Vol. 40 No. 4

Regular Paper

Transactions of Information Processing Society of Japan

Apr. 1999

An Algebraic Approach to Specification and Analysis of the ODP Trader

SHIN NAKAJIMA! and KOKICHI FUTATSUGI!H

The ODP trader is an important standard specification for a discovering service in dis-
tributed computing environments. We used CAFE specification environment to construct
algebraic specifications of the information viewpoint of the ODP trader written in CafeOBJ.
The resultant CafeOBJ specification is more constructive than the Z specification in the orig-

inal standard document while both specifications are equally formal.

Our experience has

shown (1) that algebraic specification technique is useful to describe characteristics of the
ODP trader and (2) that the resultant specification contributes to helping us understand the
functionality of the ODP trader at an appropriate abstract level because specifications written

in CafeOBJ are executable.

1. Introduction

The advancement of distributed software
technology demands the establishment of com-
mon services for distributed computing envi-
ronments. Examples of the common services
include naming services, trading services, se-
curity services, and mobile agent facilities!9).
Since their specifications are consulted so of-
ten, the documents should be unambiguous and
clear enough to be of great assistance in allow-
ing us to understand the functionality easily.

ODP (Open Distributed Processing), a joint
effort of ISO and ITU-T,; aims to provide a gen-
eral architectural framework for distributed sys-
tems in a multi-vendor environment?!). Their
activities involve the use and integration of
FDTs (Formal Description Techniques) into the
ODP from the early stages of defining RM-ODP
(Reference Model of Open Distributed Process-
ing)). As a concrete service following RM-
ODP, the ODP trader has been defined V3.
The ODP trader is an important standard spec-
ification because it has recently become IS (the
International Standard) and also it is techni-
cally aligned with the OMG specification for
the trading object service?2)23),

The present paper reports on our experience
in using CAFE specification environment %)
and CafeOBJ (a multiparadigm algebraic speci-
fication language) 78 in writing formal specifi-
cations of the ODP trader. Although the ODP
trader has been extensively studied as an exam-
ple case for applying FDTs19:11):17) 106 speci-

t NEC C&C Media Research Laboratories
11 Japan Advanced Institute of Science and Technol-
ogy

1861

fication using algebraic specification techniques
has been published. We used CAFE specifica-
tion environment to construct algebraic spec-
ifications of the information viewpoint of the
ODP trader written in CafeOBJ. The resul-
tant CafeOBJ specification is more constructive
than the Z specification in the original stan-
dard document?) while both specifications are
equally formal. Our experinece shows (1) that
algebraic specification technique is useful to de-
scribe characteristrics of the ODP trader and
(2) that the resultant specifications contribute
to helping us understand the functionality of
the ODP trader at an appropriate abstract level
because the specification is mechanically ana-
lyzable.

2. CAFE and CafeOBJ

CAFE is an advanced specification writing
environment '3, and CafeOBJ is a powerful al-
gebraic specification language which has clear
semantics based on hidden-order sorted rewrit-
ing logic»®). The logic subsumes order-sorted
equational logic12:14):15) concurrent rewrit-
ing logic'®, and hidden algebra!®)*. Since
CafeOBJ has clear operational semantics, spec-
ifications written in it can be executable.

Here is a simple example CafeOBJ specifica-
tion LIST. The module LIST defines a generic
abstract datatype List. The parameter TRIV
specifies that the sort of the list element is E1t,
which will be determined at the time of module
instantiation. __ (juxtaposing two data in the
specified sorts) is a List constructor. |_| re-

* We only consider order-sorted equational logic of
CafeOBJ because the logic has enough expressive
power to specify the information viewpoint of the
ODP trader.

1862 Transactions of Information Processing Society of Japan

turns the length of the operand list data and
it is defined as a recursive function over the
recursive structure of List. hd and tl are
two standard accessor functions. The mod-
ule also imports a library module NAT with
protecting (NAT), by which all the definitions
in NAT can freely be used in LIST. Since LIST is
a parameterized module, we instantiate it with
NAT to have a list of natural numbers NAT-LIST.
mod! LIST[X :: TRIV] {

[NeList List , Elt < NeList < List]

protecting (NAT)

signature {

op nil : -> List
op __ : Elt List -> NelList {id: nil}
op I_| : List -> Nat
op hd : NelList -> Elt
op t1 : NeList -> List
}
axioms {
var X : Elt var L : List
eq | nil | =0 .
eq | XL|1=1+]L]|
eq hd(X L) = X .
eq t1(X L) =L .
}

}

mod! NAT-LIST { protecting (LIST[NAT]) }
We can load the file to the CAFE environ-

ment and validate the functionality of the spec-

ification. In the following, in is a file load com-

mand, select sets up a current module, and

red is a command to start reduction of the

operand term and return a normal form. The

result is 5 that is the length of the given list.

Cafe0BJ> in list.mod

CafeOBJ> select NAT-LIST .

NAT-LIST> red |(1 2 3 4 5)|

5 : NzNat

3. The ODP Trader and FDTs

3.1 Overview of The Trading Function

Figure 1 shows the ODP trader and the par-
ticipants in a trading scenario!)®). Exporter
exports a service offer. Importer imports the
service offer and then becomes a client of the
service. Trader mediates between the two by
using the exported service offers stored in its
own repository which is ready for any import
request.

Every service offer has a service type which
has the interface type of the object being adver-
tised and a list of property definitions. A prop-
erty definition consists of a property name, the

Apr. 1999
Trader
1 export 2 import
Exporter [~ Importer

3 service interaction

Fig.1 The ODP trader and its context.

type of the value, and a mode. The mode indi-
cates whether the property value is mandatory,
optional, or readonly. A service offer is a value
which is consistent with the type informations
in the property definitions of its service type.

