BEHLEF2H48M CFEL 6 SFHll) £EAS

4 —257

Graphical Multi-Precision Dynamic Schema Design Interface

5F—8 Hui Yao

Michael Bjbrn Hyeonkon Kim = Ryosuke Hotaka

University of Tsukuba

L Introduction

Applications, such as those in the multimedia
environments, usually have object classes
which have nested structures. In our
experience, using graphical description and a
graphical schema design tool is an efficient way
to define and manage complex object
classes /schemata.

In this paper, we present a graphical multiple
precision dynamic schema design tool called
SchemaBuilder, which has been implemented
using Prograph [4]. We expect that our work
will help users to handle complicated
applications and improve the uniqueness and
generality of the results of schema designs.

2. Motivation

In order to handle complex objects/schemata,
an object-oriented data model called A Data
Modeling Facility: JDMF-M92 (JDMF-M92 for
short hereafter) [1] allows an attribute of a class
to have an arbitrarily complex domain class. To
support the definitions and management of
such complex structures, graphical
descriptions /graphical design tools are efficient.

3. Graphical data diagrams
3. 1 Schema definition in Bachman Diagram
The Bachman Diagram (B-D for short

hereafter) uses a rectangle to represent a class
and an arrow to represent a reference. Fig.1
shows a student registration management
schema using B-Ds.

As shown in Fig.1, the schema description in
B-Ds is very simple and straightforward.

(;TUDENT I[COURSEAJ

Student

Course

[recrstry |

Fig.1 An example of Bachman Diagrams

3. 2 Generalization/Specialization—an
extension to the Bachman Diagram
Although the B-D is very suitable for rough
schema definition, it lacks semantic precision.
An extension to the B-D has been
made by R Hotaka [2], adding the
generalization/specialization relationship.

' | “rTEACHERJISTUDENT]

(a) (b))
Fig.2 Examples of Extended B-Ds

Fig.2 (a). shows that STUDENT is a subclass
of PEOPEL using.a dotted arrow, and (b) shows
that STUDENT and TEACHER are exclusive
subclasses of PEOPLE.

PEOPLE

3. 3 Semantic Diagram

Since the above graphical data diagrams lack the
expressive power to describe detailed class
information (especially for cases in which the
domain class of an attribute of a class has an
arbitrarily nested structure.), a new data diagram
called a Semantic Diagram (S-D for short
hereafter) had been proposed by R. Hotaka and
M. Bjérn [3] and, for the first time, implemented
here.

Fig.3 shows a simplified movie_sample
management schema (assuming that a movie has
only one track) [6]. In Fig.3, MOVIE and SAMPLE
are NamedObject classes (a NamedObject in
JDMF-M92 is managed by a MOKey, similar to a
primary key in relational systems). Class MOVIE
refers to class SAMPLE through a SetObject class
called MEDIA. But class SAMPLE does not need to
refer to class MOVIE.

The semantics of the above example can not be
explicitly described using B-Ds.

Fig.4 is its counterpart designed using B-Ds
lacking the necessary precision.

MOVIE M 1rack SAMPLE —
Movie# MEDIA Sample# OATA

Fig.3 An example of Semantic Diagrams

In S-Ds, rectangles like MOVIE with vertical bar
separating - Movie# and Track represent
NamedObject classes; Rectangles like MEDIA
represent SetObject classes and the rectangle
appears in the "{ }" area represents the component
class of a SetObject class. Rectangles like DATA
represent AtomicObjet classes. Round cornered
rectangles like Track represent Attributes of
AttributedObject class(es); an oval like Set

4 —2358

represents a Method. A class within an attribute
means it is the domain of the attribute.

MOVIE SAMPLE

Fig.4 Descriptions of Fig. 3 using B-Ds.

4 SchemaBuilder—a user-friendly interface
4.1 Design purpose and general consideration

The prime goal of our work is to present users
with a visual meta schema design tool which
seamlessly integrates with the human design
process. This is achieved mainly by
implementing both the B-D and the S-D.

In SchemaBuilder, as shown in Fig.5 and Fig.6,
multiple windows corresponding to the
different abstract design levels are provided. At
first, classes and references between classes are
roughly designed in the B-D window. Then, the
schema is translated into the S-D window
and detailed information are added in classes.
For screen space saving, an additional window
can be opened for the definition of a complex
domain class for any attribute.

4.2 System features
Some features of SchemaBuilder include:

1) Multiple views of a schema: Multiple
abstract level views of a schema can be seen
simultaneously. The user is relieved of the
burden of browsing through pages of textual
description;

2) Simplified schema editing: All schema
editing (creation, display, update and deletion)
can be done dynamically by "mouse-clicking".
Other functions such as moving, draging,
showdomain, -, are also implemented.

3) Maintenance of consistency :

(i) Since multiple views of a schema exist,
whenever a concrete definition is done in the S-
D window, the necessary change was propagated
to the B-D window;

(ii) Let X be a class. Since X's rectangle in a S-D
window can stand for both the definition of or
an reference to X at the same time, deleting X
(other than NamedObject class) is generally
done in one of two ways :

a) If there is only one appearance of X, then

the selected appearance and X's definition are
deleted (deletes its definition and a reference);

b) If there are more than one appearances of X,
then only the selected appearance is deleted
(deletes a reference only).

5. An example of schema design
Fig.6 shows the design result of Fig.3 produced

from SchemaBuilder.

6. Further study

There are mainly two further study topics: one is
window space saving; the other is performance
speed. We are looking for a more efficient way to
help users to manage schemata with large number
of classes .

o 2N Schems
Create Database 8N
Ten Dalabixse ¥3

!E CreateScheme %8C

R ==y GD »3

PrintCurrentwindow P | NemedObject Dictionery %S

[rwiehams »y

Quit . 31]
Savedonema k 48]
b]

Fig.5 Menus of SchemaBuilder
» B9 Schema

Scnema design interfece

AtomicObject

NamedObject
SetObject
DesigninDetafl
v ShowDomain

s o

Fig.6 A design example from SchemaBuilder

References

[1] Japanese Standards Association: A Data
Modeling Facility: JDMF/MODEL-1992, May 1993.

[2] Ryosuke Hotaka: Database system and data
model, Ohm Publishing Co. Ltd, 1989.

[3] Ryosuke Hotaka, Michael Bjorn: Data Oriented
Approach to Business Information Modeling,
ICODP-93, 1993.

[4] TGS Systems Ltd.: Prograph Reference,
TGS System Ltd., Canada,1990.

[5] Stephen Chernicoff: Macintosh™ Revealed,
HAYDEN BOOKS, USA, 1987.

[6] Satoshi Tanaka, et al: An observation of muti-
media extention of JDMF, IPS], 1994 spring.

