Vol. 40 No. 3
Technical Note

Transactions of Information Processing Society of Japan

Mar. 1999

Some Methods for Specializing Object-oriented Programs

Y OSHINARI HACHISU,! SHINICHIROU YAMAMOTO!?
and KIiYOSHI AGUSA'#t

In this paper, we propose three approaches to specializing object-oriented programs. The
first replaces dynamically dispatched method invocation with statically dispatched method
invocation. We describe two techniques for this purpose: the unique name method and rapid
type analysis. The second approach consists of class fusion and class reduction, which are
techniques for merging closely associated classes into a single class. The last approach is class
slimming, which removes unused methods and variables from classes. These approaches
resolve the dilemma of whether to write a program elegantly for easy maintenance or tune it

up for good performance.

1. Introduction

Software development based on object-
oriented technology has become very popular.
But not all object-oriented programs run effi-
ciently in comparison with traditional procedu-
ral programs, because of dynamic method invo-
cation, encapsulation, which prohibits the use
of specialization methods between classes, and
so on. Use of a specializer makes it possible to
write a program elegantly and run it efficiently.

In this paper, we propose three approaches
to specializing object-oriented programs. The
first replaces dynamically dispatched method
invocation with statically dispatched method
invocation. We describe two techniques for
this purpose: the unique name method!) and
rapid type analysis?). The second approach
consists of class fusion and class reduction,
which are techniques for merging some classes.
The last approach is class slimming, which
removes unused methods and variables from
classes. These approaches resolve the dilemma
of whether to write a program elegantly for
easy maintenance or to tune it up for good
performance. We also show their effectiveness
through some experiments.

1 Department of Information Engineering, School of
Engineering, Nagoya University
t1 Faculty of Information Science and Technology,
Aichi Prefectural University
ttt Center for Information Media Studies, Nagoya
University

1346

2. Specializing Object-oriented Pro-
grams

2.1 Intra- and Inter-class Specializa-

tion

We classify specializing object-oriented pro-
grams into two kinds, intra-class specializa-
tion and inter-class specialization. The for-
mer specializes statements and expressions in a
method (e.g., loop unfolding) and method invo-
cation between methods in the same class (e.g.,
method in-lining). Specialization techniques
for procedural programs, which have already
been proposed and recognized as very useful,
can be applied as intra-class specialization, be-
cause we can consider a class as a procedural
program, with member variables as global vari-
ables, methods in the class as procedures and
functions, and methods in other classes as li-
brary functions.

The second type, inter-class specialization,
is specialization based on structure between
classes. In this section, we propose three ap-
proaches to inter-class specialization. The first
approach is to replace dynamically dispatched
method invocation with statically dispatched
method invocation. Many techniques have
been proposed for this purpose. In this paper,
we describe two techniques: the unique name
method?) and rapid type analysis® . The second
approach consists of class fusion and class
reduction, which are techniques for merging
closely associated classes. They make it possi-
ble to apply intra-class specialization to more
classes. The last approach is class slimming,
which removes unused methods and variables
from classes of class libraries or from classes en-
larged by class fusion.

Vol. 40 No. 3

: ¢l A
P aiit fgo() { return 1; }

A {
int foo() { return 2; };
int foo(1nt i) { return i+1; };

1
:
g class B extends
g:
8

10: class Test {

11: public static void main(String args[]) {
12: B p = new B();

13: int r1 = p. foo(2), // UN, RTA

14: Aq-=p;

15: int r2 = q.foo(); // RTA

16: System.out.println("ri: "+ ri1);

17:) System.out.println("ri: "+ r2);

18:

19: }

Fig. 1 Static analysis of invocation.

2.2 Static Analysis of Dynamic Invo-

cation ‘

In this section, we describe two techniques
for static analysis of dynamic invocation, the
unz ue name method") and rapid type analy-
SZS

When a method has a unique name (really a
unique signature*) in a program, invocations of
it are statically bound. This technique is called
the unique name method.

Rapid type analysis searches an entire pro-
gram for actually instantiated objects. Only
methods of classes that have instances are in-
voked. In this paper, an entire program means
a program that includes all required classes and
methods. These are used and invoked from the
start-up method. We obtain an entire program
by class slimming (see Section 2.4).

In Fig. 1, p.foo (1), which produces r1, can
be resolved by the unique name method and
rapid type analysis. q.foo(), which produces
r2, can be resolved only by rapid type analy-
sis, because no object of class A is instantiated.
Rapid type analysis is more powerful than the
unique name method.

2.3 Class Fusion

We propose an approach for merging closely
associated classes into a single class, which we
call class fusion. Using class fusion, we can
apply intra-class specialization to more classes
and reduce the object instantiation overhead.

