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The SD-Form Semantics Model is a new framework to analyze the meaning of natural
language in a quantitative way. It is equipped with a formal language named SD-Form which
describes the semantic structure of each language expression. In this model the semantic
metric depends on both the syntactic structure of the language expression and the knowledge
behind it. An elaboration relation is introduced to generalize IS-A, PART-OF, and IF-THEN
relations into one partial order relation. This relation is the key idea to the metric definition
in the model. The present paper first shows the outline of the model, then discusses the
scheme of metric computation in detail. Finally, at the end the authors summarize this work
and address the next steps to realize this model.

1. Introduction

There are many papers on the meaning
description of natural language3):7):18).21),34)
Among all, frames and networks are the most
standard approaches?:20):25),26)  The first-
order predicate logic is another approach in
semantics?-6:19).  However, nobody has suc-
ceeded in building a practical system for seman-
tic difference evaluation based on those models
in natural language processing.

Previously, the authors proposed a new se-
mantics model using SD-Forms as a meaning
description language!®):11):18):31) They termed
it the SD-Form Semantics Model. The au-
thors have already reported several feasibility
studies on applications!4):16):23),29),32),33) Tpe
most important point of the model is that it
is equipped with a scheme for semantic metric
computation in terms of a semantic difference
measure.

This scheme is associated with an elabora-
tion relation between two concepts. When a
concept (D) is a detailed idea of some other
concept (D;), we say that they have an elab-
oration relation such that D, is an elaborated
concept from D;. The amount of elaboration is
measured by “elaboration score.” The elabora-
tion relation primarily depends on the syntactic
similarity of two SD-Forms, but it also depends
on the knowledge which is available in the sys-
tem. The semantic difference measure between
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two concepts is defined by finding their common
meaning, which is termed the nearest common
ancestor. '

We have implemented a prototype system
of the model environment. It is named
SDENV-2 and is a Prolog program of about
300 KB sizeld.

The objective of the present paper is to dis-
cuss the way we can implement the computa-
tion algorithm of the semantic difference mea-
sure under given knowledge.

In Section 2 we review the SD-Form Seman-
tics Model, focusing on an elaboration relation.
We will discuss the score setting problem in Sec-
tion 2.8. The detection algorithm of the nearest
common ancestor is studied extensively in Sec-
tion 3. It provides us with the semantic differ-
ence score. Finally in Section 4, we summarize
our present work and show the problems for our
future work.

2. The SD-Form Semantics Model

The SD-Form Semantics Model defines the
SD-Form as a meaning description language.
An SD-Form is a well-formed symbol string
which we use to describe concept structures. “A
concept” in English generally refers to “word
meaning.” While, in this paper, it refers to a
piece of an idea contained in a word, sentence,
greeting phrase, fact, rule, or emotional utter-
ance.

2.1 The Background of the Model

It is very important to say that the SD-
Form Semantics Model deals with quantitative
treatment of meaning in human communica-
tion. Meaning in this case does not necessarily
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refer to semantic data which is translated from
natural language sentences. Instead, we are dis-
cussing the meaning which lies in our mind and
will be finally put into wording when we ac-
tually communicate with others. We describe
such meaning using the SD-Form and put it
into our computer. In this regard the following
statements are our fundamental view on human
communication by natural language.

(1) A human creates a semantic idea when
he wants to communicate with others.

(2) The idea becomes concrete before he ex-

. presses it by language.

(3) When he puts it into wording, some am-
biguity arises.

(4) A human memorizes the meaning, not
the precise wording, of the information
he received.

(5). Most semantic processes are based on the
meaning which a human perceived, not
on the memorized wording.

(6) Humans can abstract two meanings into
a more generalized idea if the meanings
have some similarity.

(7) Humans feel a degree of semantic differ-
ence (or similarity) between two mean-
ings. It is more than a type of “same or
different” logic.

All these views are put in our SD-Form Se-
mantics Model which we discuss in detail in the
rest of this paper.

The SD-Form is like a sign language which
does not show precise wording, but conveys suf-
ficient meaning. It is regarded as an interlingua
which is independent of any specific language.

2.2 The Syntax of the SD-Form

The syntax of the SD-Form is regulated by a
context-free grammar named SDG (SD-Form
derivative Grammar)®:24 (c.f. Appendix).
Symbols of the SD-Form include the following.
(1) Concept label (X, Y, DWARF, APPLE,

$1,--9)

Concept labels are primitive symbols for SD-

Forms. We often take advantage of “English-

like words” as our concept labels, because it is

easier to remember their usage.

(2) Modifier (“/”)

When some concept has more information than

a single label, we make a detailed description

by using a “/” followed by a single SD-Form or

a set of SD-Forms connected by “para” ’s.

(3) Prescriptor (nega, pass, even, only, assu,
feus) :

Prescriptors prescribe a semantic role of con-
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cepts which are negation, passive predicate, em-
phasis of the speaker’s mind as “even” and
“only”, assumption, and focus of attention.
(4) Connector (incl, excl, equa, defi, andz,
orzx, eorz, caus, indu, effe, bcau, pseq,
nseq, inst, addi, plus, than, ofal, exmp,
siml, asas, asif, evif, csof, ptof, prof,
vaof, kdof, thru, more, less, oppo, para)
Connectors are connective operators which
combine two SD-Forms. We have more than
30 different connectors. Examples of the
above are inclusion, exclusion, equality, defini-
tion, logical-and, or, exclusive-or, strict causal-
ity, plausible causality, possible causality, rea-
son (because), positive sequence, negative se-
quence, instead, addition, combination, com-
parative, superlative, exemplification, resem-
blance, positive degree, subjunctive, conces-
sion, consist-of, part-of, property-of, value-of,
kind-of, through, more and more, less and less,
opposite, and parallel.
(5) Functional item (s, v, i, 0, ¢, b, a, T, €)
We have six types of Statement functional

items. o
subject item

predicate item

indirect object item

object item

complement item

actor item

We have three types of Emotion functional

items. o
a: attention item

r: reply item
e: exclamation item
(6 ) Delimiter (“( )77’ “[ ]” , 143 , ”)
SD-Forms are categorized into the 8 types of
syntactic structures which follow. “D, Dy, Da,
.- in the following description take one of 8
types.
Type 1) Variable label: X
X, X1, Y (something)
Type 2) Simple label: f
FOREST, SNOWHITE, HUMAN,
RUN, SOME, 21, $1
Type 3) Parameterized label: g(f)
AGE(40), PAGE(3), DOLLAR(25)
" (age 40, page 3, 25 dollars)
Type 4) Modified SD-Form: D/D;
APPLE/(PRETTY)para(RED)
(a pretty red apple)
Type 5) Prescribed SD-Form: P;(D)
nega(AWAKE/MOOD/ABILITY)
(can not awake)
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Type 6) Connected SD-Form: (D;)C;(D,)
(SNOWHITE)kdof (HUMAN)
(Snow-White is a kind of human.)
Type 7) Statement SD-Form: [s(D;),v(Ds),
- [s(QUEEN/SOME),v(BE),
¢(MOTHER/SNOWHITE))

(Some Queen is the mother of Snow-White.)
Type 8) Emotion SD-Form: [a(D)],

[r(D)] or [¢(D)
[a([s(1STPSN),v(SURPRISE)))]
(Oh!)

