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Simulating a Mesh with Separable Buses

SusuMU MATSUMAE? and NOBUKI TOKURA'

This paper investigates the problem of simulating a mesh with separable buses (MSB) by a
mesh with partitioned buses (MPB) and a mesh with restricted separable buses (MRSB). The
MSB and the MPB are the two-dimensional mesh-connected computers which have additional
broadcasting buses along every row and column. The broadcasting buses of the MSB can be
dynamically sectioned into smaller bus segments of various lengths by the program control,
while those of the MPB are statically partitioned in advance by a fixed length £. The MRSB
is a restricted model of the MSB, in which the broadcasting buses are placed only every £ rows
and £ columns, and only those processors located at the crossing point of the broadcasting

buses can access to the buses.

We show that the MSB of size n X n can be simulated in

©(n'/3) time by the MPB of size n x n when £ = ©(n?/3), and in ©(¢) time by the MRSB
of size n X n. These time costs are shown to be optimal in the worst case.

1. Introduction

The mesh architecture has been studied as
one of parallel computational models. A two-
dimensional mesh-connected computer (mesh
for short) is a processor array that consists of

Each processor is connected via bidirectional
unit-time communication links to its four ad-
jacent processors. The mesh is a natural struc-
ture for solving many problems in matrix com-
putations and image processing, and thus many
algorithms have been designed for such prob-
lems on it. Further, this structure is suitable
for VLSI implementation and allows a high de-
gree of integration.

The main disadvantage of the mesh is that
the time complexity of an algorithm on it
is lower-bounded by its large diameter. To
overcome this problem, the mesh has been
enhanced with various types of broadcasting
buses. Stout? and Prasanna-Kumar, et al.?)
proposed a mesh with multiple buses (MWMB),
which has additional broadcasting buses along
each row and column. Maeba, et al.® pro-
posed a mesh with separable buses (MSB),
where they considered sectioning the broad-
casting buses of the MWMB by inserting the
processor-controlled switches into the buses.
The broadcasting buses of the MSB, called sep-
arable buses, can be dynamically divided into
smaller bus segments by the program control.
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Serrano, et al.¥) considered a mesh with re-
stricted separable buses (MRSB). The MRSB
is a restricted model of the MSB in which the
separable buses are placed only every £ rows
and /£ columns, and only those processors lo-
cated at the crossing point of the broadcast-
RCUUllbly,
Chung® and Maeba, et al.®) proposed a mesh
with partitioned buses (MPB). Like the MWMB
and the MSB, the MPB has broadcasting buses
along every row and column. The broadcasting
buses of the MPB have no sectioning switch in-
serted, but are partitioned in advance by a fixed
length £.

In this paper, we consider simulating the
MSB by the MPB and the MRSB. We show
that the MSB of size n x n can be simulated in
O(n'/3) time by the MPB of size n x n when
£ = ©(n?/3), and that the MSB of size n x n
can be simulated in ©(¢) time by the MRSB of
size n X n. Furthermore, these time costs are
shown to be optimal in the worst case. Our
motivations to consider these simulations are
as follows. From a theoretical point of view,
since we have shown”)®) that the MSB of size
n x n can simulate the reconfigurable mesh %10
(or PARBS, the processor array with reconfig-
urable bus systems) of size n x n in ©(log®n)
time, we can show that any problem that can be
solved in time T' by the reconfigurable mesh of
size n x n can be solved in O(TT"log? n) time
by the MPB or the MRSB of size n x n, where
T is the time cost of simulating the MSB of size
n x n. Since it has been argued!') that the
reconfigurable mesh can be used as a univer-
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sal chip capable of simulating any equivalent-
area architecture without loss in time, our sim-
ulation results give the upper bounds in time
for the MPB and the MRSB to simulate other
equivalent-area architectures. From a practi-
cal point of view, compared to the MSB, the
number of broadcasting buses or that of switch
elements inserted to the buses can be rather
small on these simulating models, and thus it
is expected that the scalability of them is bet-
ter than that of the MSB. Also, considering
the propagation delay of a broadcasting bus in-
troduced by the length of the bus (i.e., signal
propagation delay) and those switch elements
inserted to the bus (i.e., device propagation de-
lay), the propagation delay of the buses in the
MPB and the MRSB can be small in practice,
and hence we consider that our simulation algo-
rithms are useful when the mesh size becomes
so large that we cannot neglect the delay.