For example, we often use the adapter pat-
tern to resolve interface mismatching, and an
adapter class is produced only to match inter-
faces. In this case, we can merge the adapter
and adaptee classes (Fig. 2).

Let us take another example. Assume that,
in the design phase, we design class A as an ag-

* In object-oriented language, a signature means a 3-
tuple (method name, parameter types, return type).

Some Methods for Specializing Object-oriented Programs 1347

Target
request()

function()
——— L‘

class fusion

Target Adaptee
request(}

Adapter MergTd
request() of----- { iunction(ﬂ ;:,?:ﬂs:n(())

Fig. 2 Class fusion (adapter pattern).

A
mai(}
ma2() ABC
mai()
ﬁ. ma2()
class fusion mb1()
B C mb2()
mc()
mb1() me(}
mb2()

Fig. 3 Class fusion (aggregation of classes).

gregation of classes B and C. In the implemen-
tation phase, instances of classes B and C are
member variables of class A, and classes B and
C are used only in class A. In this case, classes
B and C can be merged into class A (Fig. 3).
We formalize class fusion as follows:
Definition 1 (Class Fusion) We can merge
class B into class A if
(1) in an entire program, class B is used only
in class A, and
(2) class A has a member variable that is an
instance of class B.

We call this merging class fusion. m]
Class B is merged into class A as follows
(Fig.4):

(1) A member variable of class A, which is
an instance of class B, is removed.
(2) Member variables and methods of class
B are added to class A. When their names
conflict with members of class A, they are re-
placed. Method invocations and variable refer-
ences with instances of class B are replaced with
direct access. For example, adp.function()
is replaced with function().
(3) Constructors of class B are translated
into methods and added to class A. For exam-
ple, in Java, the return type void is added to
the constructor declaration (void Adaptee()
{...}), and a constructor call such as this()
is replaced with Adaptee(). An object creation
expression is replaced with a method invoca-
tion. For example, new Adaptee() is replaced
with Adaptee().

2.3.1 Class Reduction

We extend the idea of class fusion to inheri-
tance classes, merging a class and its subclasses.
We call this class reduction (Fig.5).
Definition 2 (Class Reduction) We can

1348 Transactions of Information Processing Society of Japan

class Adaptee {
// member
int member;
// constructors
Adaptee(int m) {...}
Adaptee() {this(0);}
// methods
void function() {...}
void print() {adp.print(); ...}

OO0~ O U1 W =

e

zlass Adapter {

13: // member

14: Adaptee adp;

15: // constructor

16: Adapter() {adp = new Adaptee();}

18: }‘/ methods

19: void request() {adp. function();}
20: void print() {...}
21: ces
5% /* === class fusion ==s=======z===zz== %/
26: class Adapter { // merged Adaptee
27: // constru
28: Adapter() {Adaptee() }
29: // methods
30: void request() {function();}
3%: void print() {prlntAdaptee(), ...}
gSE /] member of Adaptee
34: int member;
35: // comstructors of Adaptee
36: void Adaptee(int m) {
37: void Adaptee() {Adaptee(o) }
38: // methods of Adaptee
39: void function() {, %
40: void printAdaptee() 3

Fig. 4 Class fusion (sources of adapter pattern).

Class A2 does not 7,
have any instances./
ClassA3has ,/
instances. /

) Classes A1 and B are not
used in a program.

[c] o]

i i class
reduction

classes used in a program

Fig. 5 Class reduction.

merge classes A1, Ag, ..., Ap—1 into class Ay, if
(1) there are inheritance relations A; —
Ay = ... = A,. Base — Derived means
that the class Base is a superclass of the class
Derived.
(2) classes A, As,...,Ap—; have no in-
stances in an entire program, and
(3) there is no subclass of class A; other than
A; (4 > 1) in an entire program.
We call this merging class reduction.]
2.4 Class Slimming
Class slimming is a technique for removing
unused methods and variables. We define class
slimming as follows:
Definition 3 (Class Slimming) By class

Mar. 1999

Table 1 Applicability of class fusion and reduction.

Program Number of Classes
Total | Inh. | Fusion | Red.
JDK Demos 139 88 9 9
Bubble Sorting 40 24 7 7
Grep 52 24 4 6

Inh.: Inheritance, Red.: Reduction

slimming with respect to method m, we ob-
tain classes that have methods, constructors,
and member variables that might be directly or
indirectly invoked and referred to from m. 0O

Classes obtained by class slimming with re-
spect to the start-up method include only meth-
ods, and variables necessary for a program.
This is an entire program that is used for static
analysis of dynamic invocation, and for class fu-
sion and reduction. Class slimming is also use-
ful for removing unused methods from classes
enlarged by class fusion and reduction.