The usage of each SD-Form type is standard-
ized by a usage manual'®). Each SD-Form (D)
has a “semantic information score” described
by SI(D). The reason we associate each SD-
Form with such a score is so we can evaluate the
amount of semantic information of each concept
by a number (c.f. Section 2.3).

2.3 Semantic Information of an SD-

Form

Each SD-Form (D) carries a certain amount
of semantic information. This amount depends
on the syntactic structure of D. We designate it
" by SI(D) and call it the semantic information
score of D. Although the score-assignment de-
tails are left open to each model user, we have
some general ideas about it.

(1) SI(D) should be the accumulation of the
scores of partial SD-Forms in D. There-
fore, a simple SD-Form has a small score,
while a complicated one has a large score.

(2) Each symbol of the SD-Form should be
equipped with a primary score to initiate
score computation.

(3) The primary score of a concept label
should be the largest among other SD-
Form symbols, because a concept label
simulates a word, and “words” are the
key information in human communica-
tion. We will give a flat score to all
concept labels (except for variable labels)
because they only inform “concept sym-
bols.” Further modification will be pos-
sible.

(4) The absolute value of SI(D) does not
mean much. We are much more con-
cerned with the relative score of each con-
cept.

The following statements show the primary
scores we employed in our experimental system
(SDENV-2)12):24),28) ' The unit of the score is
termed “semit (semantic information unit).”

A. A variable label has 1 semit.

B. Each simple concept label has 10 semits.
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General Fact

Fact—
Individual Fact

Given Knowledge
System Knowledge - g.y1e __[ General Rule (true)

Specific Rule

Induced Concept

Fig. 1 Hierarchy of system knowledge.

C. The modifier “/” has 1 semit.

D. Each prescriptor has 2 semits.

E. Each connector has 1 semit.

F. Each functional item has 1 semit.

G. “[]” has 1 semit.

H. “(')” and “” have 0 semits.

These scores are determined in consideration
of the basic ideas (1)-(4) presented above, as
well as the requirements of abductive inference
in a system (c.f. Section2.8). However, we are
not claiming these scores as our essential idea
for the SD-Form Semantics Model, rather they
are all test scores in our experiment.
(Example 2-1)

SI(WOMAN/VAIN) = 21 (Vain woman)
SI([s(SNOWHITE), v(EAT/PAST),
o(APPLE/POISON))) = 56

(Snow-White ate a poisoned apple.)

2.4 Hierarchy of System Knowledge

In the SD-Form Semantics Model, system
knowledge is categorized as facts, rules, and in-
duced concepts. Facts are classified as general
facts and individual facts, although there are
no definite categorization standards. Similarly,
rules are either general or specific (c.f. Fig. 1).
As far as the concept reliability is concerned,
all the given knowledge is true in the system.
An induced concept is a concept generated by
unifying a general rule with a concept which
is true. When we speak of a knowledge piece,
it means a piece of knowledge installed in the

system by an SD-Form.

General Facts are all true regardless of the
individual topic, story, object world, etc. Indi-
vidual Facts are concepts referring to a specific
concept such as a proper noun. For example,
the following SD-Forms illustrate a general fact
and an individual fact, respectively.

[s(HUMAN), v(EAT), o(X)]
(Human eats something.)
[s(SNOW-WHITE), v(LIKE),
o(BIGMAC)]
(Snow-White likes Big Macs.)

Rules are concepts registered in a system us-
ing an “if-then” form. General Rules are given
rules in the system. A general rule consists of
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abstract labels such as variables and common-
noun labels. A Specific Rule is either a given
rule or an instantiated rule by unifying a gen-
eral rule with a concept which is true. As for
an Induced Concept, let (assu(Dag))caus(Diz)
and D be a general rule and a true con-
cept, respectively. We unify Do, and/or Dig
with D and get an instantiated rule such that
(assu(Dz))caus(D1). In this case, Dy, D2
and (assu(D2))caus(D) are defined as Induced
Concepts.

Classification of knowledge by the words
“specific” and “general” is another knowledge
categorization for the “knowledge based elabo-
rations” which appear in Sections 2.6.2-2.6.3.

2.5 Elaboration in the SD-Form Se-

mantics Model

An elaboration relation in the SD-Form Se-
mantics Model is a generalized idea. of the tradi-
tional “IS-A”, “PART-OF” or “IF-THEN” re-
lations. This is because all the “IS-A”, “PART-
OF” and “IF-THEN” relations describe the in-
heritance of a true property, and the elabora-
tion relation in the SD-Form Semantics Model
also refers to the inheritance of a true concept
property.

Elaboration from one D; to another Do
means that Ds is a more specific or detailed ex-
pression of D;. It has two categories, one is a
syntactic elaboration, and the other is a knowl-
edge based elaboration. The degree of elabo-
ration is quantitatively measured by an elabo-
ration score. The elaboration score is taken as
a measure of uncertainty when we abductively
infer Dy out of true D;. Formally speaking,
the elaboration relation is a partial order rela-
tion on a meaning set which is described by the
SD-Form. ;

In natural language, however, the elaboration
score is regarded as the amount of new seman-
tic information which Dy conveys when D; is
already known. For instance, let

D; = “Mary went to Japan”
([s(MARY),v(GO/(PAST)para
(PLACE/JAPAN))])

be known to us, and
Dy = “Mary went to Kyoto where Tom
visited three years ago”
([s(MARY),v(GO/(PAST)para
(PLACE/KYOTO($1)/[s(TOM),
v(VISIT/(PAST)para
(TIME/BEFORE/YEAR(3))para
(PLACE/$1))))))
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is given to us afterward. Then the amount of
new information conveyed by D should be the
following.
The amount of new information
= (the semantic information of D,)
~ — (the semantic information of D,)

On the other hand, we often face a situation
such as follows. Even if some statement is ad-
mitted as true, it often becomes uncertain, or
unreliable, if we elaborate it by specializing the
statement without any concrete given informa-
tion. For instance, let “Women like desserts”
be admitted as true. This expression, however,
is ambiguous because “Women” is not necessar-
ily “Any woman.” It will be better to take it as
“Most women.” Furthermore, “desserts” con-
sists of “cake”, “fruit”, “ice-cream”, etc. There-
fore, “Snow-White likes pie”, which is an elabo-
rated expression without any newly given infor-
mation, is not very certain even if Snow-White
is a woman and a pie is a dessert. This exam-
ple shows that a meaning in natural language
is ambiguous, yet some natural language state-
ments can be regarded as true. In this situ-
ation the elaboration score which is equal to
the amount of new information is introduced to
measure the degree of uncertainty in specializ-
ing (abducting) a statement.

