Vol. 40 No. 10

Transactions of Information Processing Society of Japan

Regular Paper

Low-intrusion Cooperative Debugger for
Multi-threaded Distributed Programs

NORIO SATO,t* DAG H. WANVIK,!" HARALD BOTNEVIK,ft
TROND B@RSTING't and JON E. STRGMMETt

A new debugger has been developed which reduces intrusion into the normal execution of
a program under test (PUT), can be connected to one or more PUTs at the same time, and
enables cooperative debugging. These novel features improve the productivity and quality
of large, real-time, multi-threaded, distributed applications. The basic idea is to place a
debug client on the host and debug servers on the target computers, then couple them asyn-
chronously. The debug client can create sessions that are thread instances of command script
interpreters. This makes it possible to debug more than one thread and more than one PUT
at the same time, and to trace them in parallel (e.g., one session for each thread or PUT), or
in combination (e.g., one session for several threads and/or PUTs). The debug client allows
distributed co-clients to share its sessions, thus allowing programmer cooperation. The debug
servers are dedicated threads running inside the PUTs (at low priority). They perform the
commands coming from the debug client. Conditional tracing and breakpoints are evaluated
by the servers, eliminating communication with the client. Such event filters enable tracing,
breaking, and stepping of individual threads with a low level of intrusion into the PUT execu-
tion. The debug client can handle multiple source languages and different target processors at
the same time. While the first versions of the client and debug server were developed to test
PUTs written in CHILL running on a specific user-level thread library, later versions include
support for PUTs written in C and C++ running on this library. By adapting similar debug
servers for other runtime environments, the paradigm is applicable to testing of a wider class

Oct. 1999

of real-time, multi-threaded, distributed applications.

1. Introduction

Real-Time Concurrent Programs and

Testing

Telecommunication control processing, such
as switching, requires large real-time concur-
rent programs to be embedded in target sys-
tems. Different parts of such programs are
coded by different groups of people often in
different programming languages. Telephone
switching is a performance-critical application
that can be categorized as having medium real-
time requirements—for example, up to one mil-
lion busy-hour call attempts (BHCA) must be
handled with a dial-tone delay of not more than
a couple of seconds—as well as a few hard real-
time® requirements. Systems running these ap-
plications thus execute many threads concur-
rently inside a program; these threads share
code. The programs are distributed among dif-
ferent nodes in the network and communicate
with each other, via a signaling network within
timing constraints.

t NTT Optical Network Systems Laboratories
1t Kvatro Telecom AS
* Presently with Kanazawa Institute of Technology

3715

Because the testing and debugging phases in
such programs often account for 50 to 70 per
cent of the total development effort¥), debug-
ging tools are critical to reducing costs and sav-
ing time. Without them, debugging involves
the tedious analysis of log dumps, static mem-
ory dumps, and memory-stack dumps.

Limitations of Traditional Interactive

Symbolic Debuggers

Debuggers for testing UNIX processes, such
as GDBY and DBX®, provide a user interface
at the source-language level, that is, a sym-
bolic interface, and commands for tracing the
sequential execution of the program under test
(PUT)**. The commands are executed by us-
ing operating system facilities such as ptrace®.
Although DBX has been enhanced to support
multi-threading, namely, the inspection and
single-stepping of individual threads, it is still
based on the traditional paradigm of completely
stopping the PUT whenever an event occurs,
which is the so-called “stop-the-world” model.

Some of the cross-debuggers used for embed-

% In this paper, we define a, “process” as a “program”;
otherwise we use generally accepted terminology.
In CHILL®, a “thread” is called a “process”, but
“thread” is used here to avoid confusion.

3716 Transactions of Information Processing Society of Japan

ded programs provide a similar symbolic inter-
face. They are combined with an in-circuit em-
ulator (ICE) and connected to target processors
to monitor and control the hardware registers.
By downloading the executable files to the tar-
get processors or by sharing files between the
host and target computers, sequential debug-
ging similar to that for UNIX can be achieved.

As the clock frequencies in target proces-
sors become faster, an ICE cannot always be
used; instead, built-in facilities that communi-
cate with the host computers via a network are
needed. This is partly solved by embedding
read-only-memory code inside the target pro-
cessor. Still, the traditional debuggers are un-
able to recognize the target operating system.
To them, the code residing in the target mem-
ory is simply seen as a collection of machine
instructions.

Real-Time Monitoring

Programs can sometimes run even with er-
rors, particularly errors related to real-time pro-
cessing and concurrency. However, these errors
can seriously degrade performance, cause fre-

nnent timennte. and hlack reconreas
Quelly uineiuns, allG Di1OCK IesSources.

Without real-time monitoring, “post-mortem”

analysis of the relevant log information is the
only way to locate a problem. This requires the
insertion of “instrumentation code” here and
there in the application code or in the operating
system (or thread library). To plug this code
in and out of a program requires recompilation,
relinking, reloading, and rerunning, which are
inflexible and time-consuming.

Our Approach

The debugger presented in this paper was ini-
tially developed for CHILL systems!®:1®), but
its basic mechanisms have turned out to be
independent of the source language. Our de-
bugger covers the paradigm of communicating
threads and programs in general, and has been
extended to handle programs written in other
languages, such as C and C++, given thread
libraries.

2. Requirements

2.1 Largely Unintrusive Monitoring
and Debugging
Traditional debuggers are highly intrusive.
Because they are synchronously coupled with
the PUT, the execution of PUT is suspended
each time a debug operation is performed.
Therefore, they cannot support the debugging
of real-time concurrent programs, which re-

Oct. 1999

quires the following facilities:

Largely unintrusive break filtering: Because
threads run by sharing code, the break
events hit by only one thread should be fil-
tered out so that they do not significantly
affect the execution of other threads. The
low intrusiveness requires an implementa-
tion technique such that this filtering is
done inside the PUT (without stopping it).

