and opy(s) is state-
equivalent with op,(s) for every state s of o.
0O
[Definition] A method op; is RoS-equivalent
with another method op, of an object o on RoS
R iff op;(s) is RoS-equivalent with op,(s) for
every state s of o. O

In Fig. 4, s; = op:(s) is state-equivalent with
sy = opy(s). If Q(s¢) and Q(s,) satisfy R, op;
and op, are RoS-equivalent. op; is more quali-
fied than op, since Q(s:) 2 Q(Su)-

In the first example presented in this subsec-
tion, suppose that the updated version supports
higher level of QoS than the original one. The
versions are semanticelly and RoS-equivalent.
[Definition] A state s; is semantically RoS-
equivalent with a state s, on RoS R in an object
o (st =g sy) iff super(op(s)) is semantically
equivalent with super(op,(s)) and Q(op:(s)) N
Q(opy(s)) 2 R for every state s of o. O
[Definition] A method op; is semantically

RoS-equivalent with a method op,, of an object

o on RoS R iff opi(s) =g opu(s) for every state
s of o. O

In Fig. 5, s; = op¢(s) and s,, = opy(s), and s}
= super(s;) and s], = super(s,,). s} is semanti-
cally equivalent with si,. Q(s¢) and Q(s,) sat-
isfy RoS R while Q(s;) may not be the same as
Q(sy). Here, s; is semantically RoS-equivalent

Quality-based Flexibility in Distributed Systems 221

opt R\
Opy,

Fig. 5 Semantically RoS-equivalent method.

(s)=(s2)
opy
()
opt
Q Op u

Fig. 6 Semantically compatible method.

with s, (8¢ =R su)-

3.2 Compatibility

We discuss in which order a pair of methods
op; and op, supported by an object o can be
computed in order to keep the object o consis-
tent. According to the traditional theory)7, a
method op; conflicts with another method op,
in an object o iff the result obtained by comput-
ing op,, after op; depends on the computation
order. op; is compatible with op, unless op;
conflicts with op,,.

[Definition] A method op; is semantically
compatible with a method op, in an object o
iff op; o opy(s) is semantically equivalent with
opy, © op(s) for every state s of o. a

In Fig. 6, s; = op; o opy(s) and sy = op, ©
op:(s). Here, s; is semantically equivalent with
so since the super states of s; and s, are equiv-
alent in the application. Hence, op; is seman-
tically compatible with op,. Q(s1) = Q(s2).
op; semantically conflicts with op,, unless op; is
semantically compatible with op,,.

Suppose a multimedia object M displays
MPEG-4 data. The MPEG-4 data has QoS of
a frame rate 30 fps and 256 colors. A method
mediascaling of M reduces a frame rate to a
half of the original one. On the other hand,
a method reduce decreases a number of colors
to 16 colors. The application can get the same
QoS of a state obtained by applying mediascal-
ing after reduce as in the reverse order. In any
case, the application can get the MPEG-4 data
with 15 fps and 16 colors.

222 Transactions of Information Processing Society of Japan

Fig. 7 RoS-compatible method.

A multimedia data is composed of multiple
objects in MPEG-4. Each object can be manip-
ulated independently of the other component
objects. Suppose a multimedia object M dis-
plays MPEG-4 data which is composed of two
objects showing colored background and car.
A method add of the object M takes an ob-
ject car into the MPEG-4 data. On the other
hand, a method grayscale changes a colored
video object to a white-black gradation video.
Suppose an application performs grayscale after
add. The MPEG-4 data obtained by add and
grayscale is a white-black gradation video with
background and car. However, the MPEG-4
data obtained by applying add after grayscale
is different from one obtained by applying
grayscale after add. This MPEG-4 data in-
cludes white-black background and colored car
objects. That is, QoS of a state of an object
obtained by applying QoS methods depends on
the application order of the methods.
[Definition] A method op; is RoS-compatible
with op, on some RoS R (op; o op,(s) —r op,
o opy(s)) in an object o iff op; o opy(s) is RoS-
equivalent with op,, o op;(s) on R for every state
s of o. |

In Fig. 7, s, is state-equivalent with so. That
is, s3 and s, have the same super state. Q(s2)
Q(s4) but Q(s2) and Q(s4) satisfy R.

