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1 Introduction
In this work, the Global Frame Buffer (GFB) of the

VC-1 and a new parallelized implementation of volume
visualization is developed.

VC-1 is a multiprocessor environment for computer
graphics, and the GFB is used basically to isolate the
image data that flows at the VC-1 from the data that
is being displayed.

VC-1 [5] is a loosely-coupled multiprocessor with a.
frame buffer subsystem called Conflict-Free Multiport
Frame Buffer (CFMFB). The CFMFB consists of local
frame buffers (LFBs), a pipelined image merger (PIM),
and a global frame buffer (GFB). Every processor el-
ement (PE) has its own LFB to hold the sub-image
(including Z-values) created by it. The PIM periodi-
cally superimposes the sub-images stored in the LFBs
and transfers the merged picture to the GFB.

To extend the functions of the GFB, an additional
device called the merging unit for the accumulation
buffer (MUACC) is introduced. This hardware device
can enlarge the range of applications of the VC-1 and
improves its general performance, transferring process-
ing load from the processor elements to the GFB.

2 Global Frame Buffer

The data that come to the GFB flow in the same
dataflow order as a video scan. The GFB [6] was de-
veloped with this singular characteristic in mind.

The primary role of the GFB in the VC-1is to isolate

the frequency and phase of the pipeline image merger
scan rate and the CRT scan rate [4]. In the context of
the VC-1, the functions of the GFB are: integration
all local frame buffer, treatment of FLB overflow LFB,
generation of signals to synchronize the PIM, feedback
screen data, transference of digitalized image data and
accumulation of frame buffer.

The GFB is hosted and managed by a PC-AT like
computer. The GFB is composed of Video Frame
Buffers, a Video Controller, a PIM Scan Counter Con-
troller, a Accumulation Buffer and a Merging Unit for
accumulation buffer (MUACC).

The range of applications of an accumulation buffer
is very large, as to antialiasing [1], and improvement of
image quality [2]. The MUACC is designed on a field

programmable logic device, so the range of operations

it can support is very large, and can be changed very
easily.

3 Algorithm Description
3.1 Volume Rendering

Volume rendering [3] obtains.the volumetric image di-
rectly from the volumetric data. The case in study is
volumetric data with transparency, and the algorithms
are the ray casting and the Z-planes, a new algorithm
suitable for the hardware we use, due to the PIM and
the MUACC.

When considering transparency, the volumetric data
is represented by the pair density C (color) value and
the degree of transparency, a, where a = 1 means a
complete transparent and ‘@ = 0 means a complete
opaque material.

For a given viewline that crosses several elements,
the observer would have the following view:

V=0Co(l —ag)+a(Ci(1 —ay) + a’l(. ..
An-2 (Cn—l (1 —0n-1 ) +an—3 Cn(l _a'n))>)' (1)
A higher index indicates the element is in a deeper
position in the scene.

3.2 Implementation

We developed a new implementation of visualization
of volumetric data with transparency, the Z-Planes al-
gorithm, that makes use-of the graphical structures
(PIM, MUACC, Accumulation buffer) of the VC-1 (fig. .
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PE: Processor Element
LFB: local frame buffer

MUACC: Merging Unit of Accumplation Buffer
MU: Merging Unit of the LFB
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PIM: Pipeline Image Merger

~ Figure 1: Simple architecture structure of VC-1

There is no need to preprocess the volumetric model
database, and data space division for database distri-
bution is adopted.

The algorithm is based on the equation 1. Consider
the model database divided in planes parallel to the
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screen, and at the system level, the algorithm begins
with the PEs drawing the P, (farthest plane from the
screen), (C, ay,), and transferring it to GFB. Then the
following plane P,_; is drawn and transferred to GFB.
The algorithm continues drawing and transferring the

planes until Py, the closest plane to the viewer (see fig.
2):
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Figure 2: View of a Volumetric Data considering
Transparency (3D array of voxels)

For the parallel implementation, the host computer
sends the same Z (depth) position of the Image space
to all the processor elements.

The GFB, when receives the (Cz, az) values, exe-
cutes the equation 2, by the MUACC hardware:

- Vacez = Cz(1 = az) + az(Vace(z+1)); (2)

The accumulated value V.7 is stored at the Accu-
mulation Buffer.

After the last plane, (Cp, ap), is sent, the resulting
(accumulated) view is displayed on the screen.

The PIM takes 1/30s to transfer one complete Z
plane to the GFB. In order to make more efficient use
of the PE processing time, and at the same time to
decrease the number of Z planes sent to GFB, the PE
itself integrates two or more layers of Z planes in one
equivalent Z plane in 1/30s, and write it at the LFB.

At PE level, another algorithm is implemented. To
calculate the equivalent characteristic value of the
plane, an algorithm similar to ray casting is used. V
is the blended value of the voxels, and a is the accu-
mulated attenuation factor. We start with the voxels
closest to the screen with initial values V,;4 = 0 and
Qold = 1, and blend their values as follows:

Vaew = Vota + ao1a ¥ Cz * (1 — az);
Qnew = Qlgld * A7,

3)
(4)
the algorithm continues until o reaches 0 (the accu-
mulated material becomes completely opaque), or the
plane finishes. The equivalent characteristic values
when the stop condition occurs is:

Vnew
1-a,

Ce= y Qe = Qpew;

(5)

If o, is 1 when the algorithm is finished, it means
that the equivalent voxel is completely transparent and
whatever color it has it will not be projected on the
screern.

The characteristic values of the voxels are calculated
using trilinear interpolation of the voxel vertices.

We have scalability in the resolution of the image
with different step values for Z, or with super-sampling
of the voxels.

4 Discussion

Compared to the ray casting algorithm, the expected
speed-up obtained with the implementation of the Z-
Planes algorithm proposed in this work is due to two
factors: 1) Processing of the plane with same Z value
Is distributed linearly among the processor elements,
and with only a few (if any) communication among the
PEs. 2) One of the heaviest operations to be executed,
represented by equation 2, is executed “on the fly”, as
soon as the GFB receives the (Cz,az) values. It is
implemented in hardware and lighten processing load
necessary to integrate the several Z planes.

The advantage of the ray casting algorithm is that it
can stop processing a ray as soon as it reaches trans-
parency zero. The Z-Planes algorithm processes all
the volumetric data no matter how close to the screen
is the opaque object.

The best performance is obtained when the time the
processor elements take to calculate the equivalent Z
plane is the same as the time the PIM takes to transfer
the local frame buffer data to the GFB.

The GFB also enables direct participation of the
host computer in the generation of the image. Without
the GFB, the participation of the host computer is
limited to management of the resources of the PEs.
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