Largely unintrusive stepping: Real-time de-
bugging necessitates stepping the execution
of one thread while executing the other
threads normally so as to avoid unneeded
timeouts and maintain the load, which may
indirectly play a role in the problem being
investigated. This requires an implementa-
tion technique such that the single-stepping
of one thread does not significantly de-
crease the speed of other threads sharing
the same code.

Largely wunintrusive real-time monitoring:
Both OS-level and user-level instrumenta-
tion code is required inside the PUT. Being
able to plug this code in and out during

dehnooine rather than durine comnilation
aeougging ravael uiiall GQuring ColpLavion

would reduce monitoring intrusion into the
performance in normal execution time, as
well as providing more flexibility.
2.2 Concurrent Debugging of Multiple
PUTs
Traditional debuggers cannot be connected to
more than one PUT at the same time, so they
are not well suited to debugging multiple pro-
cess applications. Using two or more debuggers
for such applications is unattractive, because it
is almost impossible to synchronize the related
events caught by the different debuggers within
reasonable real-time constraints. Using one de-
bugger would allow the coupling of two or more
debugger functions in command scripts.
2.3 Multiple Language Support
Because the PUT code may be written in dif-
ferent languages, one debugger should be able
to analyze the debug information for multiple
languages. In our setting, the PUTs are to be
written mainly in CHILL and partly in other
languages such as C and C++.
2.4 Debugging of PUTs on Multiple
Target Processors
It is sometimes necessary to debug PUTs run-
ning on different target processors at the same
time. Traditional debuggers cannot do this be-
cause they include many operations that de-
pend on the target processor and kernel.

Vol. 40 No. 10 Low-intrusion Cooperative Debugger for Multi-threaded Distributed Programs 3717

2.5 Cooperative Debugging

Different parts of the PUT code may have
been written by different teams at geograph-
ically separated sites. The members of such
teams should be able to work together as a
group in the same debugging session.

3. Proposed Debugger

3.1 Fundamental Features

Splitting of the debugger into client and
server: As shown in Fig.1l, we have
split the debugger functions into those for
the debug client and those for the debug
servers, enabling them to work concur-
rently and to be distributable. The client
interacts with the users and interprets the
debug commands. The servers filter out
the break events without waiting for com-
munication with the client. The client can
be connected to one or more servers at the
same time. This splitting also liberates the
client from target processor dependency to
a great extent, facilitating its connection to
PUTSs on different target processors.

Multi-threaded debug client: We made the de-
bug client multi-threaded, thereby hiding
the communication latency caused by wait-
ing for thread events coming from many
PUTs, the interaction with the user, and
the symbol information loading (for the ef-
fect of latency hiding by threads, see for ex-
ample, Ref. 9)). The command interpreter
is the central part of the debug client. As
shown in Fig. 2, it is multi-threaded and
instantiated. The thread instances provide
multiple sessions. Each session offers a user
interface consisting of input, output, and
source-code sub-windows. A session is thus
realized as a thread that interprets a se-
quence of command scripts.

This makes it possible to observe
and control different parts (i.e., different
threads or related PUTs) concurrently. In
the debug client, the sessions share events,
debugger variables, and PUT information,
so they can easily cooperate.

Distribution of debugger clients: We ex-
tended the communication with the user so
that the debug client can allow co-debugger
clients (running as processes on possibly
different workstations) to share the ses-
sion. This allows several geographically
separated team members to participate in
the same debugging session.

|Target processor/OS]
: PUT
User thread
H Thread-library
;Symbol Information |\
for PUTs \ PUT

Fig.1 Splitting of the debugger into client and
server.

(Threads)
ommand
Interpreter’ R
per Sesslon PUT
Debug client

Fig.2 Enabling multiple debugging sessions by using
multi-threading.

Lot : 3 hal ats
YTVENSION Cf SYMmooe bleUlllbwl/bGIl/ and per-

misst zlzty of incremental loading: Be-
cause symbol information used for debug-
ging is bound to individual tool-chains*,
we designed a new debug symbol format,
the Debug Information Language (DIL)**.
This language is represented in LISP-like
character-string format, and is therefore
extensible and portable. It allows for in-
cremental loading of individual modules, so
the startup time is very short and indepen-
dent of program size. This makes it pos-
sible to debug very large systems, such as
telephone-call-processing programs, which
can run into millions lines of code. DIL can
be generated by compilers (for CHILL), or
extracted from the executable files (for C
and C++).

We call the debug client the Pilot, the co-
debugger clients the Co-pilots, and the debug
server the Program Ezecution Control Server
(PXCS). The overall structure is shown in
Fig. 3. A Co-pilot is a remote process that ex-
changes session commands and session output
with a session thread in the Pilot.

* A “tool-chain” means a set of tools, such as a com-
piler, linkage editor, loader, and debugger.
#*% We call this new symbol format a “language”, since
it is readable in ASCII. But it has no dynamic se-
mantics, so it can also be called a “format”.

3718 Transactions of Information Processing Society of Japan

Emacs or
Motif X GUI (PCL)

(PXC command) PUT

PXCSI

Session
‘window

Emacs or

Motif X GUI™]

ﬁ iSession

Co-pilot

ession
ndox;v

Fig.3 Overall structure of the Pilot and the PXCS.

Program Under Test

Thread Thread Thread

Program Under Test

c E— k A B
CRS CRS
Pilot
{ Session3 Session 1 Session 2 h
jn: MODULE
gn: MODULE ‘GRANT sl, 82;
GRANT s1, 52; pa: PROCESS
pa: PROCESS SEND s1;
SEND s1; RECEIVE CASE
RECEIVE CASE (82):
(s2):
~Trap T°2 caused
~Trap T°1 caused > stop
> stop.
\. J

Fig.4 User interface, Pilot sessions, and PUT.

Figure 4 shows an intuitive view of the user
interfaces, sessions, and program(s) under test.
The Pilot sessions are debugger threads which
shadow PUT threads.