The RoS-compatibility relation is symmetric.
Unless a method op; is RoS-compatible with
another method op,, op: RoS-conflicts with
0py. In the multimedia object M, the methods
reduce and mediascaling are RoS-compatible.
However, add RoS-conflicts with grayscale.

Suppose an application is not interested in
how colorful movies are. A method update
changes an object movie from a colored ver-
sion to a monochromatic one. The colored
movie m is seen by performing display, i.e., [dis-
play(m)]. If update is applied to the movie m,
the monochromatic version of m is seen. Since

Jan. 1999

Oy, R

opt

Oy

Fig. 8 Semantically RoS-compatible method.

the application is not interested in the color of
m, both versions are considered to satisfy the
requirement QoS (RoS) required by the appli-
cation. Hence, Q([display(m)]) N Q([update o
display(m)]) D R and Q(display o update(m))
= Q(update o display(m)). display and update
are RoS-compatible. However, they are not se-
mantically compatible because Q([update o dis-
play(m)]) # Q([display(m)]).
[Definition] A method op; is semantically
RoS-compatible with op,, in an object o with
respect to RoS R iff op; o op,(s) is semanti-
cally RoS-equivalent with (=g) op, o op:(s) on
R for every state s of o. O
In Fig. 8, s1 = op; o opy(s) and sy = op, ©
op:(s) where s; and sy are semantically equiv-
alent. Q(s1) and Q(s2) satisfy RoS R.

4. Compensation

A method op, is a compensating method of
op; if op; o op,(s) = s for every state s of an
object 057, Let s’ be a state obtained by com-
puting the method op; on a state s of the object
o, i.e., s' = opi(s). Here, o can be rolled back to
the state s if the compensating method of op is
computed on the state s'. For example, append
is a compensating method of delete.

Let us consider the multimedia object ME
with two movies A and B at state s;, where
it takes two hours to play each of A and B
(Fig.9). Suppose that A and B are merged
into a movie C at state s3. Then, C is divided
into two movies A’ and B’ of state s3. It takes
one hour and half to play each of A’ and B’
at state s3. Each of A and B is composed of
advertisement and content parts of the movie.
A' and B’ include only the contents of A and
B, respectively. The advertisements of A and
B are merged into AB. Here, s; is semanti-
cally equivalent with s,. divide is a semanti-
cally compensating method of merge.
[Definition] A method op, is a semantically
compensating method of op; iff op; o op,(s) is
semantically equivalent with every state s of an
object o (Fig. 10). m]
[Definition] A method op, is an RoS-

Vol. 40 No. 1 Quality-based Flexibility in Distributed Systems 223
— 81 — PO
2 hours colored
s : S0 e
4] [B | 4] | B] e
é §3 e , : 83 e ‘. :.
1.5 hours 1 hour monochromatic

Fig. 9 Example of semantically compensating
method.

_— Op¢

Fig. 10 Semantically compensating method.

©

@ OPu
R (1)
e Opt

Fig. 11 RoS-compensating method.

@ OPy,
(s0)

bev]
—
§

Opt
Fig. 12 Semantically RoS-compensating method.

compensating method of a method op; in an
object o on RoS R iff op; o opy(s) =g s for
every state s of o (Fig. 11). O
[Definition] A method op, is a semantically
RoS-compensating method of op; in an object o
on RoS R iff op; o op,(s) =g s for every state
s of o (Fig.12). O

Suppose the multimedia object ME supports
a method divide2 which divides C into three
parts A”, B”, and AB in addition to the meth-
ods merge and delete shown in Fig.13. A"
and B" are the content parts of A and B, re-
spectively, which are monochromatic at state
s3. AB includes the advertisement parts of A
and B. s3 denotes a state where A", B”, and
AB are obtained from A and B. s; and s3 are
not the same. Furthermore, A and B are col-

Fig. 13 Example of semantically RoS-compensating
method.

ored but A” and B" are monochromatic. That
is, Q(4) 2 Q(A”) and Q(B) 2 Q(B"). Sup-
pose an application just would like to see the
monochromatic one. This is RoS R. Here,
Q((s3)) O R. divide2 is a semantically RoS-
compensating method of merge.