The importer specifies a list of pairs of prop-
erty name and value for service offers that it
tries to import. Then, the trader searches its
repository to find service offers whose property
values match the importer’s request. The im-
porter can further specify a preference infor-
mation to specify that the matched offers are
sorted according to the preference rule. Last,
the sorted offers are returned to the importer to
initiate service interactions. The trader defines
a standard constraint language for specifying
both the property and the preference in order
to provide common understanding between the
participants. Further, the ODP trading func-
tion is a complex specification since it has the
concept for service subtyping and federation be-
tween traders. The subtyping rule is used to
find offers that do not exactly match the re-
quest. The trader can be a member of a fed-
erated trader group that interworks to manage
and handle service offers.

A concrete example might be a help in under-
standing a trading scenario®*. Some of the prop-
erties that the offer for the printer service has
are the location of the printer server, resolution,
color or black/white, the printer’s name, and
length of the printer queue. Of these proper-
ties, the length of the printer queue is dynamic
and its exact value is obtained at the time of
the request.

The importer tries to obtain the service offers
of the printer based on a request which has a
set of property values and a preference value.

* The example scenario, importing service offers of a
printer service, is taken from Ref. 23).

Vol. 40 No. 4

For example, the importer specifies the loca-
tion of a floor lower than the third in Building
A, and true color properties in addition to a
rule saying that a printer with a short queue
is preferred. The trader searches its repository
for offers that match the importer request. For
values of properties that are not specified, the
trader either uses default values that the trader
has or just ignores them if the properties are op-
tional. After the trader successfully finds a set
of matched offers, it also sorts the set according
to the preference rule. Thus, the trader returns
the list of offers for the color printers with the
shortest printer queue first. The importer re-
ceives the list of printer offers, and initiates a
printing service on the desired printer.

3.2 The Standard Document and

CafeOBJ

RM-ODP 21) introduces the concept of view-
points for describing the system from vari-
ous concerns. The five viewpoints are enter-
prise (requirement capture and early design
of distributed systems), information (concep-
tual design and information modeling), com-
putational (software design and development),
engineering (system design and development),
and technology (technology identification, pro-
curement and installation). Of the five view-
points, the information and computational are
the most important ones in view of the ap-
plication of FDTs and the standardization ac-
tivities. The others are intrinsically informal
(enterprise) or implementation-dependent (en-
gineering and technology).

The standard document of the ODP trading
function V) follows RM-ODP and it describes
three viewpoints; enterprise, information and
computational. In particular, the informa-
tion viewpoint sees the trading system from
the viewpoint of a centralized system. It uses
the Z notation?? to define basic concepts, the
trader state, and the set of the top-level op-
erations that is visible from the outside. The
computational viewpoint describes the func-
tional aspects of the trading system, and pro-
vides a decomposition of the overall functional-
ity into several components and their interac-
tions. This viewpoint uses IDL'®) to describe
basic datatypes and top-level operation inter-
faces, and it supplements all behavioral aspects
in terms of natural language explanations. In
this paper, we will concentrate on the informa-
tion viewpoint of the ODP trader because the
standard document well describes all the spec-

An Algebraic Approach to Specification and Analysis of the ODP Trader 1863

ifications, while the computational viewpoint
part of the document leaves much to further
design activities which is beyond the scope of
the present paper.

Since the Z notation is a model-oriented for-
mal specification language2?) that is based on
axiomatic set theory (Zermelo set theory), the
required mathematical background is not so ad-
vanced and thus software engineers who have
adequate training in mathematics do not find
it difficult to understand Z specifications. How-
ever, some specifications employ a lot of idioms
specific to the Z notation. The description is
almost a result of hacking at the worst. Fur-
ther, it is hard to mechanically analyze speci-
fications written in the full Z notation because
of the richness of its background mathematics.
For naive software engineers who are not famil-
iar with mathematics, specifications written in
an executable or operational manner are much
more accessible. Actually, we can obtain exe-
cutable specifications in CafeOBJ.

Because.of the nature of axiomatic set the-
ory, it is not always easy to translate Z speci-
fications into CafeOBJ directly ?®). The Z no-
tation allows higher-order specifications in the
sense that expressions can be evaluated to be
types (sets), while CafeOBJ, being an algebraic
specification language, is essentially first-order:
namely type (sort) and value are clearly dis-
tinct. Further, the Z notation can specify an
infinite set by using either an existential quan-
tifier or a set comprehension that employs some
predicates to characterize the elements of the
defining set. Contrarily it is difficult to encode
infinite sets in CafeOBJ. Therefore, it is neces-
sary to give some interpretation to each speci-
fication fragment in regard to how we use the
fragment in the other part of the specifications.
Since the specific translation will be discussed
in Section 4 with detailed explanation on each
decision, we only give some general rules for the
translation in Table 1.

3.3 Related Work

Some literature discusses that the FDTs to be
used in the standard specification documents
such as the ODP trader should also be stan-
dardized and thus that Z, SDL or LOTOS are
good candidates®-11). However, these FDTs
are based on research long before RM-ODP and
the ODP trader appeared, and there have been
many new advances in FDT research since then.
For examiple, the abstract data part of LOTOS
is many-sorted while CafeOBJ has order-sorted

1864 Transactions of Information Processing Society of Japan

Apr. 1999

Table 1 General rules for translation.

Z Notation

CafeOBJ

given name

state schema

operation schema
property part of schema

PNl

sort symbol

sort symbol, constructor function symbol
function symbol, equational axiom
function symbol, equational axiom

algebra*. Moreover, the Z notation itself has
not been approved to be IS (the International
Standard) yet. We think that it is not necessary
to stick to old FDTs. Instead, a new FDT with
advanced features like CafeOBJ is sometimes
better suited for specifying complex specifica-
tions such as the ODP trader.