3.2 Pilot Command Language (PCL)

and Interpretation

As shown in Fig. 5, the Pilot command lan-
guage (PCL) is a general scripting language. As
opposed to commands in traditional debuggers,
PCL is programmable. The programmability is
useful for producing “regression test scripts”,
especially since PCL reflects source code syn-
tax, by allowing both CHILL and C/C++ ex-
pressions, statements, and control structures to
be used, facilitating easy cutting and pasting
from program source code into a debugging ses-
sion. The PCL allows for full access to the ad-
dress space of the connected PUTs, and to the
debugger variables* that are pre-defined or cre-

* Debugger variables are denoted as $iden fier. It is
recommended that they be used rather than debug-
ger-literals such as x’1 (a program number), t’1 (trap
number), ’10 (thread number) to write reusable
regression-test scripts.

Oct. 1999

1 > —— Session 1 ——

2 >CONNECT ’'my_clock@target.net’;
=> Program connected z’1

3 >8$echo_commands:=TRUE;

4 —— Change context (CC).
>CC ’clock_m}write_seconds’;
=> the source code text appears in the source
window, procedure “write_seconds” in
module “clock-m” is highlighted.

5 >clearscreen(); ——Call procedure.
=> procedure “clear_screen” in program z’1
is called.

6 ——Start a new session (see line 19-21)
> START SESSION;
=> New session started s’2.

7 —— Set a break trap denoted as “t’4” or “s’1|t’4”
>TRAP (write_seconds) WHEN (between)
>END;
=> Trap created t’4, disabled.

8 >CC between; —— Go to filter procedure.
=> the source code for procedure “between” appears.
=> low_limit and high.limit below are PUT variables

9 >low.limit := 30; —— Set up filter.
=> Variable low_limit is assigned by 30.

10 >high_limit := 40; —— Set up filter.
=> Variable low_limit is assigned by 40.
11 >ENABLE t4;
=> Trap t’J enabled.
=> Trap hit t’4, by thread i’10.
12 >RECEIVE t’4; —— Synchronize, possible wait
=> The breaked line appears in the source window
13 >STEP;
14 >STEP INTO;
15 >DISABLE t’4; ——Disable two traps.
=> Trap disabled t’},
16 >DELETE t’4
=>Trap deleted t’}
17 >RESUME; —— Resume thread suspended;
=>Thread 1’10 resumed.
18 >DISCONNECT x’1;
=>Program z’1 disconnected.

19 > —— Session 2 ——

20 > $cl:=CONNECT ’cradle.clock’;
=>Program connected x’2.

21 >CC main; —— Set context to C4++ function.
=> The source code for main appears.

Fig.5 Example of PCL (Pilot command language)
script.

ated in Pilot sessions.

Connecting and disconnecting: Pilot can be
connected to and disconnected from run-
ning programs, without disturbing their ex-
ecution (lines 2, 18, and 20).

Monitoring and changing PUT states: The
Pilot can monitor threads (e.g., “cc i’10;”
to set the session context to thread i'10)
and change their running states, (e.g., “sus-
pend i'10;” “resume i'10;”), setting breaks
and causing suspension (lines 7) or resump-
tion (line 15). It can change the state of the

Vol. 40 No. 10 Low-intrusion Cooperative Debugger for Multi-threaded Distributed Programs 3719

PUT as a whole*.

Creating sessions: A Pilot user can create
concurrent sessions (line 6), enabling mul-
tiple views of the PUT(s). In this example,
the PCL scripts on lines 6-18 and 19-21
are input and interpreted concurrently in
different sessions.

Setting contert: Each session has a session
context indicating the location of the PUT.
A context is specified as a set of objects of
the PUT, such as a program, source mod-
ules or source files, line numbers, threads,
procedures, blocks, and even an incarna-
tion level of recursive procedures. Typi-
cally, users will specify a context explicitly
to bring up the source code in the window
in order to set breakpoints or to investigate
variables (lines 4, 8, and 21). In most cases,
however, the context is set automatically,
for example, when the interpretation must
be synchronized with some event coming
from the PUT(s), such as receive (lines 12)
or step (lines 13 and 14).

Accessing PUT variables: As in traditional
debuggers, the PUT variables can be read
or updated (lines 9 and 10). Any active
local variables can be accessed, whether the
thread is running or suspended.

Stepping: Stepping is either for a single
thread (lines 13 and 14) or the PUT as a
whole, depending on the state of the PUT.

Traps: A trap (line 7) is a “breakpoint” with
a difference, namely, the ability to specify
a filter procedure (e.g., the procedure name
“between” in line 7), a trace data supplier
procedure, and PCL actions. The first two
are called inside the PUT without waiting
for communication with the Pilot (for more
specifics, see Section 4.3.3). The last is in-
terpreted in the Pilot if the filter procedure
returns “true”.

A Co-pilot has a similar interface; it enables
other users, possibly working on different work-
stations, to join the debug session. Once con-
nected to the Pilot, they can watch the work
being done, invoke commands, or split off into
different sessions.

In the Pilot, more than one event may arrive
from the PUT(s) concurrently with the PCL
interpretation. Instead of disturbing the inter-

* “RELOAD $cl;” will cause the reloading of pro-
gram x’2 to be in the program suspended state.
“RESUME ($this);” will cause x’2 to run.

pretation, these events are “queued” inside the
Pilot. This situation never occurs in the tra-
ditional “synchronous-break” paradigm. The
receive picks up one of the events: the one ar-
riving first, one hit by a specified trap (line 12),
or one hit by a specified thread. The comple-
tion of the receive causes the proper setting of
the session context, which is indicated to the
user by highlighting of the related source code.

4. Implementation

4.1 Communication Infrastructure

The Pilot and PXCS communicate with each
other by using the distributed architecture,
CDPS (CHIPSY** Distributed Processing Sys-
tem)'”), developed for CHILL programs. This
architecture is similar to that for RPC" and
CORBA2Y), that is, binding by a name ser-
vice creates proxy threads on both sides, and
asynchronous messages can be passed to and
received from these proxies. The underlying
protocol is scalable. Inter-process communica-
tion®) is used among processes within one com-
puter, and TCP/IP and so on are used across
computers.