Another aspect of the elaboration relation
is that it provides a deductive inference rule.
When D5 is true, and it is an elaborated expres-
sion from D;, we can deduct D, as true. For ex-
ample, let “The Prince saved Snow-White” be a
fact. Then we can safely say “Some man saved
some woman.” Moreover, we can say “Snow-
White is happy” because “If X saved Y, then Y
is happy” is a general rule in an ordinary sense,
and “X saved Y” is an elaborated expression of
“Y is happy.” Thus, we can concatenate the
elaboration relation, from detailed to abstract,
to make a multi-step deduction. The SD-Form
elaboration relations give us the basis for such
deductive inference.

When an elaboration relation between Dj
and D5 holds true in a system, it gives us a
concrete basis for computing the semantic dif-
ference measure, which is the central topic in
this paper (c.f. Section3).

2.6 Formal Definition of

ELAB(D;,D2)

2.6.1 Syntactic Elaboration Relation

When D; and D5 are related in one of the
following cases, Do is called “syntactically elab-
orated” from D; by the score n. We designate
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it by,

ELABgyn(D1,D3) =n, or

ELAB,ynt (Dl, Dz, ’I’L)

1) D; is generated from D; by the SDG rule
(c.f. Appendix). In this case the elabora-
tion score is

ELABynt(D1, Dy)=8SI(D,)-SI(D;).

2) D is alabel and D, is of the form D,/D.

The elaboration score for this case is,
ELAB;yn(D1,D;) = SI(D) + 1.

3) The case where all the following conditions
are satisfied.

3-1) D, is not generated from D; by the
SDG rule.

3-2) D; and D, are the same SD-Form
type (c.f. Section 2.2).

3-3) D, isa part of Dy (See (5) in Exam-
ple 2-2).

3-4) Each syntactically corresponding pair
of SD-Forms ( D] and D}), which are
parts of D; and Dj, respectively, sat-
isfy ELAB,yn:(D}, D}) (c.f. Fig. 3).

The elaboration score in this case is,

ELABgynt(D1, D2)=SI(D3)-SI(D,).
A syntactically elaborated SD-Form de-
scribes the original concept more specifically.

As we see in Case 3), syntactic elaboration is

recursively defined. A syntactic elaboration re-

lation ELAB,yn(D1,D2,n) is called “com-
putable” if the score n is computable by the
algorithms defined above.

(Example 2-2)

The score value of ELABgyn:(D, D) de-

pends on the structure of D; and D,. We

are using respective scores illustrated in Section

2.3.
(1) ELAB,yn:(APPLE, APPLE) = 0

(Case 1)
(2) ELAB,yn:(X,APPLE)
= SI(APPLE) - SI(X)
=10-1=9 (Case 1)

(3) ELAB,y.:(APPLE,
APPLE/(RED)para(BIG))
= SI((RED)para(BIG)) + 1
=21+1=22 ' (Case 2)
(4) ELABgyn:(APPLE/(RED)para(X),
APPLE/(RED)para(BIG)
para(FRESH)) = 20
(Case 2)
(5) ELABgyn:([s(tHUMAN),v(EAT)],
[s(HUMAN/ANY),
v(EAT), o(FOOD))]) = 22
(Case 3)
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(6) ELAB,yn:(a([s(1STPSN), v(MEET),
o(FRIEND))), a([s(1STPSN),
v(MEET/TIME/MORNING),
o(FRIEND/NEW)))) = 33

(Case 3)

(“MEET” and “FRIEND” syntactically cor-

respond to “MEET/TIME/MORNING” and

“FRIEND/NEW?”, respectively.)

2.6.2 Specific-Knowledge Based Elab-

oration Relations

We naturally feel that MAN is a more elab-
orated concept than HUMAN. Also [s(JOE),
v(BE),c(TAXI-DRIVER)] is a more elaborated
expression than [s(JOE),u(DRIVE),0(CAR))].
Yet, there are no syntactic elaboration relations
between them. It only comes from some specific
knowledge which we have.

Now, we introduce the “specific-knowledge
based” elaboration relation. We designate it
by,

y ELABknow (Di, DJ) =n, Or
ELABknow (Dz, Dj, n)

Let a system be equipped with specific

knowledge shown below (on the left side

of each arrow.) Then the corresponding

ELABjnow(D;, D;) relations on the right side

hold true.

Specific knowledge must be explicitly given
to the system by users. Therefore, different
systems have different specific-knowledge based
elaboration scores depending on the knowledge
difference.

1) (Ds)egua(Dy)

— ELABknow (D,, D]) =0

2) (Dy)defi(D;)

— ELABpgnow(D;,D;j) =0

3) (Di)CSOf([Djl, ) Djk7 Tty Dj'n,])

- ELABkno'w(Dz'a Djk:) =2

4) (assu(Dj))caus(D;)

g ELABhnow (D,,, D]) =2

5) (Ds)inel(D;)

— ELABknow (Di, Dj) =3

6) (D;)ptof (D;)

- ELABkno.w (Dz, Dj)v= 3

7) (Dy)kdof (D;)

I ELABknow (Dz, DJ) =3

We always set the scores to zero for Cases 1)
and 2). This is because “equa” and “deft’ are
used for equivalent concept pair of D; and D;.
While, the scores for Cases 3)-7) are experi-
mental values in our system (c.f. Section 2.8.)
The score difference between “2” and “3” does
not mean much. However, we regard the “csof’
and “caus” relations as describing slightly closer
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relations than “incl’, “ptof’ and “kdof.” Closer
relations between two concepts convey smaller
new information to the system than distant re-
lations.
(Example 2-3)
ELABpnow(D1, D2) depends on the specific
knowledge given to the system. If the left side
of each arrow in the following example is the
given knowledge to the system, then the right
side relations hold true.
* (TOKYO)equa(CAPITAL/JAPAN)