Other researchers have proposed new FDTs
for RM-ODP 4):6)-9) Concerns here are (1) con-
sistency between the information and compu-
tational viewpoints and (2) the possibility of
mechanical analysis for the specificand. Most
of the work has only concentrated on the first
aspect. However, we see that mechanical anal-
ysis is valuable in allowing us to understand
the specificand as well as providing consistent
specifications. Although designing a new spec-
ification language for RM-ODP is valuable, it
would also be worth investigating to study how
existing formal specification languages are em-
ployed. It is because we can make use of ex-
isting techniques and tools for mechanically
analysing specifications.

Apart from the Z specification of the stan-
dard document, Refs.10), 11) and 17) pro-
vide formal specifications for the ODP trader.
Fischbeck, et al.!® employ a combination of
IDL and SDL to describe the computational
viewpoint specification. Their tool generates
executable codes of either C++ or Java. Thus,
functional aspects of the computational view-
point specifications can be validated by exe-
cutions. Since the approach is based on gen-
erating programs, the emphasis is on the re-
lationship between the computational and en-
gineering viewpoints. Fischer, et al.'! is one
early work applying FDTs to the specifications
of the ODP application. They investigate Z,
LOTOS and SDL in writing the specifications
and conclude that no single FDT can specify
the richness of the ODP trader. This work has
had much impact on the current standard doc-
ument V). Lecero and Quemada'?) present the
E-LOTOS specification for the computational

* Actually, these advances have motivated a new ad-
dition to the LOTOS family, E-LOTOS 7.

viewpoint of the ODP trader. Their purpose
is to show how new language constructs of E-
LOTOS are used to specify ODP applications.
Since the language belongs to the LOTOS fam-
ily, the specification style is process-oriented
(the ODP trader consists of a set of E-LOTOS
processes). It presents specifications that are
organized differently from those in the standard
document.

Last, Nakajima and Futatsugi propose to use
algebraic specification technique to specify the
ODP trader and present an overview of the
project 20). Although the paper deals with both
the information and computational viewpoints
of the ODP trader, it does not include the
CafeOBJ specifications in enough details or any
concrete example analysis results. This paper
concentrates on the information viewpoint and
gives a detail account of specification and anal-
ysis of the CafeOBJ specifications.

4. A CafeOBJ Specification of the
ODP Trader

In this section, we will show some specifica-
tion fragments in the Z notation drawn from the
standard document? and the CafeOBJ coun-
terparts. Our goals are (1) to write executable
specifications so as to help us understand the
functionality of the ODP trader at an abstract
level, and (2) to write modular specifications
80 as to make it clear the correspondence of the
modules with the elements in the standard doc-
ument and at the same time to make it clear the
role that each module has.

4.1 Some Specification Fragments

4.1.1 Basic Concepts

A given name introduces a new basic con-
cept; InterfaceSignature Type and Name are ex-
amples of this. A free type definition specifies
a set with elements in the defining set; the set
Mode has four constants.

[InterfaceSignature Type, Name]
Mode ::= normal | readonly | mandatory
| readonlymandatory
A given name is encoded as a sort in CafeOBJ,
and a free type is a sort with appropriate (con-
stant) constructors.

Vol. 40 No. 4

mod! SERVICE-TYPE {
[ServiceType]
protecting (INTERFACE-SIGNATURE-TYPE)
protecting (PROPERTY-DEFINITIONS)
signature {
op [signature=_, prop-defs=_]
op _.signature
op _.prop-defs

axioms {

var I : InterfaceSignatureType var P :

eq ([signature=(I), prop-defs=(P)]).signature
eq ([signature=(I), prop-defs=(P)]).prop-defs

An Algebraic Approach to Specification and Analysis of the ODP Trader 1865

: InterfaceSignatureType PropertyDefinitions -> ServiceType
: ServiceType -> InterfaceSignatureType
: ServiceType -> PropertyDefinitions

PropertyDefinitions

=1I.
=P .

Fig.2 Module SERVICE-TYPE.

mod! INTERFACE-SIGNATURE-TYPE {
[InterfaceSignatureType]

}
mod! MODE {
[Mode 1]
signature {
ops normal readonly mandatory : -> Mode
op readonlymandatory : -> Mode
}
}

Some schemata represent a basic concept that
is an aggregate of known concepts; Service Type
has two named components, signature of type
InterfaceSignature Type and prop_defs of type
Name + (ValueType x Mode).

Service Type
signature : InterfaceSignature Type
prop_defs : Name -+ (Value Type x Mode)

Since ServiceType can be considered as struc-
tured data, its CafeOBJ specification em-
ploys a style similar to a record structure.
The SERVICE-TYPE (Fig.2) introduces a new
sort ServiceType and one constructor which
provides a record-like syntax, and two ac-
cessor functions. @ The axioms part gives
definitions for the accessors by using equa-
tions. The module also imports two modules
INTERFACE-SIGNATURE-TYPE and PROPERTY-
DEFINITIONS that provide definitions for the
symbols used.

4.1.2 Basic Library for Executable

Specifications

Any executable specification in CafeOBJ
should have an initial algebra model 7)-8)-12),
A rule of thumb is that the definitions of ba-
sic data structures is to follow recursive struc-
tures; namely, they are based on recursively de-
fined LIST (see Section 2) and they add ap-

propriate utility functions to simulate other
high-level functionalities such as the set-like
collection of data. The parameterized mod-
ule COLLECTION[X :: TRIV] is the one we pro-
vide. By using this library module, we have
an executable CafeOBJ module for a type P
ElementData in the 7 notation; the module
SERVICE-OFFER-S is such an example, which is
P ServiceOffer in the Z specification.

mod! SERVICE-OFFER-S {

protecting (COLLECTION[SERVICE-OFFER]

*{ sort Collection -> ServiceOffers })

}

Actually the module COLLECTION introduces a
sort Collection to represent (homogeneous)
collection of some values. In defining the
module SERVICE-OFFER-S with instantiating
COLLECTION, we have renamed Collection to
be ServiceOffers by using the view mecha-
nism of CafeOBJ?®).