The CDPS architecture differs from the RPC
and CORBA architectures in several ways:
The CDPS model is based on communicat-
ing threads, not objects. The communica-
tion process is fully transparent and seamless
at the application level. It uses CHILL sig-
nals*** that convey a list of (data) typed val-
ues from one thread to another asynchronously;
these signals are selectively received'®. CHILL
signals are suitable for spontaneous message
passing in both directions, in contrast to the
query/answer-type messages of RPC.

4.2 Multi-threading in the Pilot

As shown in Fig.6, the Pilot is multi-
threaded. The threads are for user interaction,
PCL interpretation, symbol information (DIL)
analysis, and communication with the PUT(s).
These threads are bound to synchronous 1/0,
but work concurrently.

A pair of parser and interpreter threads are
created for each session. This enables the con-
current execution of sessions. Each PCL com-
mand is parsed into an internal tree (IT). Inside
the Pilot, the messages carry a pointer indicat-

*#% CHILL Integrated Programming System developed
by Kvatro Telecom AS.
*% In CHILL, messages are called “signals”, so “CHILL
signals” means “messages” passed from a thread to
another thread.

3720 Transactions of Information Processing Society of Japan

Emacs PCL m
or " reader [PCL parser
Motif X
GUI —
& % :

RemOte }eernnns -t

reader L~
Emacs Interpreter PXC M—=_PUT

o —F——F——mm e communicator

Motif X

GUI r—t—-ﬁ
l DIL loader

Co-pilot
Fig.6 Threads in the Pilot.

ing IT nodes, so message passing is very quick.

The evaluation of IT nodes requires fetching
of the values that reside in the PUT. This may
cause considerable latency, so the evaluation of
an IT is performed bottom-up in parallel: for
example, for “pointer— > .field(index)”*, the
values of “pointer” and “index” are fetched in
parallel.

4.3 PXC Server (PXCS) Implementa-

tion

..... Interaction with the Pilot

One generic Pilot runs on the host comput-
ers, while the PXCS is target-OS-specific. In
CHIPSY, the PXCS is embedded in a thread
library denoted CHIPSY Real-Time Operating
System (CRS)'7). As depicted in Fig.7, it
consists of a daemon thread and a trap han-
dler. The former executes the commands com-
ing from the Pilot, while the latter detects the
trap hits in the PUT.

The Pilot affects the PUT by sending PXC
commands that execute PCL at the PXC level.
These commands are for reading or writing vari-
ables, setting break-points, stepping, and so on.
Conversely, by sending PXC replies, the PXCS
indicates the completion of a command and re-
ports events that have occurred inside the PUT.

4.3.2 Session Context and PXC Com-

mands

In the Pilot, DIL is used to convert the session
context to the place where PXC commmands
are applied and to convert from PXC replies
to the session context. From the PXC com-
mands, the PXCS learns of the place, such as
the thread and absolute address (or stack frame
and offset). Conversely, the Pilot sets the ses-

* The symbol “— >” means a dereferencing operator,
“” is a field selector (of structure types), and “()”
means array element denotation (“[]” in C syntax).

Oct. 1999
"_PXCS“,'ﬁ‘i
XC N\
= D thread PUT
(wmma‘nd
(PXC reply) execution)
Pilot : :
‘ Tra L
®XCreply) || hanlter [(trap | User thread
"trap events hits)
notification' T

Fig.7 Overall structure of the PXC Server (PXCS).

sion context correctly based on the thread indi-
cation and program counter in the PXC replies,
using the instruction ranges contained in DIL.

For example, a break-hit report from the
PXCS to the Pilot identifies the thread that hit
the break and the program counter of the break.
For PCL backtrace, up, and down (stack-frame)
commands, the Pilot requires PXCS to provide
with sequence of return addresses of the dy-
namically nested procedures stored in the stack
frames of the thread in question.

Stack variables can be accessed as follows:
First, the PXCS must know the stack frame
structure, such as dynamic links (i.e., saved
“frame pointers”)**. Next, the life-time of the
stack variables must be known. For this pur-
pose, the Pilot sends the thread indication,
frame number, and instruction range of the
block where the variable is defined. If the
thread is not extinct (terminated) and its cur-
rent program counter is within the specified
range, the variable is accessible.

4.3.3 Trap Handling in PXCS

We attached additional actions to a break-
point to serve as trap actions. They are fil-
ter procedure, trace data supplier procedure, and
PCL sequence, as shown in Fig.8. The first
two are user-specific procedures called inside
the PUT so as to reduce the intrusiveness. The
filter procedure returns a boolean value. If the
value is true, the trap hit is effected, and the
trace data supplier procedure returning the val-
ues of interest, if specified, is executed, followed
by a trap-event report to the Pilot. The PCL
sequence, if present, is interpreted when the
trap event is received by the Pilot session; it
serves as (soft real-time®) instrumentation code
that is not pre-planned at compilation time.

*% This includes the possibility of a leaf procedure on
a SPARC workstation.

Vol. 40 No. 10 Low-intrusion Cooperative Debugger for Multi-threaded Distributed Programs 3721

—— where to break
TRAP(“break point”)
—— when breaks, what to suspend
—— (optional)
SUSPENDS (PROGRAM [LOCK]
| THREAD)
—— called on target (optional)
WHEN(“filter procedure”)
—— on target trace (optional)
TRACES(“trace data supplier procedure”)

- internreted in the Pilot (onticnal)
interpreted in the 1oy (optional)

“PCL sequence”

END;
Fig.8 'Trap command.

Trap handler Thread execution
Trap hit (Trap interruption)] ki
Execute filtering
trap action|

action ":;; false §

(e.g., break) ¢ (Re-scheduling) }
Execute filtering
trap action

L]

action tru':
(e.g., trace,
)

!
= —u (Re-scheduling)

Fig.9 Trap handler and trap actions in PXCS.

An example is shown in Fig.9, where two
PCL traps sharing the same breakpoint are set.
The first filtering (filter procedure) returns false,
so no action is executed. The second filtering
returns true, so the corresponding trace data
supplier procedure is called and the value is
sent to the Pilot*. Because this is tracing, the
trapped thread continues its execution.