— ELABjnow(TOKYO,

CAPITAL/JAPAN) =0

e (HUMAN)csof (MAN, WOMAN])

— ELABinow(HUMAN,MAN) = 2
e (assu([s(JOE), v(BE), ¢(TAXI-DRIVER)]))

caus([s(JOE),v(DRIVE), o(CAR)))

— (If Joe is a taxi-driver,

then Joe drives a car.)
ELABppow([s(JOE),v(DRIVE),o(CAR)],
[s(JOE), v(BE), ¢(TAXI-DRIVER)]) = 2

¢ (KID)incl(BOY)

— ELABjgnow(KID,BOY) =3
¢ (BOY)kdof (MAN)

— ELABjgnow(MAN,BOY) =3

2.6.3 General-Knowledge Based Elab-

oration Relations

The SD-Form Semantics Model can deal with
“quantifiers” in predicate logic in terms of a
“general-knowledge based elaboration.” It is as
follows.

General-knowledge based elaboration rela-
tions are independent of given knowledge. They
are introduced as a general nature of the SD-
Form Semantics Model. Let

ELABjnow(Di,D;) =2 and

ELABknow(Di,Dk) =3
be elaboration relations already established by
the specific knowledge in the system. Then
we have the following general-knowledge based
elaboration relations. The respective score set-
ting was made experimentally in relation to the
specific-knowledge based score setting (c.f. Sec-
tion 2.6.2).

ELABjgnow(Di/X, Di/SOME) = 1
ELABipow(Di/MOST, D;/ANY) = 1
ELABjnow(Di/SOME, D;) = 1
ELABgnow(Di/D, Di/ANY) =2
ELABjnow(Di/SOME, Dy) = 1
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ELABgnow(D;j/D,D;/ANY) =2
ELABjpow(D;/SOME, D;/MOST) = 3
ELABgnow(Dr/D,D;/ANY) = 2
ELABjnow(D;/SOME, D;/ANY) = 4
ELAByjnow(Dj, D;/ANY) =3
ELABjgnow(D;/SOME, D;/D) = 2
ELABjnow(Dg, Di/ANY) =3
To be more general, in the cases where the
specific knowledge data takes the form
ELABknow(D;‘/DOaDj) =2or
ELABgnow(D; /Do, D) =3,
all the expressions D;/SOME, D;/MOST,
D;/D and D;/ANY in the above formulas
should be replaced by, D}/(SOME)para(Dyo),
D} /(MOST)para(Do), D} /(D)para(Dg) and
D} /(ANY)para(Dy), respectively.
(Example 2-4)
Let the System knowledge be
(HUMAN) csof ((MAN, WOMAN]),
(HUMAN/SMALL)incl(DWARF),
(BOY)kdof (MAN).
In this case,
ELABjpnow(HUMAN/SOME, WOMAN) =1
ELABjnow(HUMAN/(SOME)para
(SMALL),DWARF) =1
ELABjnow(BOY,MAN/ANY) =3
ELABinow(MAN/SOME,MAN/ANY) =4
As we have seen in Sections 2.6.2 and 2.6.3,
a knowledge based elaboration score designates
a semantic distance between two concepts af-
ter all the given knowledge is counted as the
system knowledge. Both “specific” and “gen-
eral” knowledge based elaboration relations are
simply referred to as “knowledge based” elabo-
ration relation.
2.6.4 Definition of ELAB Relation
In the SD-Form Semantics Model, an elabo-
ration relation between D; and D- is denoted
by
ELAB(Dy, D) =n, or
ELAB(D}, D2, ’I’L)
where, n is the elaboration score given by
n = min{ELABaynt(Dl, Dz),
ELABgnow(D1,D2)}. (1)
(i-e., n is the minimum value of
ELABsynt(Dl, Dz) and
ELABjnow(D1,D2)).
ELAB,ynt and ELABpgnow are syntactic
and knowledge based elaborations, respectively.
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The unit of both scores is “semit.” If no
ELABsynt(Dl,DQ) (OI‘ ELABknow (Dl,Dz))
relation exists, we consider that ELAB ynt
(D1, D2) (or ELABinow (D1, D2)) has an infi-
nite score. ELAB becomes infinite when both
ELAB,ynt and ELABjy,0. are infinite.
In SDENV-2, we have set ELABinow
scores as
ELABknow(Dl;DQ) < ELABsynt(DlyD2)
for any given D; and D,. This is because
we regard each knowledge piece as convey-
ing more semantic information to the sys-
tem than any syntactic relation.  There-
fore, the amount of semantic information
new to the system, that is the elaboration
score, is bigger in the syntactic case than
in the knowledge based case (c.f. Section
2.8). The details of the ELABsynt(D1, D2)
and ELABjnow (D1, D2) definitions have been
spelled out in other literature!?)24).
When D, is elaborated from D;, D is
called an “ancestor of Dy”and D, a “descen-
dant of D;.” The most important property
in ELAB,yn¢ is that a sequence of syntac-
tic elaborations is always reduced to a sin-
gle ELAB, ynt, while ELABjpnoy’s cannot
be reduced'?. The fact that each multi-step
ELAB,yn: is reducible to a singe step one can
be proved by checking all the three cases which
are itemized in Section 2.6.1.
When D; and D, satisfy a ELABrnow
(D1, D2) relation, D; is called a knowledge
head, and D, a knowledge tail.
2.7 Multi-step Recursive Elaboration
A set of elaboration relations can be con-
catenated into a multi-step elaboration. In
the case of an m-step elaboration, we desig-
nate it by ELAB,,(D1, Ds). Because an elab-
oration is either syntactic or knowledge based,
and a concatenation of syntactic elaborations
is always reduced to a single step, the num-
ber of combinations of syntactic (denoted by
(5)) and knowledge based (denoted by (K))
relations in an m-step elaboration is less than
2™. We can prove that this number is a Fi-
bonacci number. For m = 1,2,3, all the m-
step elaboration types are the following. We
call each combination pattern a “path type.”
1 step: D;-(K)-Do,
D1-(S)-Do

2 step: D;-(K)-(K)-Dao,
Dy-(K)-(S)-Da,
D1~(8)-(K)-Ds
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3 step: Dy-(K)-(K)-(K)-Do,
‘ D1 (K)-(K)-(S)-Ds,
D1-(K)-(5)-(K)-Ds,

D1-(85)-(K)-(K)-Ds,
Dl-(S)—(K)-(S)-Dz

SDENYV-2 is equipped with the procedures
to compute the scores for all the path types
up to 3 steps. It is important to know that
each syntactic part (i.e., the (S) part) of the m-
step elaborations also includes recursive m-step
elaborations in part. A given concept pair (Dy,
D3) can have many m-step elaboration paths
with different scores corresponding to different
knowledge combinations for the same m. In
a practical system we. have to limit the maxi-
mum number of m to some M when we compute
ELAB;,(D,,D,), otherwise the computation
never ends. Therefore, the elaboration score
defined by Eq. (1) must be revised as

ELAB(Dy,Dy) =n, or
ELAB(D;,D,,n) :
n =min{ ELAB,,(D, D3)} (2)
(m=1,2,---,M
for some M and for all paths).