5. Concluding Remarks

This paper has discussed how to make the
distributed system flexible with respect to QoS
supported by the objects. We have discussed
the novel equivalent and conflicting relations
among the methods on the basis of QoS and
state, i.e., semantically, RoS, and semantically
RoS equivalent and compatible relations. We
have also discussed the compensating method
to undo the work done. A state equivalent
with the previous qualified state with respect
to QoS is obtained by computing the compen-
sating methods of methods computed.

References

1) Bernstein, P.A., Hadzilacos, V. and Goodman,
N.: Concurrency Control and Recovery in
Database Systems, Addison-Wesley (1987).

2) Cambell, A., Coulson, G., Garcfa, F.,
Hutchison, D. and Leopold, H.: Integrated
Quality of Service for Multimedia Communi-
cation, IEEE InfoCom, pp.732-793 (1993).

3) Campbell, A., Coulson, G. and Hutchison,
D.: A Quality of Service Architecture, ACM
SIGCOMM Comp. Comm. Review, Vol.24,
pp-6-27 (1994).

4) Gall, D.: MPEG: A Video Compression Stan-
dard for Multimedia Applications, Comm.
ACM, Vol.34, No.4, pp.46-58 (1991).

5) Garcia-Molina, H. and Salem, K.: Sagas, Proc.
ACM SIGMOD, pp.249-259 (1987).

6) Kanezuka, T. and Takizawa, M.: QoS Ori-
ented Flexibility in Distributed Objects, Proc.
Int’l Symp. on Communications (ISCOM’97),
pp.144-148 (1997).

7) Korth, H.F., Levy, E. and Silberschalz, A.:
A Formal Approach to Recovery by Compen-

224 Transactions of Information Processing Society of Japan

sating Transactions, Proc. VLDB, pp.95-106
(1990).

8) MPEG Requirements Group: MPEG-4
Requirements, ISO/IEC JTC1/SC29/WG11
N2321 (1998).

9) MPEG Requirements Group: MPEG-4 Appli-
cations, ISO/IEC JTC1/SC29/WG11 N2322
(1998).

10) Object Management Group Inc.: The Com-
mon Object Request Broker: Architecture and
Specification, Rev2.0 (1995).

11) Sabata, B., Chatterjee, S., Davis, M. and
Syidir, J.J.: Taxonomy for QoS Specifications,
Proc. IEEE WORDS’97, pp.100-107 (1997).

12) Takizawa, M. and Yasuzawa, S.: Uncompensa-
table Deadlock in Distributed Object-Oriented
Systems, Proc. IEEE ICPADS-92, pp.150-157
(1992).

13) Yoshida, T. and Takizawa, M.: Model of
Mobile Objects, Proc. DEXA’96, pp.623-632
(1996).

(Received May 8, 1998)
(Accepted September 7, 1998)

Tetsuo Kanezuka was born
in 1974. He received his B.E. de-
gree in computers and systems
engineering from Tokyo Denki
University, Japan in 1997. He
. isnow a gra,duate student of the

master course in the Dept. of
Computers and Systems Engineering, Tokyo
Denki Univ. His research interest is distributed
multimedia networks.

Jan. 1999

Hiroaki Higaki was born
in Tokyo, Japan, on April 6,
1967. He received the B.E. de-
gree from the Dept. of Mathe-
matical Engineering and Infor-
_ mation Physics, the University
: * of Tokyo in 1990. He is in the
Dept. of Computers and Systems Engineering,
Tokyo Denki Univ. He received the D.E. de-
gree in 1997. His research interests include dis-
tributed algorithms and computer network pro-
tocols. He is a member of IEEE CS, ACM and
IEICE.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku University,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
Computer Science from Tohoku
Univ. in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He
is currently a Professor of the Dept. of Com-
puters and Systems Engineering, Tokyo Denki
Univ. since 1986. From 1989 to 1990, he was a
visiting professor of the GMD-IPSI, Germany.
He is also a regular visiting professor of Keele
Univ., England since 1990. He was a program
co-char of IEEE ICDCS-18, 1998 and serves
on the program committees of many interna-
tional conferences. His research interests in-
clude communication protocols, group commu-
nication, distributed database systems, trans-
action management, and security. He is a mem-
ber of IEEE, ACM, IPSJ, and IEICE.