If the first filtering returns true and the ac-
tion is thread-break, the trapped thread is sus-
pended, rescheduling is done, and the second fil-
tering is not entered. While the trapped thread
is suspended**, the other threads continue their
normal execution®**.

4.3.4 Stepping Techniques

As in traditional debuggers, stepping by
source code line is supported. The modifiers

* To minimize intrusion, the value is sent via the PXC
daemon thread, which is running at a low priority.

** When a PCL resume is given for the trapped thread,

the second filtering is entered, the trace is possibly

done, and normal execution is immediately followed.

¥&% If 5 trace action is followed by a break action, the

trace is completed and the break takes effect imme-

diately after the trace.

In-instruction Off-instructit_)n
stream stepping stream stepping

. Oﬁginal code 4

Thread-unique place

; .
Thread executions

Fig.10 In- and off-instruction stream stepping.

over, into, and return can be attached to the
step command. The Pilot sends a step com-
mand containing from-address, to-address, and
a thread indication. In the case of “step into”
and “step over”, the from- and to-address indi-
cate the current and next lines. In the case of
“step return”, they indicate the address range
of the procedure code. Stepping by this range of
prograra counters can be achieved by repetitive
trapping of single instructions until the trapped
program counter exceeds the specified range.

The efficiency with which this is done de-
pends on the target processors. In most CISC
(complex instruction set computer) processors,
efficient hardware support is available. We can
use a trace bit in the status register that is set
for each thread at context switch time. In most
RISC (reduced instruction set computer) pro-
cessors, however, single-stepping must be done,
using repetitive breaks implemented by replac-
ing the original code with a breakpoint instruc-
tion (i.e., a trap instruction). As shown in
the left half of Fig. 10, if this technique is ap-
plied to threaded systems, the trap catches any
thread that executes that code.

Therefore, we developed an “off-instruction-
stream” technique in the PXCS for SPARC?®).
As shown in the right half of Fig. 10, instruc-
tions are loaded one by one from the original
stepped code, placed in a thread-unique place,
and executed with a trap to catch the comple-
tion. The result of the stepping, namely, ad-
justment of the program counter, is then recal-
culated as if were being done “in-stream”. This
technique frees the other threads from ever hav-
ing to execute breakpoint instructions.

4.3.5 Handling of the Execution States

of Threads and Programs

Working together, the PXCS and the CRS
kernel set the proper thread and program state.
The states of individual threads and the pro-
gram state are independent. The program
executing state is either program loaded, pro-
gram ezecuting, program suspended, or program
locked.

3722 Transactions of Information Processing Society of Japan

In the program executing state, stepping and
breaks for individual threads can be performed
with little intrusion into the program. If a
break occurs, and a thread-level break is re-
quired, rescheduling is done. If stepping is
done, the thread being stepped executes many
trap interrupts, slowing down its own execu-
tion. Rescheduling is still normal, so the step-
ping may cause another thread to receive CPU
time.

In the suspended state, thread reschedul-
ing is locked, while external interrupts are not
masked and the “execution queue” is accessible.
Hence, the state of each thread can be manip-
ulated by the Pilot. Users can choose which
threads will start competing for the CPU when
execution is resumed or stepping is started. In
the locked state, interrupts are masked and the
“execution queue” is locked, so it is not possible
to manipulate threads.

Working together, the CRS and PXCS sup-
port program breaks and program steps in ad-
dition to thread breaks and thread steps. The
(highly intrusive) program break and stepping
are very useful when complex thread synchro-
nization is to be debugged.

The PXCS identifies the type of breakpoint
when a trap is hit. It may use the explicit
breakpoint type (thread or program break) to
determine the next action, or it may use the
execution state in which the program break oc-
curred, for instance, if the break occurs while an
interrupt is being handled or while code is be-
ing executed inside a synchronized kernel pro-
cedure. This last situation is called an implicit
program break.

The same situation is observed when a thread
steps into a CRS procedure. When stepping
over the rescheduling procedure calls, the step-
ping automatically leaves the thread-stepping
mode and enters program-stepping mode. Af-
ter stepping over the context switch procedure,
thread-stepping resumes. The program state
after a step or when a breakpoint is hit is thus
determined by several factors.

5. Discussion

5.1 Intrusiveness into Real-Time
PUTs
The Pilot is a non-trivial superset of tradi-
tional debuggers, because it acts as an ordi-
nary debugger, if one specifies that all execu-
tion should be suspended (“program suspend”)
when a trap is hit. If only some threads are

Oct. 1999

stopped, new debugging situations and prob-
lems may arise; for example, global data may
be transient. New capabilities can also be ob-
tained, such as debugging for a realistic load,
and testing during operations.

The intrusiveness of the Pilot into the PUT
has at least two dimensions: (A) the time du-
ration of the PUT suspension and (B) the sus-
pension range, that is, the number of programs,
threads, events, or resources that are blocked.

5.1.1 Low Intrusiveness in Terms of

PUT Suspension

The filter procedure and the trace data sup-
plier procedure reduce intrusion in terms of
dimension (A). Naturally, there is a context
switch inside the PUT, but the intrusion it
causes is much less than waiting for commu-
nication with the debugger, that is, via a sig-
nal in UNIX or via a network, which involves
process-level context switches*

Soft realtime is handled, since PUT does not
necessarily stop*™. Threads, when traced, are
delayed only by the amount of time needed to
send the response to the debugger. As shown in
Fig. 11, however, the PXCS is designed so that
the PXCS messages are asynchronized. This
works nicely if the I/O does not overflow (i.e.,
if there are not too many PXC messages in a
short interval).

The trace point will generate trace messages
which will be received and delivered by the PXC
thread and output via asynchronized I/O. Since
the user threads run, the pool set aside for this
purpose might fill rapidly, depending on how of-
ten the trace point is reached. Since the I/O op-
eration will take some time to complete, there
will be a delay before the PXC thread consumes
and writes the next trace message.