The following example illustrates a 3-step elab-
oration relation (D;-(S)-(K)-(S)-D3). Two
(S)’s here contain elther 1-step internal syntac-
tic or knowledge based elaborations.
(Example 2-5)
Let D; and Dy be

Dy =[s(FRIEND/(SOME)para(KING)),
v(BE), (MOTHER))], :
(Some of the King’s friends
are mothers.)
D;=[s(QUEEN/CERTAIN),
v(GIVEBIRTH/PAST/AGO/LONG),
o(SNOWHITE)],
(A Queen gave birth to
Snow-White long ago.)
and the knowledge available in this case be,
Individual Fact: _
[s(QUEEN/CERTAIN),v(GIVEBIRTH/
PAST),0o(SNOWHITE))
(QUEEN/CERTAIN)kdof(FRIEND /KING)
General Rule:
(assu([s(X),v(GIVEBIRTH/PAST),0(Y)]))
caus([s(X),v(BE),c(MOTHER/Y)]).
(If X gave birth to Y,
then X is Y’s mother.)
In this case we can compute
ELAB3(D1, DQ) = 36 semits.
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(Some of the King's friends are mothers.)
Di=[s(FRIEND /{SOME)paro(KING)),u BE),(( MOTHER})

* |1 ) |n @"

[(QUEEN [CERTAIN) BE),( MOTHER ANOWHITE)} ...

[{QUEEN /CERTAIN),/(GIVEBIRTH (PAST)),{ SNOWHITE)]

(S)| 22 W 22
D2={s(QUEEN /CERTAIN),{GIVEBIRTH /PAST/AGO/LONG),o(SNOWHITE)]

(A Queen gave birth to Snow- White long ago.)

ELAB(D1,D2)= 12+ 2 4 22 =36 semits

Fig. 2 An example of a multi-step elaboration
relation.

Figure 2 illustrates this computation. In
this computation, we use a specific rule:

(assu([s(QUEEN/CERTAIN),

v(GIVEBIRTH/PAST),
o(SNOWHITE))]))
caus([s(QUEEN/CERTAIN),v(BE),
¢(MOTHER/SNOWHITE)])
which is induced by instantiating the General
Rule with Ds.

2.8 How We Should Assign the Elab-

oration Scores

In this section we discuss how we should
assign the elaboration scores. The point of
the discussion is to determine how to balance
the syntactic and knowledge based elaboration
scores. As we mentioned in Section 2.5, an
elaboration relation gives us an abductive in-
ference rule from D; to Dy with an uncer-
tainty degree ELAB(D;,D;) = n, which is
either ELABgpnow 0t ELABgyn:. So, we will
discuss the score-balancing problem from this
point of view.

ELABpgnow is primarily based on specific
knowledge available in the system. We can
concatenate ELABpow's if such knowledge
is chained in a sequence. However, the more we
concatenate, the more uncertain the abduction
becomes. This is similar to the human inference
process. For a human, a 2-step abductive infer-
ence will be meaningful, but a 5-step abduction
may mean nothing.

Meanwhile, an abductive inference by an
ELAB yn: relation has no concrete basis to
stand on. The inference in this case is very un-
certain. Sometimes it is meaningless.
(Example 2-6)

Let
“An apple is a kind of fruit.”
be factual knowledge in terms of natural lan-
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guage, and
D; = “Snow-White likes fruit.”
be given as a true concept. For this D,
Doy = “Snow-White likes apples.”
is a knowledge based elaboration.

Furthermore, we can make a virtually unlim-
ited number of syntactically elaborated state-
ments such as the following.

D91 = “Snow-White likes fresh fruit”,

Dyy = “Snow-White likes red juicy fruit”,

Doz = “Snow-White likes round fruit

which is expensive.”

In these examples, Doy sounds realistic, and
some of Da1, Dag, and D23 could be possible as
far as our general knowledge is concerned. How-
ever, all these syntactically elaborated state-
ments have no reason to be true. They are all
uncertain.

We can conclude from this discussion that we
could balance the score of a maximum-step con-
catenated ELABjgnow With the score of a min-
imum ELAB ynt.

This idea was realized in the score balancing
problem in SDENV-2 in such a way that most
3(or more)-step ELABgnow’s are comparable
to a single step ELABgynt. This made the
score setting of SDENV-2 just as was shown
in Sections 2.3 and 2.6.

3. Computation of Semantic Differ-
ence Measure

One of the very fundamental problems in
modeling human communication by natural
language is an introduction of a semantic met-
ric. It is an indispensable framework for nat-
ural language understanding by machine. Tra-
ditional researchers, however, were rather re-
luctant to start struggling with such new at-
tempts. Among them, Ref.17) studied con-
ceptual distance by example learning. While,
Ref. 20) discussed the existence of the trian-
gular property in word meaning. People in
database technology appreciate this triangu-
lar property because of the simplicity of dis-
tance evaluation?). Case-based reasoning meth-
ods always discuss the similarity of examples
(concepts)®®)%). However, to the best of our
knowledge, no one has worked out an intelligent
system with a metric of sentence-by-sentence
natural language expressions in a very general-
ized form, even if they knew it was very impor-
tant. The authors studied the semantic met-
ric application to story understanding?®~3%),
conversational text retrieva124) and natural lan-
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guage generation problems?3).

The highlight of the SD-Form Semantics
Model lies in a concrete definition of the seman-
tic metric (or “semantic difference measure”)
on a concept set described by an SD-Form. We
give, in this section, the principle of the seman-
tic difference computation by showing an illus-
trative example.

The elaboration score between D; and D, as
defined in Section 2, is interpreted as a measure
of semantic difference between them. However,
if they are not related directly, we cannot mea-
sure the difference by this score. In this section
we introduce a general scheme to evaluate the
semantic difference between any two concepts.

