FHRAEZXH0E CPR 7 Fi#) 2B AL

1-273

Fault-Tolerant Intra-Group :Communication *

TU—6

Kenji Shima and Makoto Takizawa !

Tokyo Denki University !
e-mail{sima,taki}@takilab.k.dendai.ac.jp

1 Introduction

In distributed applications like teleconferences, a
group of multiple application processes have to be
communicated. Multiple sysiem processes have to
support the application processes with the atomic,
ordered, and non-loss delivery of messages. Even if
the processes in the group fault, the group of applica-
tion processes have to be communicated. In this paper,
we assume that the underlying network is reliable.

In the intra-group communication, the processes in
the group communicate with one another. We discuss
the fault-tolerant intra-group communication. In this
paper each process is realized by a group of multi-
ple replicas of the process. The process is composed
of input, computation, and outpul processing units.
There are three kinds of replication strategies, i.e.
active, passive, and semi-active replications [3] where
the whole processes are replicated. In this paper, we
would like to present a new strategy named wunit repli-
cation where the three kinds of units are independently
allocated to the replicas in order to reduce the total
processing and communication overhead and to toler-
ate the Byzantine fault [1] of replicas.

In section 2, we present a system model. In section
3, we present how to replicate the system processes.
In section 4, we present fault treatment.

2 System Model

A communication system is composed of applica-
tion, sysiem, and nelwork layers [Figure 1]. The net-
work layer provides the system layer with high-speed
communication. There are two kinds of networks, i.e.
one-to-one and broadcast ones. A logical group G is
composed of n (> 2) sysiem processes py,...,pn (G
= {p1,.-.,Pn)). Each p; supports the application
process A; with the ordering group communication.
A physical group Pg of G is composed of replicas of
the system processes, i.e. Pg = ({ P11+ P1l } 5o s {
Pniye - Pn. })Where p;; is a replica of p;.

The replicas of p; support A; with the group com-
munication in the presence of faults of the replicas.
{pi1, - .- pi1;} is a replica group of p;. The replicas of
p; are located in different processors. We assume that
the maximum number f; of replicas of p; which fault
at the same time is fixed.

3 Unit Replication
Let us consider a group G = {p; ,..., pn } (n > 2).
There are three kinds of processing units in p;:
(1) to receive messages from other replica groups,
(2) to do the computation of p;, and
(3) to send messages to other replica groups.

TA=AY IV Y YA TE
Y], MR R
SRR

Applicatii;}iv» . B Application
layer process

’ - t System

. e Y e | process
! !
Natd ~ Nuinl

_High-speed network
i Figure 1: System model

The first; second, ‘and third are input, computation,
and oulpii:units;-respectively. These units are in-
dependently:.allocated to the replicas in the replica
group so that-the.communication and processing over-
head can;be minimized and the Byzantine fault of the
replica is-tolerated. This replication is named a unit
replication.: The replicas do not always execute all
the three units. The replicas with the input, out-
put, and:computation units are input, output, and
computaiton ones;respectively. The replicas with no
unit are-dormant replicas.

The inputireplicas of p; receive messages from the
output. replicas. of-the replica group of another p;:

(1) to:detect.the faulty output replicas of p;, and

(2) todistribute the correct messages received to the
computation replicas of p;.
On receipt. of the: messages from p;, the input replica
adopts-the:majority rule, i.e. take the majority mes-
sages from.p; and detect the faulty output replicas
of p; which send:messages different from the major-
ity ones.. Then, the input replicas forward the correct
message:to:the:computation replicas.
The computation replicas of p; do the followings on
receipt of the:messages from the input replicas of p;:
(1) to-do:the:computation, and
(2) to sendrthe messages to the output replicas.
The computation replica has to receive the messages
from more than:2f; input replicas. By using the ma-
jority rule, the:computation replicas can detect the
faulty input:replicas.
The output:replicas of p; do the followings:
(1) to.teceive the:messages from the computation
replicas. of p;, and
(2) to send-thesmessage to the input replicas of the
other replica groups.
The output:replica decides what messages are correct
among -the:messages: collected from the computation
ones by applying ‘the:majority rule to the messages
received from:the.computation ones. Then, the output
replica sends:the message to the other replica group.
The input, computation, and output units are allo-
cated to-z; (<) input, ¥ (< ;) computation, and

1—-274

z; (< I;) output replicas, respectively. For each p;, let
I,‘, C;, and Oi denote sets I,'l, ey I,'z‘}, i1y +o oy
Ciy:}, and {Oyy, ..., Oy, } of input, computation, and
output replicas of p;, respectively. Here, z;, y;, and z;
> 2f;+1 in order to adopt the majority rule to detect
the Byzantine fault.

fLNC; =CiNn0O; = O;NI; = ¢, the replica group
is fully dispersed. If I; = C; = O, the replica group
is fully multiplezed. If not fully dispersed, the replica
group is mulliplezed. In the fully dispersed replica
group, even if one replica faults, only one unit faults
since the replica has the unit. If one computation
replica faults, three units fault in the fully multiplexed
one. The fully dispersed replica group is required to
include more replicas than the fully multiplexed ones
for given z;, y;, and z;.