Class slimming is performed by using a call
graph from method m. However, creating a call
graph statically is difficult, because of dynam-
ically dispatched method invocation. We have
therefore modeled the process by using control,
data, and object flows.

3. Evaluation

In this section, we describe two experiments
that we carried out to demonstrate the effec-
tiveness of our approach: the first shows the
applicability of class fusion and reduction, and
the second shows the speedup obtainable by
class fusion and reduction. We created some
tools for the experiments by using a CASE tool
platform, Japid®).

The first experiment showed the extent to
which class fusion and reduction can be applied
to practical programs. We selected JK Ddemos,
grep with a class library of regular expressions,
and integer sorting by means of the bubble sort-
ing algorithm* (Table 1). JDK demos include
six programs and use 139 classes, which include
classes of JDK’s Java class library. The classes
have 88 inheritance associations. We found nine
classes for fusion and nine classes for reduction.
Grep and bubble sorting were carried out in the
same way.

* In our experiments, we specialized the essential
parts of a sorting program, which compare and swap
objects, and not the parts that read integers from a
file. To clarify the effect of specialized parts and to
hide the overhead of reading a file, we selected the
bubble sorting algorithm.

Vol. 40 No. 3

Some Methods for Specializing Object-oriented Programs

Table 2 Speedup (bubble sort).

Case Time [sec.] | Speedup
Not merged 52.5 1.00
1 reduction 424 1.23
1 fusion and 1 reduction 42.4 1.23
Table 3 Speedup (grep).
Case Time [sec.] | Speedup
Not merged 55.3 1.00
1 fusion 54.9 1.00
1 fusion and 1 reduction 53.8 1.02

The second experiment showed the speedup
that can be obtained through the use of class fu-
sion and reduction. Classes were merged manu-
ally and compiled with an optimization option
(-0). We selected bubble sorting (Table 2) and
grep (Table 3).

In the case of bubble sorting, an unspecialized
program sorts five thousand integers in 52.5 sec-
onds. Programs to which class fusion and re-
duction were applied completed sorting in 42.4
seconds and ran 23 percent faster than the un-
specialized program.

In the case of grep, however, class fusion and
reduction did not result in any speedup.

In order to clarify the difference between bub-
ble sorting and grep, we checked their byte code
(Tables 4 and 5). In the case of bubble sort-
ing, the number of method invocations, par-
ticularly dynamic method invocations, were re-
duced. In our program, to change an ordering
rule, a method for comparing two numbers is
defined as an abstract method, which must be
overridden by a subclass. In a program to which
class reduction was applied, it was recognized
as a static invocation and was in-lined, resulting
in a speedup.

In the case of grep, however, the number of
method invocations was hardly reduced. There
was an increase in the number of dynamic
method invocations, due to the addition of con-
structor calls of the unspecialized program.

4. Conclusions

In this paper, we have described three ap-
proaches to specializing object-oriented pro-
grams: static analysis of dynamic invocation,

1349

Table 4 Analysis of byte code (bubble sorting).

Case Byte Code | Method Invocations

{lines] Dynamic / Total

Not merged 244 25/44

1 reduction 253 22/39
1 fusion and

1 reduction 246 22/36

Table 5 Analysis of byte code (grep).

Case Byte Code | Method Invocations

[lines] Dynamic / Total

Not merged 1422 135/243

1 fusion 1421 136/242
1 fusion and

1 reduction 1419 137/241

class fusion and reduction, and class slimming.
We demonstrated their effectiveness by showing
that class fusion and reduction are applicable to
practical programs, and that a specialized pro-
gram runs 23 percent faster than an unspecial-
ized one. Owing to class fusion and reduction,
a dynamic method invocation is replaced with
a static one and is in-lined. In another case,
however, class fusion and reduction do not re-
sult in any speedup. We must therefore find a
method for evaluating the effect of class fusion
and reduction before they are applied.

In future, we plan to examine the applicabil-
ity and effects of class fusion and reduction for
larger programs. We also plan to model and
implement class slimming, and to implement a
specializer by using Japid.

References

1) Calder, B. and Grunwald, D.: Reducing In-
direct Function Call Overhead in C++4 Pro-
grams, POPL 94, pp.397-408 (1994).

2) Bacon, D.F. and Sweeney, P.F.: Fast Static
Analysis of C++ Virtual Function Calls, OOP-
SLA ’96, pp.324-341 (1996).

3) Hachisu, Y., Yamamoto, S., Hamaguchi, T.
and Agusa, K.: A Fine Grain Source Repos-
itory for Java (in Japanese), Proc. Computer
System Symposium, pp.147-154 (1996).

(Received August 31, 1998)
(Accepted December 7, 1998)