This paper is organized as follows. Section
2 describes the MSB, MPB, and MRSB mod-
els. Section 3 presents an algorithm that simu-
lates the MSB on the MPB, and Section 4 gives

an algorithm that simulates the MSB on the

MRSB. And finally, Section 5 offers concluding
remarks.

2. Models

An n x n mesh consists of n? identical SIMD
processors or processing elements (PE’s) ar-
ranged in a two-dimensional grid with n rows
and n columns. The PE located at the grid
point (4, j), denoted as PE[i, j], is connected via
bidirectional unit-time communication links to
those PE’s at (¢ £ 1,4) and (¢, = 1), provided
they exist (0 < 4,5 < n). PE[0,0] is located in
the top-left corner of the mesh. Each PE[s, j] is
assumed to know its coordinates (%, j).

An n x n mesh with separable buses (MSB)
and an n xn mesh with partitioned buses
(MPB) are the n x n meshes enhanced with
broadcasting buses along each row and col-
umn (Fig.1* and Fig.2). The broadcast-
ing buses of the MSB, called separable buses,
can be dynamically sectioned through the PE-
controlled switches during the execution of pro-
grams, while those of the MPB are statically

* The MSB in this paper is slightly different from the
one proposed by Maeba, et al®. Our model is closer
(in fact, is equal in the computational power) to the
submodel of the reconfigurable mesh, known as the
horizontal-vertical reconfigurable mesh'®, in which
every bus segment must be along row or column.
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partitioned by a fixed length £. An n x n mesh

with restricted separable buses (MRSB) is the

n X n mesh enhanced with the separable broad-

casting buses along every £ rows and ¢ columns

for a fixed ¢ (Fig.3). In the MRSB, only

PE[i4, j¢] can access to the broadcasting buses

(0< 4,5 <n/b).

A single time step of the MSB, MPB, and
MRSB is composed of the following three sub-
steps:

Local Comm. Substep: Every PE commu-
nicates with its adjacent PE’s via local
links.

Broadcast Substep: Every PE changes its
switch configurations by local decision (this
operation is only for the MSB and the
MRSB). After that, along each broadcast-
ing bus segment, several of the PE’s con-
nected to the bus send data to the bus, and
several of the PE’s on the bus receive the
data transmitted on the bus.

Compute Substep: Every PE
some local computation.

We assume that the propagation delay of the

broadcasting buses is a constant time, and that

each of the three substeps is executed in a con-
stant time.

The bus accessing capability is similar to that

executes
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Fig.2 A Mesh with Partitioned Buses (MPB). Local
links are not shown.

of Common-CRCW PRAM model. If there is
a write-conflict on a bus, the PE’s on the bus
receive a special value L (i.e., PE’s can detect
whether there is a write-conflict on a bus or
not). If there is no data transmitted on a bus,
the PE’s on the bus receive a special value ¢
(i.e., PE’s can know whether there is data trans-
mitted on a bus or not).

3. Simulation of MSB by MPB

In this section, we consider simulating a sin-
gle step of the n x n MSB (denoted as M) by
the n x n MPB (denoted as M’). To avoid con-
fusion, let PE (4, 5] and PEay/ ¢, 5] respectively
denote PE[i, j] of M and PE[3, j] of M'.

Given a single step of M in such a way that
each PEaq[i, j] knows how PE (i, j] behaves
at this single step, we consider how to achieve
the same computational task of the step using
M'’. We assume that the computing power of
PE’s, the bandwidth of local links, and that of
broadcasting buses are equivalent in both M
and M’.