Since the non-computation replicas have to catch up
with the computation replicas, the computation ones
take the checkpoints where the local states are saved
into the logs, and they send the local state to the non-
computation ones. The non-computation replicas re-
store the local states on receipt of the states. The
computation replicas taking the checkpoints are the
checkpoint ones:

(1) to make all the checkpoint replicas to be syn-

chronized to take the consistent checkpoint,

(2) to take the checkpoints, and

(3) to send the local state taken at the checkpoint

to the non-computation replicas.
Since the checkpoint replicas may be faulty, more
than 2f; + 1 checkpoint ones are required. The non-
computation replicas can detect the faulty checkpoint
replicas by using the majority rule.

4 Communication between Replica Groups

Suppose that output replicas Oy, ..., O;,; of p; send
message m to the input replicas Iy, ..., Ijz; of p;.
There are two ways for p; to send message m to p;:

(1) each O;; sends m to all the input replicas
Ijl, ey Ij::_-,‘r and

(2) each O;; sends m to a subset I;(O;i) of I.

In the first method, O, sends totally z3+ -+ +z;_1+
Zit1+ -+ +o, messages to Py, ..., Pic1,Pitly -+ey Pn
and each I, receives 23+ -« +2j_1 + zj41+ ++ +2q
messages [Figure 2] in the one-to-one network. In or-
der to deliver m to n — 1 processes py ,..., pj_1, Pj+1
y-++1 Pn, the replica group of p; sends totally z; - (z1+
coo &1+ Zig1+ -+ +z,) messages. It is named
broadcast distribution one.

In the broadcast network, each I;5 needs to receive
(2f; + 1) messages, and only (2f; + 1) (< z) output
replicas in O; can broadcast messages. Here, totally
(2f; + 1) messages are transmitted.

Another way is that each O;; sends m to not all
the input replicas of p;, but only I,-(O.-kg CIL. I
has to receive at least 2f; + 1 messages from p; and
does not need to receive more than 2f; + 1 messages.
Hence, | { O | Iin € I;(Oi) } | > 2f; + 1 for every
Iip, and L(O4y) U -+ - U L(O;z;) = I;. The number of
messages transmitted is | I;(Oi) | +--- + | L(O0is,) |
If each O;i sends m to (2f; + 1)z;/z; input replicas of
pj, the minimum number (2f; + 1)z; of messages are
transmitted. 1t is selective broadcast distribution one.

1242

©

e e o o

SOy ; QU

Figure 2: Input-output communication

5 Fault Treatment

We have to consider the fault of input, computation,
and output replicas in the replica group of p;:
(1) how to select a replica p;; to which the units of
pi; are allocated, and

(2) how to allocate the units and start p;;.

Here, suppose that p;; with (4;;, ¢;;, 0;;) faults. The
faulty unit is allocated to a replica, i.e. the replica
activates the unit. If i;; = 1, one operational p;; with
i;, = 0 is selected and the input unit is given to pj.
If ¢;; = 1 and o0;; = 1, one operational p;; with ¢;; =
0 and o;; = 0 is selected, and the computation and
output units are given to p;;, respectively. In the fully
dispersed replica group, one replica p;; is first selected
among the dormant replicas, If there is no dormant
replica, one unit with the minimum number of units
is selected. The unit of p;; is newly allocated to py.
If the replica group of p; is multiplexed, one replica
p;r which has the maximum number if no candidate
replica can be found in the replica group, a clone has
to be created.

6 Concluding Remarks

In this paper, we have discussed how to make the
group communication more fault-tolerant by replicat-
ing the protocol processes. The unit replication has
been proposed as the replication, where the input,
computation, and output units are independently al-
located to the replicas, in order to support the robust-
ness for the Byzantine fault of the process.

Reference

{1] Lamport, L., Shostak, R. and Pease, M., “The
Byzantine Generals Problem,” ACM Trans.
Programming Languages and Systems, Vol.4,
No.3, 1982, pp.382-401. ‘

[2] Nakamura, A. and Takizawa, M., “Causally Or-
dering Broadcast Protocol,” Proc. of the 14tk
IEEE ICDCS, 1994, pp.48-55.

[3] Turek, J. and Shasha, D., “The Many Faces
of Consensus in Distributed Systems,” IEEFE
Computer Sociely Press, 1994, pp.94-97.

