BRI EHE4E PR 6 F8IE) £2BXS

4 —269

Integrating Parallel and Distributed Functions into the

SW—7

Persistent Programming Language INADA

Yun JIANG Masayoshi ARITSUGI GuangyibBAI Akifumi MAKINOUCHI

Dept. of Computer Science & Communication Engineering, Kyushu University

1. Introduction

Recently, not only uniprocessor computers but
also shared memory multiprocessor computers
have been marketed as workstations to be used
through a network. This motivates us to imple-
ment the persistent objects manipulation in such
parallel and distributed environments.

In this paper, we propose a parallel and dis-
tributed persistent objects manipulation in the
persistent programming language INADA.

2. Objects Manipulation of INADA

INADA is an object-oriented persistent pro-
gramming language for implementing data-
intensive applications[1]. It borrows and extends
the object model of C++ so that it provides facil-
ities for handling volatile/persistent objects and
for processing queries on collections of these ob-
jects.

An object which survives the execution of the
procedure which defines it is said to name per-
sistency and is called “persistent object”. Persis-
tent objects can be used by other applications
over and over again. INADA supports persistent
objects by using persistent heaps (PHs).

A PH is a part of a virtual address space and
is mapped to a file on a secondary storage. A
distributed shared persistent heap server called
WAKASHI[2] serves to keep the correspondence

between the PH and the file, so that INADA can

manipulate persistent objects just like volatile
objects.
INADA has three major features:

(1) Persistent heaps and persistent objects: Any |

object of any class in C++ can be persistent if
it is generated on a persistent heap.

(2) Multiple types objects: Persistent objects
with multiple types or without any types may
exist in INADA.

(3) Set-objects manipulation: INADA provides
a data abstraction called set-object for manipu-
lating a large amount of objects. A set-object,

either persistent or volatile, can be defined by
INADA users.

3. Parallel and Distributed Functions

Based on the basic functions of INADA de-
scribed above, we add parallel and distributed
processing abilities to INADA.

3.2 Parallel Sentence Structure

We introduce INADA parallel sentence struc-
ture described as follows.

{parallel Execution Sentence) ::=
parallel do {
(MethodCall-1) [l {MethodCall-i) J...
};
{MethodCall-i) ::=
(LogicValue=] {PointerVariable) ->
{MethodName) ([(Parameters).])

(i=1,2,...n)

o A “MethodCall-i” corresponds to a message
passing. The object called by the message
is either single object or set-object. It may
be volatile or persistent. It may be local or
remote.

o All “MethodCall-i” sentences enclosed a
“parallel do” sentence are simultaneously
executed in parallel on multiple threads,
and are synchronized[3] when the “parallel
do” sentence is finished.

e Any “MethodCall-i”sentence is executed on
the site where the object, to which the mes-
sage is sent, exists. When the object is per-
sistent and on a disk of a remote site, the
MethodCall-i becomes a remote procedure
call.

4 —270

¢ “PointerVariable” contains an object ID.
The object ID indirectly contains a site ID
where the object exists.

e “Parameters” are used to pass input and
output variables for “MethodCall. They
can be shared among the methods if these
variables are on a shared heap either tran-
sient or persistent.

e A “LogicValue” can tell programmers
whether the execution of a “MethodCall”
is successful or not.

3.1 Approaches

We propose three approaches to implement
the parallel sentence structure of INADA.

(1) Parallel Remote Method Execution(PRME)

In order to reduce the cost for manipulat-
ing persistent objects, especially persistent set-
objects, we propose a way called Parallel Remote
Method Execution (PRME) to implement the par-
allel and distributed processing in IDANA.

It means that INADA allows not only the
methods to be executed in parallel on remote
machines where the objects exist, but also the
parallel executions to happen on the same site
where the objects exist.

(2) Virtual Local Multi-thread Environment(VLME)

We introduce the notion called Virtual Local
Multi-thread Environment (VLME) so as to imple-
ment the parallel distributed persistent objects
manipulation easily.

It can be explained in Figure 1. The VLME
supports a location transparency for parallel and
distributed accesses, because programmers can
ignore whether the “MethodCall” is remote or
local.

(3) Transient/Persistent Shared Object(T/PSO)

The third feature is called Transient/Persistent
Shared Object (T/PSO).

Different from traditional remote method exe-
cution, INADA provides transient/persistent ob-
jects that are shared by remote/local methods.
These objects are allocated on shared heap, ei-
ther transient or persistent.

network

PU2 CPU4.
e PU1 CPU3
Thread B Site 2 7 Thread A
—— g Thread C
4

PU2 CPU4
PU1 CPU)|
Site 1

Site 3

PU2 CPU4
PU1 CPU3
J

Figure 1. A Virtual Local Multi-Thread Execution
Environment

4. Conclusion

We have presented the parallel and distributed
method execution that supports the object-
oriented programming language INADA.

We also proposed new approaches: PRME,
VLME and T/PSO for manipulating of parallel
and distributed volatile/persistent objects easily
and efficiently.

References

{1] M. Aritsugi and H. Amano, “ View in an
Object-Oriented Persistent Programming Language,”
Proc. of the International Symposium on Nezt Gen-
eration Database Systems and Their Applications,
pp-18-25, September, 1993.

[2]G. Bai and A. Makinouchi, “Implementation
and Evaluation of New Approach to Storage Manage-
ment for Persisted Data —Towards Virtual-Memory
Databases,” Proc. of the 2nd Far-East Workshop on
Future Database Systems pp. 211-220, April, 1992.

[3]Y. Jiang and A. Makinouchi, “A Transparent
Object-Oriented Synchronization Mechanism for Par-
allel and distributed Programming,” Proc. of 1993
International Conference on Parallel and Distributed
Systems pp.92-99, December, 1993.