To begin with, we prove the following lemma.

Lemma 1 For any single step of M, the
broadcasts taken on the separable bus in row
i (resp. column 4) of M can be simulated in
row i (resp. column %) of M’ in O(£ 4 n/£) time
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Fig.3 A Mesh with Restricted Separable Buses
(MRSB). Local links are not shown.

(0<i<n).

Proof: Take any single step S of M and
i€ {0,1,...,n — 1}. Let us consider simulat-
ing the broadcasts taken on the separable bus
along row i of M only, those on the bus along
column % of M can be simulated similarly.

First, we define some notations to describe

the broadcasts to be simulated. Let Pj denote
PEm(i, 4] (0 < j < n). To distinguish the two
ports through which a PE has access to the row
separable bus, we refer to the port on the left
side of the sectioning switch as port L and the
other as port R, as shown in Fig.1(b). Then,
the broadcasts is carried out in the following
way: (1) several of Po, P1,...,Pn — 1 section the
bus, (2) several of Po,P1,...,Pn—1 send data
to the bus through port L and/or R, and (3)
several of Po,P1,...,Pn~1 receive data from
the bus through port L and/or R. W.r.t. these
broadcasts performed in row ¢ of M, we define
C?, s3,and 7§ (0 < j < n, z € {L,R}) as
follows:

o C7 = {(k,y) | port z of Pj and port y of Pk
belong to the same bus segment after the
broadcasting bus being sectioned}.

e s% = g if P; sends data a to port z, other-

J
wise s7 = ¢.
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Algorithm SB-by-PB

{Simulating the broadcasts taken on the separable bus in row i of M, using row i of M. Dy, Dy, t1,

t2, t3, and t4 are the local variables in each PE.}

Phase 1: {Local Simulation}

In each M by sequentially scanning those sy,

j , and the switch configuration taken by P;

pl<j< (p + 1)¢) stored in the PE’s of M;, from left to right and then from right to left, each

P’; obtains r'F and r’®

in Dy and Dg, and knows whether (j,z) € CL and (j,z) € CR hold for

each z € {L, R} where [, and rp, are the column indexes of LP’\, : and RP/ My,

Phase 2: {Global Simulation}
for p—0 to (n/¢ —2) do
(1) RP)y,, sends Dy to LPhy .,
(2) LP)y .
PE.

. The received data is stored in t1.
broadcasts ti EBDL to all PE’s in Mp +1- The received value is stored in t2 of each

(3) Each P’j in My, does Dy t2 if (j,2) € C’(I;)H)e (z € {L,R}).

for p—(n/f—1) to 1 do
(1) LPMr sends DL to RPM/
2) RPM’ _

, broadcasts £3 to all PE’s in M

. The received data is stored in t3.
1 The received data is stored in t4 of each PE.

(3) Each P’] in Mj,_; does Dy t4 if (j,z) e T_1 (z € {L,R}).

end of SB-by-PB

Fig.4 Algorithm SB-by-PB.

e 17 = (the data received by P; from port z).
To describe each 'r;"' using C¥ and sk, we define
a binary commutative operator @ in such a way
that it satisfies the following equations for any
z and y:

TDPp=0Pzx =1,

z@l=1x=1

rdy=ydzx=cifz =y,

r®y =ydr = L ifz #y,z # ¢,andy # ¢.
It is not difficult to confirm that & is well-
defined and enjoys the associative law. Then,

each rf can be expressed as:
z __ Y
i = ®ky)ecs Sk 1)