The trace pool will be completely filled. At
that point, the PXC will revert to program
locked mode; that is, user threads will be
stopped and thus unable to deliver any more
trace messages until they are set free again.

* Quantitative measurements are difficult with such a
new debugger. However, it is evident that the la-
tency caused by thread switches inside the PUT is
by far (by an order of three or so) faster than the
latency caused by the communication between dif-
ferent UNIX processes, or those running different
computers (debugger and PUT) which possibly in-
volve transmission latency and human interaction.

** Note that other interactive debuggers of the “stop
the world model” always stop the execution of the
PUT, so real-time debugging cannot be handled in
the first place.

Vol. 40 No. 10 Low-intrusion Cooperative Debugger for Multi-threaded Distributed Programs 3723

PXC deamon
User thread H

trace point ‘.__. :
Trace :
procedure :
trace point / 5

Trace mess: et ey A synch 10 operation
(sent to Pilot)
trace point
trace point %
::I . ——
Asynch IO operation
(sent to Pilot)

'
v

Fig.11 Sending trace date from PXCS to the Pilot.

The PXC will then empty the pool down to
THRESHOLD % filling degree. When that
many trace messages have been sent, the PUT’s
threads are set free again.

Thus overflow never occurs, but uncritical
trace generation will seriously influence the
PUT’s real-time behavior; that is, it will cause
high intrusion.

If medium intrusion is desired, the user
should make sure that the pool is never full by
one or more of the following means: (a) place
trace points in fewer places; (b) attach a filter
to the trace point, so as to trace only what is
really desired (Since the filter procedure is exe-
cuted in PUT, this is very cheap); (c) allow the
filter to inspect the pool-filling level and skip
the traces when the pool is full or above a de-
sired threshold. In this way, the program locked
mode of PXC operation is never used, but some
trace might be lost.

For a really low intrusion mode, the user must
make sure that the PXC thread is at a lower pri-
ority than the user threads. This will need to be
used in conjunction with tricks (a), (b) and (c)
above. If this technique is used, the real-time
behavior of PUT is little affected, since only
“idle time” in PUT is used for sending trace
messages.

PUT execution is perturbed only by the fact
that, in UNIX, another program (e.g., the Pi-
lot) is executing and some process switching oc-
curs between the kernel and the user space (for
write operations).

Contrast this with the delay in a conventional
debugger, where (a) all threads stop; (b) user
input is awaited; and then (c) PUT is run again.
Even if no user input is required, PUT cannot

proceed until the debugger has executed for a
while. The latter is similar to a “Pilot trap
body” with a body containing a “resume”. The
“Pilot traces option” allows speed-up relative to
this conventional debugger scenario.

5.1.2 Low Intrusiveness in Terms of

the Suspension Range

Low intrusiveness in terms of dimension (B)
means not stopping the PUTs. If the threads
in the PUT are so tightly coupled that a thread
can timeout if another thread does not respond,
stopping a thread or a subset of threads may
not be “largely unintrusive”. In such a case,
a “highly intrusive scheme” may be more suit-
able.

On the other hand, if knowledge of the ap-
plication enables the programmer to stop and
manipulate one or more threads without af-
fecting the system execution as a whole, typ-
ically, the performance may suffer slightly, or
access to resources may be slightly reduced for
a while. This situation is likely in telephone call
processing—for example, the processing of call
handling threads and administrative threads.

5.2 Location Transparency

Distributing the debugger client has two key
advantages. One is that, whereas ordinary de-
buggers can connect to remote targets at most
one by one, the Pilot makes it possible to debug
several (related) target programs at the same
time. The other is that it allows several groups
in several places to join the same debugging ses-
sion. Thus, the Pilot provides location trans-
parency in two ways.

5.3 Applicability to Various Platforms

The Pilot itself is transparent to thread li-
braries, so the idea of having debugging support
in a thread library is general.

Applications using thread libraries supplied
by OS vendors, such as those for Solaris 2.x!2
and POSIX (pThread)'9:!V), in which we can-
not embed a PXCS, require an “out-of-process”
solution.

We are now studying the idea of using a
“PXC agent process” that operates a PUT from
outside. With this approach, the benefit of
lower intrusiveness in the sense of dimension
(A) is less applicable. The applicability of fil-
ters and trace data supplier procedures is yet
to be determined. Still, if the OS allows stop-
ping of one or more threads, low intrusiveness
in terms of dimension (B) is expected. Further-
more, by using the “/proc” utilities®), the agent
process allows inspection of global data in any

3724 Transactions of Information Processing Society of Japan

Solaris process without stopping it. This is not
possible with other debuggers.

6. Application Examples

6.1 CHILL Applications

We used the Pilot for both host and tar-
get testing of CHILL applications. As a host
platform, we used a SPARC workstation with
SunOS, and as our first commercial switching
target, we used a G-micro??) platform. We im-
plemented the G-micro version of CRS in order
to interface the CHILL code with the underly-
ing operating system. The overall environment
is shown in Fig. 12. Our goals and approaches
were as follows:

¢ Run the CHILL code on the SPARC work-

station with SunOS and apply the Pilot for
host testing: This was achieved by trans-
lating the intermediate code and sharing
the CHIPSY back-end compiler between
the CHIPSY and NTT front-ends.

e Run the CHILL code on a G-micro switch-

ing platform:

— Enhance the NTT version of the
CHILL compiler to generate DIL: this
work has been completed.

— Develop a PXCS on the G-micro
switching platform: G-micro is a CISC
processor with debugging facilities sim-
ilar to those of other CISC processors,
such as the i4862% and MC680x02°).
The OS supports a TCP/IP proto-
col stack and signal deliveries to pro-
cesses. The technique has already
been proven, so the development of the
PXCS is now being planned.

6.2 ACOOL Applications

PLATINA (Platform for Telecommunication
and Information Network Applications)!'® is a
fully distributed architecture that consists of
nodes (computers), domains (processes), and
active objects (threads). All the domains share
memory space for quick communication that is
basically asynchronous, as are CHILL signals.
PLATINA is implemented on MC68030%% and
MIPS?? computers.