In order to construct a basic library for the
original Z specification having function types
(+), we have introduced another parameter-
ized module ENVIRONMENT. This follows the ob-
servation that the function types in Z are basi-
cally power sets of some relation, although not
strictly so*.

X+Y = PXxY)
The ENVIRONMENT[X :: TRIV, Y :: TRIV]
employs COLLECTION and 2TUPLE'% as its in-
ternal representation.

4.1.3 State Schema

The schema TradingSystem is the main state
schema and it defines the global state space
of federated traders. It defines data structure
representing the state space with a set of well-
formedness conditions as its properties. The

* The definition of the partial function in terms of the
relationship is given in Ref. 22).

1866

Transactions of Information Processing Society of Japan

mod! TRADING-SYSTEM-AXIOMS {

protecting (TRADING-SYSTEM)
protecting (TRADING-SYSTEM-LIBRARY)
signature {
op trading-system-axiom : TradingSystem -> Bool
op service-offer-equality : ServiceOffer ServiceOffer -> Bool
}
axioms {
var T : TradingSystem vars Vi V2 : ServiceOffer
eq trading-system-axiom(T)
= ((dom-partition((T).partition)) equal-to ((T).offers))
and ((ran-partition((T).partition)) is-subsumed-by ((T).nodes))
and ((all-nodes-of ((T).edges)) is~subsumed-by ((T).nodes))
and ((dom-edge-prop((T).edge-properties)) equal-to ((T).edges))

Apr. 1999

eq service-offer-equality(Vi,V2) =

}
¥

((V1) .offer-id == (V2).offer-id) .

Fig.3 Module TRADING-SYSTEM-AXIOMS.

schema shows that the state space consists of

five components and that four predicates be as-

serted for the state space to be well-formed.

The last line starting V defines equality of Ser-

viceOffer instances.

— TradingSystem

offers : P ServiceOffer

nodes : P Node

partition : ServiceOffer + Node

edges : Node — Node

edge_properties : (Node x Node) + P Property

dom partition = offers

ran partition C nodes

dom edges U ran edges C nodes

dom edge_properties = edges

V p, q : ServiceOffer o p.service_offer_identifier
= g.service_offer_identifier

*Pp=4q

The declaration part is directly translated
to a record style structure, which is in the
same manner as the ServiceType. We defined
TRADING-SYSTEM module for TradingSystem.
When we stand at the specification execu-
tion side, one way of using the property part
of the TradingSystem is just to check the well-
formedness of the TradingSystem record struc-
ture after invocation of, say an ezport. In other
words, the property part is interpreted as a
boolean-valued function that accepts a Trad-
ingSystem record instance as its argument,.
Figure 3 shows a CafeOBJ module defini-
tion in accordance with this idea. The function
trading-system-axiomis a conjunction of the
four predicates of the Z specification. In addi-
tion, all the symbols such as dom-partition
are defined by using either COLLECTION or

ENVIRONMENT.

4.1.4 Operation Schema

The main trading functions are implemented
as operations on the state schema TradingSys-
tem. FEzport is an example function that ex-
ports a new service offer. The offer is subse-
quently stored in a repository the trader main-
tains, and it is actually stored in some compo-
nents of the schema TradingSystem.

The following schema FEzportOK defines a
part of the definition of the export function*.
It accepts two input parameters and returns
a value of ServiceOfferIdentifier, and it also
leaves some changes in the TradingSystem state
space. Further, the first two predicates are
preconditions and the rest are postconditions;
offers and partitions are updated accordingly
while the others are left unchanged.

— EzportOK
A TradingSystem
new_offer? : ServiceOffer
node? : Node
service_offer_identifier! : ServiceOfferIdentifier
Y s : offers e s.service_offer_identifier
new_offer?.service_offer_tdentifier
node? € nodes
offers’ = offers U {new_offer?}
partition’ = partition U {new_offer? ~+ node?}
service_offer_identifier!
= new_offer?.service_offer_identifier
nodes’ = nodes
edge_properties’ = edge_properties
edges’ = edges

* A case where the precondition becomes false is also
documented V.

Vol. 40 No. 4

mod! EXPORT-BEHAVIOR {
protecting (TRADING-SYSTEM)
signature {
op value
op state
op pre-cond

axioms {
var S : TradingSystem var 0 :

An Algebraic Approach to Specification and Analysis of the ODP Trader 1867

: TradingSystem ServiceOffer Node -> ServiceOfferIdentifier
: TradingSystem ServiceOffer Node -> TradingSystem
: TradingSystem ServiceOffer Node -> Bool

ServiceOffer var N : Node

ceq value(S,0,N) = (0).offer-id if pre-cond(S,0,N) .

ceq value(S,0,N) = void

i}

ceq state(S,0,N)

if not pre-cond(S,0,N) .

[offers=(add((S).offers,0)), nodes=((S).nodes),

partition=(add((S).partition,0,N)), edges=((S).edges),

edge-properties=((S).edge-properties)]

ceq state(S,0,N) = S

if pre-cond(S,0,N) .
if not pre-cond(S,0,N) .

eq pre-cond(S,0,N) = ((N) is-member-of ((S).nodes))
and (new-id ((S).offers, (0).offer-id)) .

¥
}

Fig.4 Module EXPORT-BEHAVIOR.

The fact that the properties can be divided into
preconditions and postconditions is the basis for
writing the CafeOBJ specification.

Since the FEzportOK and other operation
schemata not only return some specific values,
but also leave changes in the state space, we
could not model the operation in a purely func-
tional manner. The module BASIC-STATE has
functionalities whereby the operation can re-
turn values and update the state space at the
same time. The function to represent a top-
level operation will take the following form:

TradingSystem x InputArgs

— ReturnValue x TradingSystem .
Actually, the sort ValueState is defined as a
tuple of ReturnValue and TradingSystem.

