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1 Introduction

The main goal of a Inductive Logic Programming
(ILP) system is to induce a logic program that ex-
plains a given set of positive examples and is consis-
tent with negatives examples. Inductive Logic Pro-
gramming inherist concepts and methods from Ma-
chine Learning and Logic Programming.

An important class of logic programs is the class of
recursive programs. Many programs for list process-
ing and mathematical functions are expressed using
recursive logic programs. Recursive programs consist
of at least two clauses, which are named base and re-
cursive clauses. A recursive clause has one or more
literals in its body with the same predicate of clause’s
head.

It has not been possible to induce correct recursive
programs, using existing ILP systems, without care-
fully selected set of training examples. An analysis of
these training sets shows that the depth of an exam-
ples plays an important role on induction of recursive
programs: if examples of any depth k aren’t present
in the given set of examples, induction can’t be per-
formed correctly. The main reason for this problem
is that existing ILP systems use induction operators
based on #-subsumption instead of operators based on
implication. Operators based on f-subsumption are
incomplete with respect to implication.

In order to overcome this problem, we use an ap-
proach called forced simulation. Basically, the forced
simulation algorithm simulates (in a controlled way)
the hypothesized recursive program for each example.
This is a simple technique to invert implication

2 The model-theoretic approach

Given background knowledge B and a set of positive
(E*) and negative (E~) examples, the goal of an ILP
system is to find an hypothesis H such that the fol-
lowing four equations hold:

B} EY. . Prior Necessity (1)
BAHEEY Posterior Sufficiency (2)
BAE- £ 0 Prior Satisfiability = (3)

BAHANE- D Posterior Satisfiability (4)
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Applying the deduction theorem to equation 2, the
following relation can be obtained:

BAEYETH (5)

Equation (5) provides a method to generate hy-
pothesis using background knowledge and positive ex-
amples. Since H and Et are clauses, H and E* are
conjunctions of ground skolemised literals. Using a
sound derivation method to obtain all ground literals
entailed by B A E¥, it is possible to deduce the most
specific solution for hypothesis H.

To illustrate this approach, let’s consider the list
membership problem. List membership program is a
example of a recursive program, and suppose the base
clause is already known and it is incorporated in the
background knowledge (B = {member(X,[X | Y]}}).
Let’s consider the example E* = member(b, [a, b, ¢]).
The successive application of equation 5 gives:

BAE member(b, [a, b, c])
member(a, [a, b, c])
member(b, [b,c])

member(c, [c])

TTTWT

The most specific solution is:

member(b,[a,b,c]) ¢ member(a,[a,b,c]),
member(b,[b,c]),
member(c,[c]),... (6)

The most specific hypothesis is denoted as L and
can be infinite, as shown in solution (6). To construct
a finite most specific hypothesis, it is necessary to
limit the number of resolutions allowed to generate
solutions.

The induction process is transformed:in a search

. .problem through the set of clauses more general than

the most specific hypothesis. ' This search can ben
executed using a top-down approach, starting from
the most general solution (O), or using a bottom-up
approach, starting from the most specific hypothesis.

3 Example’s depth

The depth of an example is an important concept and
is defined as follows:



3—164

Definition 1 An example has depth 0 if it is a base
case, otherwise it is a recursive case and has depth k
if it is located at k resolution steps from the base case.

Consider the following deduction chain of recursive
program append:

e Program append:

append([}, List, List) «
append([H |Taill), List2,[H|Tail3]) «
append(Taill, List2, Tail3)

e Ground literals generated during the proof pro-
cess of append([1,2,3,4],[5),(1,2,3,4,5]) and
their depth values:

Depth 4  append([1,2,3,4],[5],(1,2,3,4,5])
Depth 3  append([2,3,4],[5),(2,3,4, 5))
Depth 2 append([3,4], [5], [3,4,5])

Depth 1 append([4],[5],[4,5])

Depth 0  append([], (5], [5))

Usually ILP systems perform generalization under
f-subsumption instead of generalization under impli-
cation. The main reason is that it is more easy to
compute generalization under -subsumption. How-
ever, f-subsumption doesn’t substitute completely
implication. If clause C' @-subsumes clause D (C >
D) then C = D, but the opposite doesn’t hold for re-
cursive cases. Therefore, #-subsumption can be used
only for one resolution step. For this reason, when
using induction methods based on #-subsumption it
is necessary to give a complete set of positive exam-
ples representing examples from depth 0 to depth n.
Recursive logic programs won’t be induced correctly
if there is lack of any example of depth & (0 < k < n).

4 Induction of Recursive Programs

To solve the problem of induction of recursive logic
programs we use an approach named forced simula-
tion 2). A restricted class of recursive programs is
considered: the class of two-clause closed linear re-
cursive ij-determinate programs. Although this class
is quite restricted, it includes many usefull logic pro-
grams, like list membership, append, reverse, prefix,
suffix, etc. Basically; the forced simulation algorithm

simulates the computation of an hypothesxs, m order

to verify if it is correct.

The base and recursive clauses of the mxtlal hypoth—
esis are constructed using the base examples (exam-
ples of depth 0) and recursive examples (the remain-
ing examples). To separate the set of positive exam-
ples in base and recursive cases, we use the method of

minimal multiple generalization ) (mmg). The mmyg
algorithm can be considered as an extension of the
least general generalization (lgg). For example, given
a set, of positive examples, the lgg algorithm finds pre-
cisely one literal that covers the given set of examples.
On the other hand, the mmg algorithm finds two lit-
erals, ({apend([], X, X), append([X|Y],Z,[X|W])})
each covering a different group of examples (the base
and recursive cases).

In the next step, the operation of relative least
general generalization 3), with respect to background
knowledge, is applied over the set of base and recur-
sive examples, and the operation of flattening %) is
applied to eliminate all function symbols. The re-
cursive literal to be inserted in the recursive clause
is constructed using variables of the flattened recur-
sive clause. At this point, the forced simulation algo-
rithm starts to simulate the constructed program for
all positive examples. For each example of depth n,
the forced simulation algorithm generates examples
of depth k (0 < k < n). If the constructed hypothe-
sis is correct, the forced simulation algorithm will be
able to prove all positive examples. If the program
is not correct, another recursive literal is constructed
and the process is repeated again. -

5 Concluding remarks

This paper presented the problems concerned with
induction of recursive logic programs, when using
induction operators based on f-subsumption, which
is incomplete with respect to implication. A conse-
quence of this incompleteness is that sets of examples
need to be carefully constructed, without lack of ex-
amples of depth k¥ (0 < k < n). To overcome this
problem, we use an approach called forced simula-
tion. This algorithm can generate examples of depth
k, even if they aren’t present in the initial set of ex-
amples.
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