PLATE (a PLATINA emulator) is a thread
library on SPARC workstations with SunOS; it
provides the same API as PLATINA. Applica-
tions on PLATE and PLATINA can share the
same code and communicate with each other.

A new programming language called
ACOOL (A Concurrent Object Oriented
Language) 19) was designed for programming

Oct. 1999

[Source code J
1

[NTT-CHILL front-end |

CHIPSY-CHILL
front-end

¥
IL(Intermediate Language)

/
IL translator

[CHIPSY back-end | INTT CHILL back-end |

[SPARC,id86code | [G-microcode |
J

|+ DIL J __+DIL

APL

PXCS in CRS PXCS in NTT-CRS
%, on UNIX ""| Switching system platform

Piiot

Fig.12 Integration of CHIPSY and the NTT-CHILL
support environment.

PLATINA/PLATE applications. The ACOOL
compiler is a front-end add-on to the GCC com-
piler?*. Our goals and approaches for applying
Pilot to PLATINA and PLATE were as follows:

o Generate DIL for ACOOL: Because
ACOOL is still an experimental language,
“DIL for C” was used instead, in order to
rediice costs.

e Apply the Pilot to PLATE applications:
One solution is to implement the PXCS in-
side the PLATE thread library. Another
is to reuse the (PXCS of) CRS for the
SPARC/SunOS workstation. In view of
imminent upgrade to Solaris 2.x threads,
the latter approach was taken. First, the
PLATE thread library was replaced by
the CRS with the PXCS inside. Next, a
wrapper-layer library was implemented so
that the CRS is seen as a set of PLATINA
system calls®*. Each PLATE thread (ac-
tive object) is mapped to a CHILL thread,
and PLATINA messages are implemented
by using CHILL signals.

e Apply Pilot to PLATINA applications:
The overall design, which is shown in
Fig. 13, has been completed. First, be-
cause the Pilot and the PXCS are cou-
pled using CHILL signals, a gateway was
implemented to convert them to and from
TCP/IP packets. Second, a Pilot daemon

* This is the normal way of adding a new language to
GCC. A similar approach is the implementation of
uC++, which includes extensive additions of con-
currency to C++329.

¥ The major work was to convert the (CHILL-style)
exceptions thrown by the CRS API into the (C-
style) return code of the PLATINA APIL

Vol. 400 No. 10 Low-intrusion Cooperative Debugger for Multi-threaded Distributed Programs 3725

Kernel mode User mode

Pilot !
Pilot ~ pogain—)
&G
4 Domain—
o
Fig. 13 Application of the Pilot to PLATINA.

thread is being implemented in PLATINA,
which communicates the PXC commands
via PLATINA messages. Third, the PXCS
for PLATINA will be embedded in each
PLATINA process (domain).
6.3 C and C++ Applications
Because DIL for C and C++ has already been
defined and can be handled in Pilot, C and
C++ applications are part of the support, as
long as they are running on top of a thread li-
brary with PXCS* inside.

7. Conclusion

Debuggers that use different paradigms from
those in traditional symbolic interactive debug-
gers are needed to monitor and debug real-
time, multi-threaded, distributed applications.
Specially needed are largely uninstrusive traps
with on-target action and concurrent interpre-
tation of command script sequences. We have
proposed a debugger that uses a synchronous
one-to-many coupling of a multi-threaded de-
bug client and debug servers inside the tested
program.

The chief advantages of this architecture are
low intrusiveness, programmability, and multi-
PUT capability, which differentiate the Pilot
from many other debuggers. The debug client
provides an interface at the source level for mul-
tiple source languages, multiple sessions, and
cooperative debugging. Although the source
code of the client is now more than a 100K
lines, there are few dependencies on the target
processors. More work is needed to install de-
bug servers in the target platforms we want to
support, while the techniques for debug support
used in the thread library are well proven. The
code for the debug server is dependent on the

* To facilitate portable multi-thread programming in
C+-+, a wrapper-layer class library was added on
top of the CRS. This allows CHILL and C++ to ex-
change messages. We call this library Cradle'™. For
C++ wrapper-layer class libraries on top of other
UNIX thread libraries, see Refs. 13) or 14).

target processors and operating systems but, in
our experience, is in the order of 10K lines.

One direction for the future is to provide a
debug server for the thread libraries supplied
by OS vendors. We have presented the concept
of a debugging agent process and have devel-
oped an initial prototype. We are now study-
ing the feasibility of supporting communicating
objects, as in the CORBA?YD and TINA-C?2)
architectures.

Acknowledgments

The largely unintrusive debugger technolo-
gies we described in this paper were proposed
by Kvatro Telecom AS and developed through
cooperation projects with NTT labs. The con-
tributions of the following people should be
noted: Kristen Rekdal for project manage-
ment, Bernt M. Johnsen for the DIL extrac-
tor for C++, Bjorn Kastnes for Pilot test-
ing, Staale Deraas and Ulf Lunde for the DIL
and DIL extractor for CHILL, Petter Moe for
PXCS and Cradle, Jan Wedvik for Pilot TUI
(GUI), Minoru Kubota for PLATINA-kernel-
related work, and Shigeki Yamada for reading
and commenting on earlier drafts of this paper.

References

1) Stallmann, R.M. and Support, C.: GDB Man-
ual, Free Software Foundation (1988-1995).

2) Stallmann, R.M.: Using and Porting GNU
CC, Published by Free Software Foundation,
for version 2.6 (July 1994).

3) Debugger Users Guide, SPARCworks™ 3.1,
SunSoft (1996). Original: Debugging a Pro-
gram, Part No.802-3517-10, Revision A, Sun
Microsystems (1996).

4) Tsai, J.J.P. and Yang, S.J.H. (Eds): Moni-
toring and Debugging of Distributed Real-Time
Systems, IEEE Computer Press (1995).

5) Bach, M.J.: The Design of the UNIX Operat-
ing System, Prentice-Hall (1986).

