BBAEFLHAE CER 6 F£RED 2BXS

Efficient Compilation Using a Program Database

2U—3

Kazushi Kuse

IBM Tokyo Research Laboratory

1.0 Introduction

The long program compilation and linking time is an
issue of increasing concern in object-oriented program-
ming languages such as C++. One reason for the prob-
lem is that class structures create a lot of dependency.
Another is that an object-oriented program refers many
header files in order to usc class libraries. First, to clarify
the issue, we examine actual programming activity in
C++. We then describe a method for reducing the compi-
lation and linking timc of C++ programs by using a C++
program databasc [1]. On the basis of this method, we
developed a program builder that succeeded in reducing
the compilation time of C++ programs by over 80%; in
the last two sections, this builder is evaluated and dis-
cussed.

2.0 Observations of C++ Program Builds

‘We made observations of actual builds of a C++ pro-
gram. One hundred and fifty five successful program
builds took place over five days. The types of modifica-
tions made during the program builds are classified as
follows:

1) Modification of header files

2) Modification of source files

2-1) Addition of new uses of a global name in a func-

tion

2-2) Deletion of all uses of a global name from a

function :

2-3) No modification of the uses of all global names

The proportions of modification types 1), 2-1), 2-2),
and 2-3) were 11.6%, 23.9%, 8.4%, and 56.1%, respec-
tively. Evidently we do not need any new header file
information to compile modified functions in the case of
2-2) or 2-3). Together, these account for 64.5% of all
modifications. If we evaluate the same value by using a
file scope rather a function scope, the proportion
increases to 78.7%. This implies that an impact analysis
result for header file information can be used in some
continuous program builds.

3.0 Program Build Scheme for C++ Using a
Program Database

We describe a way of collecting minimal information
for program recompilation by using a program database.
The database stores static program information, which is
populated by the C++ compiler. The build method uses a
unit of global declarations such as a class, type, or func-
tion definition. Some smaliler units of analysis, such as
statements or expressions, would be other candidates,
but our observations indicated that global-declaration-
level analysis is enough to achieve a significant reduc-
tion in program build time.

3.1 Use of the Program Database

The main function of our program builder is impact
analysis, for which it uses the program database. There
is a dilemma: a program build needs the latest program
database information, but on the other hand, to get the
latest program database, a program build is needed. The
following are possible approaches to solving the
dilemma:

1. A program build uses the results of the previous
impact analysis. First, the builder tries to compile a mod-
ified function by using the results of the previous impact
analysis, instead of updating the database by compiling
the function. If there are any compiler errors caused by
insufficient header file information, the builder compiles
the program again, using all the header file information,
and updates the database. The cost of the trial compila-
tion is small compared with that of a full compilation,
since the builder uses only the necessary declarations.

2. Each header file keeps the result of impact analy-
sis, and the impact information is recalculated when the
content of the header file is changed. This approach is
particularly effective for user-defined classes, because
these use standard class libraries. The lifetime of an
impact analysis result for header files is longer than that
of a result for source files in the previous approach.

3. Using the program database, a simple parser
detects global name references in a modified function
before the actual impact analysis. There are several pos-
sible levels of detection. We could obtain precise refer-
ence information by deep analysis, or approximate
information by simple analysis.

In our build scheme, we took the first and second
approaches, to eliminate the change detection time.



5 —26

3.2 Impact Analysis for Source File Changes
The following is an overview of the impact analysis.
Step 1. Calculate a set of names dircctly used by the

changed function by retrieving the following entities

from the program database:

- Usc of class name

- Use of global type name

- Use of global variable name

- Use of macro name

- Function call

Step 2. Find out the following definitions for the
names used by scanning the global declarations in the
program database:

- Class definition

- Type definition

- Macro definition

- Function definition

- Variable definition

Step 3. Calculate a sct of names used in acquired
definitions. The above two steps arc executed in turn
until no new uses or definition names can be found.

3.3 Impact Analysis for Header File Changes

A change of a header file has a strong impact on the
program build time, because the file may be included in
multiple source files. This is also analyzed on the basis
of a global declaration unit. The impact of header file
changes is calculated by reversing 3.2. After all the
effects on use information have been detected in source
files, the program builder checks all the effects on defini-
tions in the way described in the previous section.

4.0 Evaluation

We measurcd the effectivencss of thc program
builder by using a sample program, which is an X-Win-
dow application of the MotifApp Framework. It has
4,018 LOC in C++, with 65 classes and 179 functions.
The program is implemented in 46 separate source files.
It takes 143.1 sec to compile the program with a debug
option. The linking time for these compiled source files
is 4.4 sec. If a shared library is used, this decreases to 1.0
sec.

Table 1 shows a comparison of thc code size that will
be compiled by the C++ compiler. We selected the
smallest and the largest source files from the 46 files,
namely, Main.C and Stage.C. We also madc a separate
file that includes the ‘rcsize’ function of Stage.C, in
order to evaluate the effectiveness of the function scope
analysis.

If onc function is included in a file, the reduction
ratio is more than 20 to 1. Even in the largest file, which

includes cight functions, it is more than 10 to 1. Table 2
shows a comparison of the actual compilation times in
each case.

TABLE 1. Code Size of Preprocessed Files (LOC)

File No. of Orig Without With Ratio
name funcs. inal builder builder

Main.C 1 4 8623 313 275
Stage.C 8 241 8842 676 13.1
resize.C 1 63 8706 363 24.0

TABLE 2. Comparison of Compilation Times (sec)

File name Without With Ratio
builder builder

Main.C 321 0.45 7.1

Stage.C 355 0.74 438

resize.C * 332 0.47 7.1

The compilation speed with the builder is more than
four times faster than without it. We calculated each
build time by adding the linking time, 1.01 sec. The
build speed is more than twice as fast as the original
build. We improved the build speed by providing a faster
incremental linker that uses code static information in
the program database.

5.0 Discussion

Although we do not show the cost of the impact anal-
ysis in the program builder, we were able to reduce the
number of impact analyses by providing a temporal
header file called the ‘optimal header file’ for source file
changes. Our observations showed that in most cases,
the use of global names in a function is not changed.
Therefore, if the program builder generates an optimal
header file that includes minimal declarations for func-
tions or files currently being edited, we can compile the
functions or files fast by using this optimal header file
while it is effective. The optimal header file for a source
file has a longer lifetime than one for a function, but its
compilation time is likewise longer.

The optimal header file is also effective for reducing
the time needed to update the program database. A pro-
grammer populates a program database first, and updates
it by replacing old information in changed files with new
information, so it is also important to reduce the time
needed to update the program database.

Reference

[1] T. Onodera, ‘Experience with Representing C++ Pro-
gram Information in an Object-Oriented Database’,
OOPSLA'94.