The module EXPORT defines the top-level op-
eration export, which uses two auxiliary func-
tions and returns a new ValueState value;
value computes a return value and state gives
a new state space value.
mod! EXPORT {

protecting (BASIC-STATE)

protecting (EXPORT-BEHAVIOR)

signature {

op export :
TradingSystem ServiceOffer Node
-> ValueState }

axioms {
var 5 : TradingSystem
var 0 : ServiceOffer var N : Node

eq export(S,0,N)
= new-state(value(S,0,N), state(S,0,N))
}

}

The module EXPORT-BEHAVIOR in Fig. 4 defines
behavior for the two functions. Since the orig-
inal Z specification for the Ezport schema han-
dles an exceptional case as well as a normal one,
the behavior of the two functions can be defined
in terms of a set of conditional equations where
the condition corresponds to the precondition
of the FzportOK schema.

For example, the member offers is updated
to be add((S) .offers,0) which is a CafeOBJ
representation of the following Z specification
fragment in the EzportOK schema:

offers’ = offers U {new_offer?}.

Further, in order for the above specification to
be executable, add((S).offers,0) should be
evaluated to have a natural normal form of the
specified sort ServiceOffers. This requires
that the module SERVICE-OFFER-S defining the
sort ServiceOffers should provide executable
data structures (see Section 4.1.2).

4.1.5 Relation Schema as Function

The Z specification includes a schema which
introduces a relation on some particular set(s).
The relation is_subtype_of (Fig.5) is one such
example which defines the subtype relationship
between two ServiceType instances.

In order to make the relation is_subtype_of
executable, we model it as a function to en-
sure that the two arguments of the relation
is_subtype_of satisfy the subtype relationship
(Fig. 6). According to the Z specifica-
tion, the relation is further decomposed into
1s_sig_subtype_of, C and the V part which
also checks the two conditions by using

1868 Transactions of Information Processing Society of Japan

A (Vn:doma.prop_defs e

Apr. 1999

- is_subtype_of _: ServiceType « ServiceType

Va,b: ServiceType o b is_subtype_of a &
b.signature is_sig_subtype_of a.signature
A dom a.prop_defs C dom b.prop_defs

first(a.prop_defs n) is_value_supertype_of first(b.prop_defs n) A
second(a.prop_defs n) is_mode_supertype_of second(b.prop_defs n)

Fig.5 Schema is_subtype_of.

mod! SUBTYPING-RULE {
protecting (SERVICE-TYPE)
protecting (SIGNATURE-SUBTYPING)

protecting (VALUE-MODE-SUPERTYPE-FLATTEN[PRED2SUBTYPING]
*{ op andalso -> check-vm })

signature {

op _is-subtype-of_
}
axioms {

vars S1 S2 : ServiceType

eq (S1) is-subtype-of (S2)

: ServiceType ServiceType -> Bool

= ((S1) .signature) is-sig-subtype-of ((S2).signature)
and ((names((S1).prop-defs)) is-subsumed-by (names((S2).prop-defs)))
and check-vm(names((S1).prop-defs), (S1i).prop-defs, (S2).prop-defs) .

}
}
Fig.6 Module SUBTYPING-RULE.
var N : Name vars W1 W2 : ValueMode vars P1 P2 : PropertyDefinitions
eq pred-vm (N,P1,P2) = pvm(lookup(P1,N), lookup(P2,N)) .

eq pvm(W1,W2) = (get-value-type(W1) is-value-supertype-of get-value-type(W2))
and (get-mode(W1l) is-mode-supertype-of get-mode(W2)) .

Fig.7 Predicate pred-vm.

is_value_supertype_of and is_mode_supertype_of.
Since the last condition concerns Vn:
dom a.prop_defs, we will model it as a func-
tion with n as its input parameter. More
concretely, a new function check-vm is de-
fined to have three arguments, the first runs
through n in dom a.prop_defs, and the sec-
ond and the third are the prop_defs compo-
nents of the Service Type instances. Since enu-
meration over n in dom a.prop_defs requires
some auxiliary functions in CafeOBJ, we factor
the definition of check-vm into another module
VALUE-MODE-SUPERTYPE-FLATTEN that in turn
uses a parameterized module to simulate the
higher-order specification style. The following
fragment illustrates the body of the function
check-vm.
var N : Name var L : Names
vars P1 P2 : PropertyDefinitions

eq andalso(nil,P1,P2) = true .
eq andalso((N L),Pi,P2)
= if p(N,P1,P2) then andalso(L,P1,P2)

else false fi .
The function andalso is basically a procedural
implementation of the following Z specification
fragment.
Vn: dom a.prop_defs e p(n,ad(n), bd(n))
= A(nedom a.prop-defs) p(naad(n)abd(n))
The predicate p (or p) is actually given by
pred-vm in Fig. 7.
4.2 Example Execution Trace
Below we show an example reduction for the
case of EXPORT. After loading all the neces-
sary CafeOBJ specifications, we can execute the
specification with appropriate input terms (test
data)*.
TEST> let al export ((t), new-s, node)
TEST> let a2 = export((t), new-s, node2)
TEST> red 1*(al)
0id3 : ServiceOfferIdentifier

TEST> red trading-system-axiom(2#*(al))

% We used cafeobj (1.4b5), which can be obtained
from the following URL:
http://www.ldl.jaist.ac.jp/cafeobj/index.html.en

Vol. 40 No. 4

. SearchOK

An Algebraic Approach to Specification and Analysis of the ODP Trader 1869

ZTradingSystem

Z TradingSystem Constraints

SearchRequest?

starting_point? : Node

search_result! : P ServiceOffer
starting.point? € nodes

partition(] search_restult! |) C {z : Node | (starting_point?,z) € edges*}
search_result! C importer_matching? N trader_matching N importer_scope? N trader_scope

Fig.8 Schema SearchOK.

true : Bool

TEST> red 1%(a2) .
void : ReturnValue

TEST> red trading-system-axiom(2#*(a2))

true : Bool

The construct let temporarily binds its right-
hand side term to the left-hand side identifier.
The label t refers to a TradingSystem value.
The label new-s is a ServiceOffer value de-
fined as a term similar to record structure in
the module SERVICE-OFFER. The labels node
and node2 are Node values defined in the mod-
ule NODE. Since the value of export is a tuple
(see Section 4.1.4), we can obtain the return
value of the export function by 1*(al) and
the resultant new TradingSystem state value
by 2%(al1) where 1x and 2* access the first and
second element of the tuple respectively !4).

