S₃-FACTORIZATION ALGORITHM OF COMPLETE BIPARTITE SYMMETRIC DIGRAPHS - Kazuhiko USHIO

6 F - 2

Department of Industrial Engineering Kinki University, 577 Osaka, Japan

1. Introduction

Let S_3 be a directed star with 3 vertices, say u(centervertex), v(endvertex), w(endvertex), and with two directed edges $u \to v$ and $u \to w$. Let $K^*_{m,n}$ be a complete bipartite symmetric digraph with partite sets V_1 and V_2 of m and n vertices each. A spanning subgraph F of $K^*_{m,n}$ is called an S_3 -factor if each component of F is isomorphic to S_3 . If $K^*_{m,n}$ is expressed as an edge-disjoint sum of S_3 -factors, then this sum is called an S_3 -factorization of $K^*_{m,n}$.

2. S₃-Factor of K*_{m, n}

Theorem 1. $K^*_{m,n}$ has an S_3 -factor if and only if (i) $m+n \equiv 0 \pmod 3$, (ii) $2n-m \equiv 0 \pmod 3$, (iii) $2m-n \equiv 0 \pmod 3$, (iv) $m \leq 2n$ and (v) $n \leq 2m$.

Proof. Suppose that $K^*_{m,n}$ has an S_3 -factor F. Let t be the number of components of F. Then t=(m+n)/3. Hence, Condition (i) is necessary. Among these t components, let t_1 and t_2 be the number of components whose endvertices are in V_2 and V_1 , respectively. Then, since F is a spanning subgraph of $K^*_{m,n}$, we have $t_1+2t_2=m$ and $2t_1+t_2=n$. Hence $t_1=(2n-m)/3$ and $t_2=(2m-n)/3$. From $0 \le t_1 \le m$ and $0 \le t_2 \le n$, we must have $m \le 2n$ and $n \le 2m$. Conditions (ii)-(v) are, therefore, necessary.

For those parameters m and n satisfying (i)-(v), let $t_1=(2n-m)/3$ and $t_2=(2m-n)/3$. Then t_1 and t_2 are integers such that $0 \le t_1 \le m$ and $0 \le t_2 \le n$. Hence, $t_1+2t_2=m$ and $2t_1+t_2=n$. Using t_1 vertices in V_1 and $2t_1$ vertices in V_2 , consider t_1 S_3 's whose endvertices are in V_2 . Using the remaining $2t_2$ vertices in V_1 and the remaining t_2 vertices in V_2 , consider t_2 S_3 's whose endvertices are in V_1 . Then these t_1+t_2 S_3 's are edge-disjoint and they form an S_3 -factor of $K^*_{m,n}$. \square

Corollary 2. $K^*_{n,n}$ has an S_3 -factor if and only if $n \equiv 0 \pmod{3}$.

3. S₃-Factorization Algorithm of K*_{m, n}

Notation 3. r,t,b: number of S_3 -factors, number of S_3 -components of each S_3 -factor, and total number of S_3 -components, respectively, in an S_3 -factorization of $K^*_{m,n}$.

- t_1 (t_2): number of components whose centers are in V_1 (V_2), respectively, among t S_3 -components of each S_3 -factor.
- $r_1(u)$ $(r_2(v))$: number of components whose centers are all u (v) for any u (v) in V_1 (V_2) , respectively, among b S_3 -components.
- $s_1(u)$ ($s_2(v)$): number of components which have endvertex u(v) for any u(v) in $V_1(V_2)$, respectively, among $b(S_3)$ -componets.

3.1. Necessary Condition of S₃-Factorization of K*_{m,n}

Theorem 4. If $K^*_{m,n}$ has an S_3 -factorization then $m=n \equiv 0 \pmod{6}$.

Proof. Suppose that $K^*_{m,n}$ has an S_3 -factorization. Then it holds that b=mn, t=(m+n)/3, r=b/t=3mn/(m+n), $t_1=(2n-m)/3$, $t_2=(2m-n)/3$, $m \le 2n$ and $n \le 2m$. And it holds that $r_1(u)+s_1(u)=r$, $2r_1(u)=n$, $s_1(u)=n$, $r_2(v)+s_2(v)=r$, $2r_2(v)=m$, and $s_2(v)=m$. Therefore, $r_1(u)$ and $s_1(u)$ ($r_2(v)$ and $s_2(v)$) don't depend on u (v), respectively. Thus we have $r=r_1(u)+s_1(u)=3n/2$ and $r=r_2(v)+s_2(v)=3m/2$. Therefore, m=n is necessary. Moreover, when m=n, we have $b=n^2$, t=2n/3, t=3n/2, t=1, t=1

 $s_1=s_2=n$. Therefore, $n \equiv 0 \pmod{6}$ is also necessary. \square

3.2. Extension Theorem of S₃-Factorization of K*_{m, n}

Theorem 5. If $K^*_{m,n}$ has an S_3 -factorization, then $K^*_{sm,sn}$ has an S_3 -factorization for every positive integer s.