3.1 The Nearest Common Ancestor

and the Semantic Difference Mea-
sure

Let D, D1, Dy be three concepts in SD-Form
which satisfy:

ELAB(D,D,) = n; and
ELAB(D, D2) = Ny

We call such a D “a common ancestor” of Dq
and D;. A simple example of such D is the
variable “X” because it is an ancestor of any
SD-Form. D can be either D = D or D = D>,
or both.

One of the common ancestors (Dg) which is
the nearest to Dy and D; is called the nearest
common ancestor (“NCOA” in short) of D;
and D,. We describe this relation as

NCOA(D,, Dy, Da,n1,1n0,n2) (3)
where,
Ny = Ny + N2
= ELAB(Dy, D) + ELAB(Dy, D5)
= minp{ELAB(D, D)
+ ELAB(D, D,)}
When we do not care about the score, we de-
scribe (3) as
NCOA(D,, Dy, D).

The “semantic difference measure” between
two concepts in the SD-Form Semantics Model
is defined by;

DIFF(Dl,Dz) = Ngy. (4)

This is the most important proposition in the
model. ng is simply referred to as the semantic
difference score. The following example illus-
trates this score’s computation. The example is
not very realistic, but will exemplify the com-
putation scheme.

(Example 3-1)
Let D; and D> be two “given concepts.”
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D; = [s(PIERRE-II),
v(DRINK/REGULARLY),
o(WINE/RED)]
(PIERRE-II always drinks red wine.)
D, = [s(TARO),
v(BUY /PAST/YESTERDAY),
o(DUD)]
(Taro bought a DUD yesterday.)

The “Facts” in the system (Individual and
General) are as follows.

F, = (PERSON)incl([PRINCE, JAPANESE])
(A prince and a Japanese are persons.)
F; = (ALCOHOL)incl([WINE, BEER])
(Wine and beer are alcohol.)
F; = (JAPANESE)incl(TARO)
(TARO is a Japanese.)
F4 = (PIERRE-II)equa(PRINCE/FRENCH)
(PIERRE-II is the French prince.)
Fs5 = (BEER/AMERICAN)incl(DUD)
(DUD is an American beer.)
Fs = D, = [s(PIERRE-II),
v(DRINK/REGULARLY),
o(WINE/RED))
F; = Dy = [s(TARO),
v(RUY/PAST/YESTERDAY),
o(DUD)]

General “Rules” in the system are

Ry = (assu([s(X),v(DRINK/
REGULARLY), o(Y)]))
caus([s(X), v(LIKE), o(Y)]),
(If X always drinks Y, then X likes Y.)
Ry = (assu{[s(X),v(BUY), o(Y)]))
caus([s(X), v(LIKE), o(Y)]).
(If X buys Y, then X likes Y.)

Under this circumstance the two following
concepts (induced concepts) work as system
knowledge (specific rules) after instantiating
general rules with facts.

R} = (assu([s(PIERRE-II),
v(DRINK/REGULARLY),
o(WINE/RED)]))
caus([s(PIERRE-II),
v(LIKE), o( WINE/RED)))

5 = (assu([s(TARO),v(BUY), o(DUD))}))

caus([s(TARO), v(LIKE), o(DUD)])

By using this system knowledge, the NCO A
of D; and D, is detected by the algorithm de-
scribed in Sections 3.2-3.6. All the elaboration
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(Some person likes some alcohol.)

Do=[s(PERSON/SOME),fLIKE),o{ ALCOHOL/SOME)]
AU ®w Eyﬁ QN
Pl

cE F1 B
Sy 11

S)
PRINCE/ERENCH L’// )

K) /0 - E JAPANESE BEER/AMERICAN
F(ﬂ/ <syf1 EON ng)\s

[(TARO),«(LIKE),o(DUD)]

(S) 19
1

-~ |{PIERRE-IT),W(LIKE),o{ WINE/RED))
(K)‘

le-[a(PmRm?rn) wDRINK/REGULARLY),o( WINE/RED))| Rz‘& 7
{Pierre-I1 always drinks o red wine.) [{TARO),%(BUY),o(DUD)]
S5 9 22

[{TARO),«(BUY/PAST/YESTERDAY),o(DUD)|=D2
(Taro bought a DUD yesterday.)

Fig. 3 An example of the DIFF (D1, D)
computation.

relations are illustrated in Fig.3. The num-
bers are elaboration scores. Knowledge symbols
(F1,---, Fr, Ry, Ra, R}, R}) are also attached to
each (K). The overall elaboration from Dy to
D, takes 2 steps, while the one from Dy to Dy
takes 3 steps. Therefore, the semantic differ-
ence measure in this case is computed as

DIFF(Dy,D,)
= ELAB2(D0, Dl) + ELAB;;(D(), Dz)
= (L +1140)+ (1411)) +2)

+({((1+3)+(1+11+3))+2+22)
= 26 + 43 = 69 semits.

If all these knowledge pieces are registered,
our experimental system (SDENV-2) can exe-
cute the instantiation operations automatically,
and finally compute the DIFF(D;, D) score
correctly.

As we see here, given concepts (D; and Ds)
are always regarded as facts in score computa-
tion.

The idea to define DIFF (D4, D5) as the se-
mantic difference measure between D; and Do
has some similarity to the idea of “The In-
ferential Distance Ordering” proposed by D.S.
Touretzky?”). However, his idea is categorized
in our model as a limited case when both D,
and D are labels. Our model covers more com-
plex cases in natural language semantics.

It is our central concern whether or not
DIFF(Dy, D) is computable in a practical
system. The topic in the following four sec-
tions is to prove that it is computable by using
“M-step elaboration relations” for any given M
that is finite.

3.2 Type-wise NCOA Detection Algo-

rithm

There are many types in the relation between
Dy and (D1, D2). We call them NCO A-types.
They can be described by the chain of (S) and
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(K) symbols. The simple types are as follows.
Type-a: D1-(K)-Do-(S)-D5
ELABknow(D07 Dl)a
ELAB,yn(Do, D5)

Type-b: Dl-(S)-Do-(S)-DQ
ELABaynt(D07 Dl)a
ELAB  ynt(Dy, D3)

Type—c:( DI—(K)-Do-(K)-Dz

ELABknow(DO7 D1)7
ELABknow (DO, D2)

As we see in the following, we can de-
tect the nearest common ancestor (Dg) for
these types. We denote such algorithm by
G(1, Dy, Dy, D3, ng) which we call a “1-step al-
gorithm.”

The number of NCO A-types in SDENV-2
is equal to 100. It is the combination of 10 dif-
ferent ELAB(Dg, D;) path types and 10 dif-
ferent ELAB(Dy, D5) path types (c.f. Section
2.7).