In the above session, al is a case of suc-
cess in Export operation while a2 corresponds
to a case where precondition of Ezport is vio-
lated and thus leaves no changes in TradingSys-
tem. For the first case, the return value is
a new Service0OfferIdentifier value 0id3,
which is generated by export. The second
case returns void which means that no sig-
nificant value is returned. In both cases,
trading-system-axiom returns true as ex-
pected (see Section 4.1.3).

Last, the CAFE environment also provides
a compiler that translates terms and rewriting
rules into virtual machine codes in order to real-
ize fast execution '®. Typically, we can obtain
3 to 10 times performance gain by using the
compiler.

4.3 Search and Select

The Z specification of the standard docu-
ment defines Search and Select for importing.
The basic idea is first to use Search for col-
lecting all the service offers that match both
the importer’s request and the conditions that

the trader has, and second to invoke Select for
sorting the offers according to the importer’s
preference. As shown below and in Fig. 8, the
original Z specification is very declarative and
hard to understand its operational meaning at
a glance.
MatchingCriteria == P ServiceOffer
ScopeCriteria == P ServiceOffer

TradingSystem Constraints

trader_matching : MatchingCriteria

trader_scope : ScopeCriteria

SearchOK is meant to return an appropri-
ate set of ServiceOffers bound to the vari-
able search_result!. The appropriateness is ex-
pressed in terms of the logical condition given
to the variable; that is, the returned Service-
Offers is a subset of intersection of the four
ServiceOffer sets. Each set is a subset of the
managed ServiceOffers that matches a par-
ticular partitioning condition. For example
importer-matching? is for those that match
the condition in the importer request, while
trader_matching refers to those that reflect the
condition imposed by the trader. Thus, taking
the intersection produces a set of ServiceOffers
that match all the conditions.

However, since all four sets are defined as a
value of P ServiceOffer and are not mentioned
further, it is not easy to grasp what the spec-
ification really means. This is partly because
the modeling method that ServiceOffers are
partitioned a priori has a large gap with the
specifications for the computational viewpoint:
the viewpoint uses a constraint language to ex-
plicitly specify such conditions?. In sum, the
original Z specification is abstract and thus fur-
ther design decision is necessary to have an ex-
ecutable specification. Since introducing such
design decisions is beyond the scope of this pa-
per, our decision was not to provide executable

1870 Transactions of Information Processing Society of Japan

Common

Concepts
Original Refined
Spegcmcatlon (\ Specification
Abstraction
Relationship

Fig.9 Refinement.

specifications.

Actually we have studied two styles of
CafeOBJ specifications for this part. Our de-
cision for-the first approach is only to provide
signatures (declarations of symbols) and mini-
mum axioms saying that some relationships ex-
ist between some of the symbols. In a word, the
specification is a direct syntactical transcription
of the Z specification. However, the CafeOBJ
specification can be mechanically checked in
view of syntax and sort (type), while the Z
specification is hard to mechanically analyze.
Namely, the specification fragment togther with
the rest of the CafeOBJ descriptions can be
shown consistent in view of sort. Our second
approach is to study how CAFE/CafeOBJ pro-
vides mechanical support for specification re-
finement, which we will discuss below.

As the CafeOBJ specifications, we define two
versions for SearchOK as shown in Fig. 9. One
is what is called the original specification, and
the other is a refined one that employs model-
ing with a hypothetical retrieval language. The
retrieval language can be regarded as an ab-
straction of the constraint language of the com-
putational viewpoint?). In addition, we intro-
duce an abstraction relationship which maps el-
ements in the refined specification to elements
in the original if possible. The idea has com-
monly been used in verifying refinement of the
Z specifications 22).

Here, we will show that the search result ex-
pressed as search(T,X,S) is a subset of the
intersection of the two predefined sets*. The
relationship was shown as a part of the original

specification.

var T : TradingSystem

var S : SearchRequest

var X : TradingSystemConstraints

eq search(T,X,S) is-subset-of

Apr. 1999

((X) .trader-matching

cap (S).importer-matching) = true .
The refined specification below indicates how
search is obtained in terms of executing the
search procedure which employs the hypothet-
ical retrieval language. The condition that the
resulting search offers should meet the require-
ments of both trader-matching and importer-
matching is expressed as a conjunction of the
two conditions.

var T : TradingSystem
var S : BSearchRequest
var X : BTradingSystemConstraints

eq search(T,X,S)
= exec((T).offers, (S).bimporter-type,

((X) .btrader-matching

and (S).bimporter-matching))
We also have a set of abstraction functions
which map elements in the refined specification
to their counterparts in the original specifica-
tion, though the detailed equations are omitted.
op abs : BSearchRequest -> SearchRequest
op abs : BTradingSystemConstraints

-> TradingSystemConstraints

With appropriate lemmas, we can mechani-
cally verify the relationship for the terms in the
refined specification: the search result is a sub-
set of the intersection of the two specified sets.
Cafe0BJ> start abs(search(T*,XB*,SBx))

is-subset-of ((XA*).trader-matching

cap (SA*).importer-matching)

Cafe0BJ> apply red at term .
result true : Bool
The identifiers ended with * are all con-
stants of appropriate sort which act as uni-
versally quantified variables™. Actually, T*
denotes a TraderSystem. SB* and XB* are
BSearchRequest and
BTradingSystemConstraint respectively, while
SA* and XAx are the counterparts of the original
specification in Fig. 9.