Next, let P’; denote PE v/ [i,7] (0 < j < n),
and consider how to inform every P’; of r]If
and r} when every P’k is given sy, s, and
the switch configuration taken by Px. We di-
vide P'o,P’1,...,P'n — 1 into n/¢ disjoint blocks
M'p (0 < p < n/l). Each M'p consists of
Pj (pf < j < (p+ 1)f). Here, let LP'M'p
(resp. RP'M’p) denote the leftmost PE (resp.
the rightmost PE) of M’p. It should be noted
that RP’m’p and LP/M’p + 1 are adjacent PE’s
(0 < p < n/t—1) and that any PE in M’p
can communicate with the other PE’s in M'p
in a single time step using the broadcasting bus
(0 < p < n/l). For each j € {0,...,n— 1} and
z € {L,R}, we let

'l = D(k,y)ecr= sy (2)

where C'] = CFYN{(k,y) | Pj and Pk are in the
same block and y € {L,R}}.

Then, in Fig. 4, we show an algorithm that
simulates the broadcasts taken along row ¢ of
M. Each Ty is stored in variable D, of P’;
when the algorithm terminates. As for each
77 such that C7 C {(k,y)|P’k is in M'p and
y € {L,R}} for some p € {0,...,n/¢ — 1}, it
is obtalned at D, of P’; at Phase 1 because
r¥ = holds in such a case. As for the rest,
tfley are computed at Phase 2. After the execu-
tion of the first for-loop, such r7 is obtained at
D, of P’k for every (k,y) € C¥ such that both
pf < k and ((p+1){,L) & C’” hold for some
p € {0,...,n/¢ — 1}, and at "the second for-
loop, the value is copied to Dy of P’k for every
(kvy) € C;: :

Phase 1 can be performed in O({) time, since
each block consists of £ consecutive PE’s. Note
that this phase can be done similarly to the
well-known algorithm on a linear processor ar-
ray that performs a semigroup computation on
values distributed one per processor by sequen-
tially scanning those values. Phase 2 needs
O(n/f) time. Thus, the conclusion follows. 0O

Next, we consider improving the time cost
shown in Lemma 1. For Lemma 1, we presented
the algorithm SB-by-PB in which the first phase
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is performed in O(¥¢) time by sequentially scan-
ning data within each block. In the following,
we reduce the time cost for this phase to O(¢£'/2)
time, and as a result we obtain more efficient al-
gorithm which runs in O(£}/2 + n/f) time.

As a corollary of Lemma 1, we state the fol-
lowing.

Corollary 1 For any single step of M, the
broadcasts taken on the separable bus in row i
(resp. column %) of M can be simulated in row
i (resp. column i) of M’ in O(n'/?) time when
£=n'2(0<i<n). ]

A close inspection of the algorithm used

for nroving
IO proving

lemma*.

Lemma 2 For any single step of M, the
broadcasts taken on the separable bus in row
i (resp. column ¢) of M can be simulated in
row i (resp. column i) of M’ in O(n'/?) time
when £ =mn (0 <i < n).

Proof: Consider the execution of SB-by-PB
in a row of M’ with £ = n!/2. As for Phase
1, since broadcasting buses are not used for
this phase, the length of the broadcasting bus
of M’ doesn’t matter. As for Phase 2, every
time broadcast occurs, there is only a single
PE sending a value in the row, and thus this
phase can be performed even if there is only one
broadcasting bus covering the entire row of M’.
Hence, every operation in Phases 1 and 2 can be
executed in the same time on the n x n MPB
even when £ = n. The proof for the simulation
in each column is similar. Thus the conclusion
follows. |

Then, we can now improve the result of
Lemma 1, as shown below.

Lemma 3 For any single step of M, the

broadcasts taken on the separable bus in row
i (resp. column %) of M can be simulated in
row 4 (resp. column 3) of M’ in O(£Y2 4 n/f)
time (0 <@ < n).
Proof: Let us consider simulating the broad-
casts taken on the separable bus in row ¢ of M
for a given step S of M only. To prove that the
simulation can be performed in O(£Y/2 + n/f)
time, it suffices to show that the same task of
Phase 1 of SB-by-PB can be achieved in O(£/2)
time. Here, we define Pj, P'j, C7, sj, 5, &,
M'p, LP'M’p, RP'M'p, and 77 in the same way
as in the proof of Lemma 1.