6) Faulkner, R. and Gomes, R.: The Process File
System and Process Model in UNIX System V,
USENIX-Winter’91 (1991).

7} Bloomer, J.: Power Programming with RPC,
O’Reilly & Associates (1992).

8) Stevens, W.R.: UNIX Network Programming,
Prentice-Hall International (1991).

9) Strumpen, V.: Software-Based Communica-
tion Latency Hiding for Commodity Work-
station Networks, Proc. IEEE International
Conference on Parallel Processing, pp.146-153
(1996).

10) Northrup, C.J.: Programming with UNIX
Threads, John Wiley & Sons (1996).

3726 Transactions of Information Processing Society of Japan

11) POSIX Threads Management Specification,
ISO/ICE 9945-1 (1996), ANSI/IEEE Standard
1003.1 (1996).

12) Solaris 2.6 Reference Manual, Sun (1997).

13) Hughes, C. and Huges, T.: Object-Oriented
Multithreading Using C++, Wiley Computer
Publishing (1997).

14) Schmidt, D.C.: An OO Encapsulation of
Lightweight OS: Concurrency Mechanisms in
ACE Toolkit, Technical Report of the Depart-
ment of Computer Science, Washington Uni-
versity, http://www.cs.wustl.edu/schmidt/.

15) CCITT High-Level Language (CHILL), ITU-
T, Geneva (Recommendation Z.200) (1980,
1984, 1988, 1992, 1996).

16) Rekdal, K.: CHILL — the International Stan-
dard Language for Telecommunications Pro-
gramming, Telektronikk, Information Systems
(Mar. 1993).

17) CHIPSY Reference Manual, version 15, Kva-
tro Telecom AS, (1993), see also
http://www kvatro.no.

18) Kubota, M., Maruyama, K., Osaki, K. and
Yamada, S.: Distributed Processing Platform
for Switching Systems: PLATINA, Proc. XIV
International Switching Symposium, pp.415-
419 (Oct. 1992).

19) Maruyama, K.: Concurrent Object-Oriented
Language COOL, IPSJ Trans., Vol.34, No.5,
pp.963-972 (1993).

20) Bugr, P.A., Ditchfield, G., Stroobosscher,
R.A. and Younger, B.M.: uC++: Concurrency
in the Object-Oriented Language C++, Soft-
ware Practice and FExperience, Vol.22, No.2,
pp.137-172 (1992).

21) Object Management Group: The Common
Object Request Broker. Architecture and Spec-
ification, Revision 2.0 (July 1996).

22) TINA-C: Overall Concepts and Principles
of TINA, Document No.TB_MDC.018.2.0.94
(Dec. 1994).

23) G-micro Hitachi 32-bit Microprocessor
H32/500 User’s Manual, Hitachi Ltd.

24) 386™ DX Microprocessor Programmer’s Ref-
erence Manual (2nd edition), Intel Corporation
(1989).

25) MC68030 Enhanced 32-bit Microprocessor
User’s Manual, Second Edition, Motorola Inc.

26) The SPARC Architecture Manual, version 8,
SPARC International, Prentice-Hall (1992).

27) Kane, G.: MIPS RISC ARCHITECTURE,
Prentice-Hall.

(Received June 26, 1998)
(Accepted July 1, 1999)

Oct. 1999

Norio Sato graduated from
Faculty of Mathematical Engi-
neering and Information Physics,
the University of Tokyo in 1972.
He joined NTT Telecommunica-
tion Laboratories, where he en-
gaged in the development of the
telephone switching system programs, and led
the the CHILL language processor projects. He
has a long experience in the standardization ac-
tivities of the programming language CHILL at
CCITT (now ITU). He was a Senior Research
Engineer, Supervisor, Distributed Network Sys-
tems Laboratory, NTT Optical Network Sys-
tems Laboratories. He received Ph.D. in com-
puter science from Ritsumeikan University in
1999.

Dag H. Wanvik has a M.Sc.
from the Norwegian Institute of
Technology (NTH, now NTNU)
in Computer Science, 1979 and
is now Senior Project Engineer
with Kvatro Tt‘leCCuu AS Aftc1
research work on compilers and
development tools at SINTEF, Trondheim, he
joined Kvatro Telecom AS in 1987. He has a
wide experience in systems programming, in-
cluding real-time applications and operating
systems. Among other hobbies, he is a Linux
enthusiast.

Harald Botnevik has a
M.Sc. from Norwegian Insti-
tute of Technology (NTH, now
NTNU), in Computer Science,
1975 and is now Development
. Manager of Kvatro Telecom AS.
Kvatro Telecom AS is a Norwe-
gian software company developing and market-
ing CHIPSY, an advanced toolset for CHILL
program development. Mr. Botnevik has been
working with compilers and toolchains for
CHILL since 1977 and has extensive experience
also on quality assurance, project management
and languages and tools for telecom software
development. He is a member of ACM.

Vol. 40 No. 10 Low-intrusion Cooperative Debugger for Multi-threaded Distributed Programs 3727

Trond Bdrsting has a M.Sc.
from Norwegian Institute of
Technology (NTH, now NTNU),
in Computer Science, 1975 and
is now Senior Project Engineer
in Kvatro Telecom AS. Kvatro

i Telecom AS is a Norwegian
software company developing and marketing
CHIPSY, an advanced toolset for CHILL pro-
gram development. Mr. Borsting has been
working with real-time operating systems since
1975 and is the main responsible for CRS, the
CHIPSY Real-time Operating System, includ-
ing distributed services and thread debugging
services.

Jon E. Strgmme has a
M.Sc. from the Norwegian In-
stitute of Technology (NTH,
now NTNU) in Computer Sci-
ence, 1981 and is now Senior
Project Engineer with Kvatro
Telecom AS. After research work
on compilers. and data networks at SINTEF,
Trondheim, he joined Kvatro Telecom AS in
1987. He has a wide experience in systems pro-
gramming, including real-time applications, op-
erating systems and debuggers.