In addition to those relating to some general
properties of set, lemmas include definitions for
the hypothetical retrieval language. In partic-
ular, the equation for exec is the basis of me-
chanical checking above because it reflects the
compositionality of retrieval conditions.
mod* B-RETRIEVAL-LANGUAGE {

[RetrievalLanguage]

protecting (A-SERVICE-OFFER-S)

signature {

* For simplicity, we dropped the condition on the
scoping (importer_scope? N trader_scope) of the Z
specification.

** Using a constant as a representative value for an
universally quantified variable follows the Theorem
of Constants 13},

Vol. 40 No.4 An Algebraic Approach to Specification and Analysis of the ODP Trader 1871
Table 2 Some metrics.
Category Z Notation CafeOBJ
total direct
1 Basic Concepts | 13 23 13
2 State Schema 9 43 15
3 Main API 31 26 10
4 Library - 5 0
5 (total) 53 97 38
op _and_ : RetrievalLanguage ifications and thus only for CafeOBJ exist.
Retrievallanguage In Table 2, we can see about 40% of the
-> Retrievallanguage [comm] CafeOBJ modules are directly traceable from
op exec : ServiceDffers ServiceType the Z counterparts. Primary reason that the

Retrievallanguage
=> ServiceOffers

}
axioms {
var P : ServiceOffers
var T : ServiceType
var 0 : ServiceOffer
vars L L1 L2 : RetrievalLanguage

ceq ((0).service-type) is-subtype-of T

= true if member(0,exec(P,T,L))

eq exec(P,T, (L1 and L2))

= exec(P,T,L1) cap exec(P,T,L2)

}

}

4.4 Summary and Discussion

The CafeOBJ specification we have written
consists of 97 modules, and the number of equa-
tions is 290%. Table 2 summarizes some met-
rics of the specification. The column Z Notation
shows the number of Z specification compo-
nents (the standard document V) while the col-
umn CafeOBJ shows the number of CafeOBJ
modules. The number of CafeOBJ modules
that have direct correspondence with the Z
counterpart is also shown. It depicts how much
of the CafeOBJ modules are traceable from the
Z specification, and how much are necessary for
obtaining executable specifications.

The raw Basic Concepts is for primitive con-
cepts defined by using given names, free types,
and abbreviation definition (==) in the Z spec-
ifications. The raw State Schema is for struc-
tured data, relationship, and the main state
schema TradingSystem defined by using schema
in the Z specifications. The raw Main APIis for
operations visible outside; actually operation
schema. The raw Library is for the common li-
brary modules that implement executable spec-

* For the specification of Search and Select, the num-
ber includes the first approach briefly mentioned in
Section 4.3.

CafeOBJ specification is larger than the orig-
inal Z specification follows from the fact that
we use property-oriented specification style for
CafeOBJ while model-oriented style in the Z
notation. In the property-oriented style, we
have to provide all the necessary definitions 24.
On the contrary, we can assume or use prede-
fined set of primitives in the Z notation. We
can say that some of the CafeOBJ modules con-
stitute the “model” that provides appropriate
definitions which are considered to be equiva-
lent to the predefined definitions of the Z no-
tation, although the “model” is quite different
since our aim is to have executablity. Further,
detailed descriptions are necessary to have exe-
cutable specifications (see Section 4.1.2). This
also makes the CafeOBJ specification large.

As the most of Basic Concepts is just in-
troducing set in the Z notation or sort in the
CafeOBJ, the number of modules that has di-
rect correspondence is good. Others are mod-
ules necessary for calculating membership of
data in a certain type. In the Z notation, mem-
bership is very easy to state. Since a type of
value is defined in terms of a set in the Z nota-
tion, such membership is expressed in terms of
€ predicate.

ValueType == P Value
a: ValueType A b: Value Ab € a

For the CafeOBJ specification, both type and
data are ordinary terms belonging to certain
sorts, the CafeOBJ version requires some aux-
iliary functions to calculate the membership.

Most of hacking for CafeOBJ to have exe-
cutability is in State Schema because functions
and/or relationships are fallen in this category
and thus lots of auxiliary modules are necessary.
For Main API, the Z specification has three or
five schemata for each operation, while in the
CafeOBJ specification we write one module for
one operation and other auxiliary modules as

1872 Transactions of Information Processing Society of Japan

necessary. The traceability of the top-level op-
erations is clear.

Last, in Section 4.3, we have seen that
CAFE/CafeOBJ provides adequate supports
for mechanical verification of specification re-
finement. The verification activity usually in-
volves using lemmas, which often require fur-
ther proof sessions. As it is always the case,
finding appropriate lemmas is a difficult task
that human should take care of. However, we
think that studying one specification from var-
ious aspects helps us understand its functional-
ity. Writing specifications at two different ab-
straction levels and establishing refinement re-
lationships between them is one such approach
when executability is incompatible.

‘5. Conclusion

We presented CafeOBJ specifications of the
information viewpoint of the ODP trader. Our
experience has shown (1) that algebraic speci-
fication technique is useful to describe charac-
teristrics of the ODP trader and (2) that the
resultant specifications contribute to helping us
understand the functionality of the ODP trader
at an appropriate abstract level because speci-
fications in CafeOBJ are executable. As shown
in Section 4.2, we can study the ODP trader
functionality by test executions. In addition, as
discussed in Section 4.3, writing specifications
at different abstraction levels and establishing
their relationships contributes to help us under-
stand the functionalities.