Type-b above is very special in the sense that
Dy must be synthesized from D; and D,, while
Dy in the other cases (Type-a and Type-c) can
be detected from among all knowledge-heads in
the system.

An example of Dy synthesizing (c.f. Section
3.4) is illustrated in Fig. 3. In this case,

Dy = [s(PERSON/SOME), v(LIKE),
o(ALCOHOL/SOME)]

is synthesized from the two concepts (Dp; and

Dy5) which follow.

Dy; = [s(PIERRE-II), v(LIKE),
o(WINE/RED)]
Doz = [s(TARO), v(LIKE), o(DUD)]
3.3 The Detection Algorithm of Dy for
D;-(K)-Do-(S)-D; Type NCOA

The D;-(K)-Dy-(S)-D2 type Dy is detectable
by the following.

(1) Find all knowledge-heads D,’s from
all knowledge pieces in the system
for which ELABpgnow(Dy, D1,n1,) and
ELAB ynt(Dy, Dz, n2,) are satisfied
for some n1, and ngy,.

(2) Find a D, for which ng = ny,+no; is the
minimum. Such D, is the desired Dy.
This algorithm is applicable to the D;-
(S)-Dyo-(K)-Do type NCO A by symme-
try.

3.4 Dy Synthesis Algorithm for D;-

(S)-Do-(S)-D; Type NCOA

For the D;-(S)-Do-(S)-D2 type Do, we
have to synthesize such Dy from the given
(D1, Dy) by referring to case-wise ELAB gynt



Vol. 40 No. 3

definitions. We actually made such an
NCOA(D,, Dy, D;) program in SDENV-2
for all combinations of every SD-Form type for
D; and Dj. The details are beyond the scope of
this paper. Some examples are in the following,
where ny, ne and ng are given by

ELAB,ynt(Do, D1) = n1,

ELABsynt(DOa D2) = Ng,

ng = ni + No.

A. The case where D; and Dy are SD-Forms

of different types.
In this case there are no common ancestors
other than a variable X.
Dy =X,
ng = ELABsynt(X, .D]_)
+ ELABsynt(X, D3)
= SI(Dy) + SI(Dg) —2
(This is because we set SI(X) = 1 in
SDENV-2))

B. The case where Dy and D5 are simple labels
which are not identical. This is the same
as Case A.

D() = X, ng = 18.
(This is because we set the ST score for a
label to be 10.)

C. The case where Dy = D/Dy,, Dy = D/Dg,
We can recursively synthesize Dy as Dy =
D/Doo, where

NCOA(D:4, Do, Doz, n1,m0,12).
D. The case where D; and D5 are both state-
ment SD-Forms such as
Dy = [s(D11),v(D12), ¢(D13)],
Dy = [s(D21),v(D22),(D23), 0(Da4)]-
In this case Dy is generated as
Do = [$(Do1), v(Doz)]
ELABsynt(DOa D17 nl))
ELABsy'n.t(DOa D27 n2),
where, Dg; and Dy, are recursively de-
tected as
NCOA(D]_]_, D01, D21) and
NCOA(Dlz, Doz, Da3).

3.5 The Detection Algorithm for Dy
in a D1-(K)-D0-(K)-D2 Type
NCOA

The Dy-(K)-Do-(K)-Dy type Do is de-

tectable by the following.

(1) Find all knowledge-head D,’s from
all knowledge pieces in the “system
for which ELABgnow(Dz, D1,n1;) and
ELABjyow(Dy,Da,n2,) are satisfied
for some ni,; and nog.

(2) Find a D, for which ng = ny;+naoy is the
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G(m+1, D1, Do, D2, no)

G(m, D1, Do, D2, mo)

G'(m+1, D1, Do, D2, no)

G(m, Dr*, Dv', D1, )

Fig. 4 G(m+ 1, D1, Do, D2,n0).

minimum. Such D, is the desired Dy.

As we have seen above, NCO A for Type-b in
Section 3.2 is recursively synthetic, while other
types (Type-a and Type-c) are all knowledge
dependent. :

3.6 General m-step Algorithm to De-

tect DQ

In Sections 3.3, 3.4 and 3.5, we have shown
that for three simple NCOA types,

1. D1-(K)-Dg-(S)-Da,

2. D1-(8)-Do-(S)-Da,

3. D1-(K)-D¢-(K)-Da,
the nearest common ancestor Dg of (D1, D2) is
detectable. We integrate those algorithms into
one expression as G(1, Dy, Dy, D2, ng) which we
call the 1-step algorithm. We generally des-
ignate an algorithm which detects Dy for a
given (D1, D3) by G(m, D1, Dy, D2, ng), where
m shows the maximum number of elaboration
steps from Dy to either Dy or Da. We call this
algorithm the “m-step algorithm.”

In this section we show that we can build an
(m + 1)-step algorithm by using the m-step al-
gorithm.

G(m+1, D1, Dy, D2, no) consists of two parts
(Fig. 4.) The first part is G(m, D1, Dg, D2, n0)
itself, the second part is an extended algorithm
of G(m, Dy, Dy, D2,n0) which we denote

G’(m + 1, Dy, Dy, Da, n()).

In the extending process from G{(m, D%, Dy,
Dy, ng) to G’(m + 1,D4, Dy, Da,ng), it is
enough to consider the following three cases,
where (D3i,D3) is the given concept pair.
This is because the D1-(S)-D7-(S)-combination
never appears in a multi-step elaboration (c.f.
Section 2.6.4).

Case-1: Dl-(S)-DI-(K)— te -Do-- --Dy
Case-2: D1-(K)-D3i-(S)- - - -Dg--- --Da
Case-3: Dl-(K)-DT-(K)- Tt —D0~- =Dy

In every case we assume an elaboration from

Dy to Dj actually takes m-steps.
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Algorithm: G'(m + 1, Dy, Dy, Do, ng)

[For Case-1]

(1) Pick up a knowledge-tail D} in the sys-
tem, and check if ELAB,,yn:(D%, D1,n})
is computable.

(2) Ifit is computable Execute (3), else Ex-
ecute (4).

(3) Execute G(m, D}, D}, D2, n!,). Set nl =
ny, +nj. Store Dj (together with nj) as
a candidate for Dy.

(4) Execute (1) for another D%. If no such

1 is left, Execute (5).

[For Case-2 and 3|

(53) Pick up a D} satisfying ELABnow
(D%, D1,n}) and Execute (6).

If no such D7 exists, Execute (8).