Proof(by algorithm). 1: Let V_1 , V_2 be the independent sets of $K^*_{8m,8n}$, where $|V_1| = sm \text{ and } |V_2| = sn.$

- 2: Divide V₁ and V₂ into s subsets of m and n vertices each, respectively.
- 3: Construct a new graph G with a vertex set consisting of the subsets which were just constructed.
- 4: In this graph, two vertices are symmetrically adjacent if and only if the subsets come from disjoint independent sets of K* s m, s n.
- 5: G is a complete bipartite symmetric digraph K*, s.
- 6: Noting that the cardinality of each subset identified with a vertex set of G is m or n and that $K_{a,a}^*$ has a $K_{1,1}^*$ -factorization, we see that the desired result is obtained.

3.3. Sufficient Condition of S₃-Factorization of K*_{m, n}

Theorem 6. When $m=n \equiv 0 \pmod{6}$, $K^*_{m,n}$ has an S_3 -factorization.

Proof(by algorithm). 1: Put m=n=6s.

2: When s=1, we have the following lemma.

Lemma 7. $K^*_{6,6}$ has an S_3 -factorization.

Proof. Let $V_1 = \{1,2,3,4,5,6\}$ and $V_2 = \{1',2',3',4',5',6'\}$. Let

 $F_1: 1' \leftarrow 1 \rightarrow 2' \quad 3' \leftarrow 2 \rightarrow 4' \quad 3 \leftarrow 6' \rightarrow 4 \quad 5 \leftarrow 5' \rightarrow 6$

 $F_2 \hbox{:} \ 3' \leftarrow 1 \rightarrow 4' \quad 5' \leftarrow 2 \rightarrow 6' \quad 3 \leftarrow 1' \rightarrow 4 \quad 5 \leftarrow 2' \rightarrow 6$

 $F_3 \hbox{:} \ 5' \ \leftarrow \ 1 \ \rightarrow \ 6' \quad 1' \ \leftarrow \ 2 \ \rightarrow \ 2' \quad 3 \ \leftarrow \ 3' \ \rightarrow \ 4 \quad 5 \ \leftarrow \ 4' \ \rightarrow \ 6$

 F_4 : $1' \leftarrow 3 \rightarrow 2'$ $3' \leftarrow 4 \rightarrow 4'$ $5 \leftarrow 6' \rightarrow 6$ $1 \leftarrow 5' \rightarrow 2$

 F_5 : $3' \leftarrow 3 \rightarrow 4'$ $5' \leftarrow 4 \rightarrow 6'$ $5 \leftarrow 1' \rightarrow 6$ $1 \leftarrow 2' \rightarrow 2$ $F_6 \colon 5' \leftarrow 3 \rightarrow 6' \quad 1' \leftarrow 4 \rightarrow 2' \quad 5 \leftarrow 3' \rightarrow 6 \quad 1 \leftarrow 4' \rightarrow 2$

 F_7 : $1' \leftarrow 5 \rightarrow 2'$ $3' \leftarrow 6 \rightarrow 4'$ $1 \leftarrow 6' \rightarrow 2$ $3 \leftarrow 5' \rightarrow 4$

 $F_8 \colon \ 3' \leftarrow 5 \rightarrow 4' \quad 5' \leftarrow 6 \rightarrow 6' \quad 1 \leftarrow 1' \rightarrow 2 \quad 3 \leftarrow 2' \rightarrow 4$

 $F_9 \colon \ 5' \leftarrow 5 \rightarrow 6' \quad 1' \leftarrow 6 \rightarrow 2' \quad 1 \leftarrow 3' \rightarrow 2 \quad 3 \leftarrow 4' \rightarrow 4.$

These comprise an S_3 -factorization of $K^*_{6,6}$.

- 3: Applying Theorem 3, $K^*_{6.6.6.6}$ has an S_3 -factorization for every positive integer s.
- 4: This completes the proof of Theorem 6. \square

3.4. Conclusion

Theorem 8. $K^*_{m,n}$ has an S_3 -factorization if and only if $m=n \equiv 0 \pmod{6}$.

References

- [1] H. Enomoto, T. Miyamoto and K. Ushio, C_{κ} -factorization of complete bipartite graphs, Graphs and Combinatorics, 4 (1988), pp. 111-113.
- [2] K. Ushio, P₃-factorization of complete bipartite graphs, Discrete Math., 72 (1988), pp. 361-366.
- [3] K. Ushio and R. Tsuruno, P₃-factorization of complete multipartite graphs, Graphs and Combinatorics, 5 (1989), pp. 385-387.
- [4] K. Ushio and R. Tsuruno, Cyclic S_{κ} -factorization of complete bipartite graphs, Graph Theory, Combinatorics, Algorithms and Applications (SIAM, 1991), pp. 557-563.
- [5] K. Ushio, G-designs and related designs, Discrete Math. 116 (1993), pp. 299-311.