Although our method seems to provide a spe-
cific framework only applicable to the specifica-
tions of the information viewpoint of the ODP
trading function, we think our specification it-
self is valuable in the following sense. First,
since the ODP trading function is an important
specification widely used, we expect our spec-
ification to be consulted often. Second, since
the presentation is based on actual examples,
the present paper shows a concrete guideline
on how we write CafeOBJ specifications for a
large distributed object-oriented software.

Last, since the CAFE environment has a fa-
cility to distribute HTML documents in which
CafeOBJ specifications coexist with other in-
formal explanations (even with graphics), it is
considered to provide means for a new style of
circulating standard documents. The standard
(such as the ODP trader) will take a form of
HTML document that has both informal expla-
nations and formal specifications. The formal

Apr. 1999

part would be linked to a backend reduction en-
gine (CafeOBJ in this case) to execute mechan-
ical analysis. Applying the idea to the ODP
trader specification is one of future directions
of the present work.

Acknowledgments This work was sup-
ported in part by the Advanced Soft-
ware Enrichment Project of the Information-
Technology Promotion Agency, Japan (IPA).

References

1) ITU-T Rec. X.950-1: Information Technology
— Open Distributed Processing-Trading Func-
tion — Part 1: Specification (1997).

2) OMG: CORBAservices, Trading Object Ser-
vice Specification (1997).

3) Bearman, M.: Tutorial on ODP Trading Func-
tion, University of Canberra (1997).

4) Bernardeschi, C., Dustzadhe, J., Fanttechi,
A., Najm, E., Nimour, A. and Olsen, F.: Trans-
formation and Consistent Semantics for ODP
Viewpoints, Proc. FMOODS ’97 (1997).

5) Bowman, H., Derrick, J., Linington, P. and
Steen, M.W.A.: FDTs for ODP, Computer
Standards and Interfaces (17), pp.457-479
(1995).

6) Bowman, H, Boiten, E.A., Derrick, J.
and Steen, M.W.A.: Viewpoint Consistency
in ODP, A General Interpretation, Proc.
FMOODS 96 (1996).

7) Diaconescu, R. and Futatsugi, K.: Logical Se-
mantics for CafeOBJ, JAIST Research Report
IS-RR-96-22S (1996).

8) Diaconescu, R. and Futatsugi, K.. The
CafeOBJ Report, World Scientific (1998).

9) Dustzadeh, J. and Najm, E.: Consistent Se-
mantics for ODP Information and Computa-
tional Models, Proc. FORTE/PSTV ’97 (1997).

10) Fischbeck, N., Fischer, J., Holz, E., Lowis, M.,
Kath, O. and Schroder, R.: Improving the De-
velopment and Validation of Viewpoint Speci-
fications, Proc. FMOODS ’97 (1997).

11) Fischer, J., Prinz, A. and Vogel, A.: Differ-
ent FDT’s Confronted with Different ODP-
Viewpoints of the Trader, Proc. FME’93,
pp-332-350 (1993).

12) Futatsugi, K., Goguen, J., Jouannaud, J.-P.
and Meseguer, J.: Principles of OBJ2, Proc.
12th POPL, pp.52-66 (1985).

13) Futatsugi, K. and Nakagawa, A.T.. An
Overview of CAFE Specification Environment,
Proc. 1st IEEE ICFEM (1997).

14) Goguen, J., Winkler, T., Meseguer, J.,
Futatsugi, K. and Jouannaud, J.-P.: Introduc-
ing OBJ, SRI-CSL-92-03 (1992).

15) Goguen, J. and Malcolm, G.: Algebraic Se-

Vol. 40 No. 4

mantics of Imperative Programs, MIT Press
(1996).

16) Goguen, J. and Malcolm, G.: A Hidden
Agenda, UCSD CS97-538 (1997).

17) Lecero, G.F. and Quemada, J.: Specifying
the ODP trader in E-LOTOS, Proc. FORTE/
PSTV 97 (1997).

18) Meseguer, J.: A Logical Theory of Concur-
rent Objects and its Realization in the Maude
Language, Research Directions in Concurrent
Object-Oriented Programming, Agha, Wegner
and Yonezawa (Eds.), MIT Press (1993).

19) Mowbray, T.J. and Zahavi, R.: The Essential
CORBA, John Wiley & Sons (1995).

20) Nakajima, S. and Futatsugi, K.: A CafeOBJ
Specification of the ODP Trader (in Japanese),
Computer Software, to appear (1999).

21) Raymond, K.: Reference Model of Open Dis-
tributed Processing (RM-ODP): Introduction,
Proc. ICODP ’95 (1995).

22) Spivey, J.: The Z Notation (2nd edition),
Prentice Hall (1992).

23) Vogel, A. and Duddy, K.: Java Programming
with CORBA, Wiley (1997).

24) Wing, J.: A Specifier’s Introduction to Formal
Methods, IEEE Computer, pp.8—24 (1990).
25) Yatsu, H. and Futatsugi, K.: Verification of
Z Specifications using Algebraic Specifications
(in Japanese), Computer Software, Vol.13,

No.6, pp.26-42 (1996).

(Received July 17, 1998)
(Accepted December 7, 1998)

An Algebraic Approach to Specification and Analysis of the ODP Trader 1873

Shin Nakajima is a princi-
pal researcher with C&C Me-
dia Research Laboratories at the
NEC Corporation, Japan. He
received B.A. and M.Sc. degrees
in physics from the University
of Tokyo. His research inter-
ests include distributed software engineering,
algebraic specifications, and meta-level archi-
tecture. He is a visiting lecturer at Tokyo
Metropolitan University.

Kokichi Futatsugi is a Pro-
fessor of Graduate School of In-
formation Science, Japan Ad-
vanced Institute of Science and
Technology (JAIST). He worked
for ETL, MITI from 1975 to
1993 and was assigned to a Chief
Senior Researcher of ETL in 1992. He got a full
professorship at JAIST in 1993. His research
interest includes algebraic formal methods and
their application to software engineering, and
language design as a foundation for system de-
sign.