(6) Execute G(m, Dy, Dy, Do, nl,). Set ny =
ny, +n}. Store D (together with n}) as
a candidate for Dy.

(7) Execute (5) for another Dj.

(8) If no candidates are stored, set Dy = X,
else Execute (9).

[Minimization]

(9) Find out a candidate Dj for which n} is
the smallest. Set Dy = Dy and halt.

Algorithm: G(m + 1, D1, Dy, D2, ng)

(1) Execute G(m, D1, D, Dy, ny,).

(2) Execute G'(m+1,Dy,D', Do, npy1).

(3) Set ng = min{nm,nmy1}, and set Dy to
D or D', whichever gives ng.

Thus, we can build an M-step algo-
rithm G(M, D1, Dy, D2, np) by starting from
G(1, D1, Dy, D3, np) and extending it to G(2,
Dla D07 DZ, nO)v G(37 -Dly DO’ D2a ’I’L()), ) and
to an M-step algorithm for any M which is
finite. By using G(M, D1, Dy, D2, no) we can
detect the nearest common ancestor Dy for a
given Dy and Ds.

Once the G(M, Dy, Dy, D3, ngp) algorithm is
put into a program and run, it recursively calls
the lower step programs automatically. It al-
ways comes down to one of the three simple
1-step programs (c.f. Section 3.3-3.5).

The algorithm shown here is more theoretical
than practical. Its purpose is only to prove that
we can compute NCOA for the given D; and
D,.

As we have seen so far, G(M, D1, Dy, D2, ng)
is a recursive algorithm, and it is knowledge
dependent. Therefore, executing G(M, D1, Dy,
Dy, ngp) is rather time-consuming. However,
even if the system knowledge changes, the op-
eration of G(M, D1, Dy, Da,n) can adapt to it
without any change in the algorithm.
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4. Concluding Remarks

- The elaboration relation is the most funda-
mental idea in the SD-Form Semantics Model.
It is either a syntactic or knowledge based
one. The degree of elaboration from one con-
cept (Dy) to another (D3), i.e., the elaboration
score, provides the semantic discrepancy be-
tween them. It is a generalized idea of the tra-
ditional “IS-A”, “PART-OF” and “IF-THEN”
relations.

Based on the idea of elaboration, we gave the
computation algorithm for the semantic differ-
ence measure. It is denoted by DIFF'(D1, D5),
where D; and D, are given concepts in terms
of the SD-Form. This works as the metric in
the SD-Form Semantics Model and provides us
with a framework for quantitative analysis of
meaning in natural language understanding.

The DIFF (D, D3) score depends on knowl-
edge, and every time the knowledge increases,
the semantic difference measure must be re-
vised. However, it is possible for a system to
keep up with knowledge revision without any
revision in the system program. This relieves us
from worrying about all the knowledge mainte-
nance problems. We can give knowledge data to
the system piece-by-piece almost independently
and randomly.

In this paper we have focused our discus-
sion on the semantic difference score evalua-
tion scheme between two concepts. Some reader
may wonder how useful this model is, and sus-
pect its practical application. The soundness of
the model might be another point of discussion.

However, we believe such questions can only
be answered through experimental research.
Presently, we are working on the following
projects in conjunction with SD-Form Seman-
tics Model.

(1) Question answering system

(2) Story understanding system!4):29)

(3) Self organization process of concept hier-
archyll)’22)

(4) English and Japanese sentence genera-
tion23)-32)

(5) Retrieval of multimedia data3®

All these projects are more experimental than

theoretical. We will soon become more ex-

plicit about soundness and usefulness of the SD-

Form Semantics Model through these research

projects.

The merits of the SD-Form Semantics Model
are the following.

28)
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(1) It gives a well-formed syntactic structure
for meaning description.

(2) The syntactic difference of two SD-Forms
expresses the semantic difference.

(3) It is an interlingua reflecting the basic
structure of natural language such as En-
glish and Japanese.

(4) It is easy to learn SD-Form usage in the
meaning description.

The algorithm of the semantic difference com-
putation will open many ways to the meaning
processing of natural language, such as in recog-
nition, understanding and learning.

Some of the problems we should work on in
the near future are the following.

(1) Testing the model in a more realistic
world, even if it is small.

(2) An abstracting algorithm of story data
written by SD-Forms. '

(3) To make our SDENV-2 a faster system.
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Appendix

The syntax of the SD-Form is defined by the
following context-free grammar SDG.
SDG = {®,P,%,,%;}
Parameters in SDG are as follows.

Mar. 1999

®: Start symbol

P: Set of generation rules

¥, ={®,Xy, -+,X,}: Non-terminals

Z:t = {flyf?v"'7fi7fj7'"7917927"'»9%"',/’
nega, pass, even, only, assu, fcus, incl,
excl, equa, defi, andz, orxx, eorr, cous,
indu, effe, bcau, pseq, nseq, inst, addi,
plus, than, ofal, exmp, siml, asas, asif,
evif, csof, ptof, prof, vaof, kdof, thru,
more, less, oppo, para, s, v, i, o, ¢, b,
anel], ()« } Terminals

P is defined as follows.

0. X (1)
10. XX (X, -+, Xp) (0)
20. X f; (9)
30. Xg:(f;) (19)
41. X—g; /X (11)
12, Xogi(f,)/X (11)
13, X(f)plus(fa) -+ plus(fa)/X  (11n)
44. X—g;/(X1)para(Xz) - - - para(Xy,) (2n+9)
45. X—g,(f;)/ (X1)para(Xs) -
para(Xy) (2n+19)
46. X—(f1)plus(fz) - - - plus
(fm)/(X1)para(Xz) -
para(X,) (11m+2n—2)
50. X—>Pi(X) (@)
60. X—(X)C4(X) (2)
61. X—>(X1)plus(X2) plus(Xn) (2n—2)
70. X [S(X) v(X )] (4)
71 X—[s(X), v(X), o(X)] (6)
72. X—[s(X), v(pass(X)), b(X)] (8)
73. X—[s(X), v(X), ¢(X)] (6)
74. X—[s(X),v(X),i(X), o(X)] (8)
75. X—[s(X), v(pass(X)),i(X),b(X)] (10)
76. X—[s(X), v(pass(X)), o(X),b(X)] (10)
77. X—[s(X), v(X), o(X), e(X)] (8)
78. X—[s(X), v(pass(X)), e(X), b(X)] (10)
79. X—[s(X), v(pass(X)), b(X), c(X)] (10)
80. X—[a(X)] (2)
81. X—[r(X)] (2)
82. X—[e(X)] (2)
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