At Phase 1 of SB-by-PB, each M’p locally
simulates the broadcasts (i.e., computes 77*).

Clorollarvy 1 imnlies the following
LOrdcuary i lmpies tne iondwing

* This lemma corresponds to Lemma 3 in Ref. 7).

Oct. 1999

Since each M'p can be seen as a linear array
composed of ¢ consecutive PE’s and a broad-
casting bus, by executing the algorithm proving
Lemma 2 within each M'p, every P’; can know
T’;" and r’? in O(£'/2) time.

Next, consider letting each P’; in M’p know
whether (j,2) € C}“p holds for each x € {L,R}
where [, is the column index of LP'm’p. Con-
sider a broadcast operation in row i of M such
that the bus configuration is the same as that
of & and every P; corresponding to LP/m’p
for some p sends “1” to the port L. Then,
by locally simulating this broadcast operation
within each M'p, every P/j in M'p can know
whether (j,2) € C}; holds for each z € {L,R}
where [p is the column index of LP’am’p. (Here,
note that if P’; obtains “1” for port X of Pj
in this local simulation, it means that in the
bus configuration of & the port X of P; is
connected to the port L of Pk corresponding
to LP’m’p.) By the similar argument in the
preceding paragraph, this local simulation can
be performed in O(£'/2) time in each M/'p.
Similarly, in O(¢!/2) time, every P’j in M’p
can know whether (j,z) € C® holds for each

z € {L,R} where ry, is the column index of

RP/M'p.

Thus, the same computational task of Phase
1 of SB-by-PB can be done more efficiently in
O(£'/2) time. Since Phase 2 of SB-by-PB needs
O(n/f) time, the entire simulation can be com-
pleted in O(£'/2? + n/¢) time. Thus, the conclu-
sion follows. a

In the proof of Lemma 3, we improved the
time cost required for the Phase 1 of SB-by-PB
by using the result of Lemma 2. Such an im-
provement is possible because the broadcasting
buses of M’ are partitioned by length ¢ and
the algorithm proving Lemma 2 can be exe-
cuted within each block in parallel. Because of
this reason, we cannot apply the same speedup
technique to the algorithm proving Lemma 3
in Ref. 7), though it is carried out in the same
fashion as SB-by-PB.

Then, we obtain the following lemma imme-
diately from Lemma 3.

Lemma 4 M/’ can simulate any single step
of M in O(£Y/2 4+ n/f) time.
Proof: M/’ can simulate the broadcast sub-
step of a single step of M, by first simulat-
ing the broadcasts taken along rows in parallel
in each row, and then simulating those along
columns similarly. This takes O(£Y/2 + n/¢)



Vol. 40 No. 10

time from Lemma 3. As for the local comm.

and compute substeps, M’ can simulate them

in a constant time in each PE. Thus, the con-
clusion follows. (]

Next, we consider the lower bounds for sim-
ulating M by M.

Lemma 5 There exists a single step of M
that takes Q(n/f) time to be simulated on M’.
Proof: Consider the single step of M in which
PEm[0,0] sends a value to PEp[0,n — 1]. It is
obvious that this step must take Q(n/¢) time to
be simulated on M’. 0

Lemma 6 There exists a single step of M
that takes Q(¢£/2) time to be simulated on M’.
Proof: Consider the single step S of M whose
broadcast substep consists of the following op-
erations (here, L is some positive integer such
that L < n and n mod L = 0):

(1) Each PEam]i,j] divides the row broad-
casting bus if (j mod L) = 0.

(2) Each PEaq[i,5] sends the content of
variable a to the row broadcasting bus
through port R if (j mod L) = 0.

(3) Each PE[i,j] receives data from the
row broadcasting bus through port L and
stores it in variable b if (j mod L) # 0.

Let us call the data broadcasted at this substep

as a-values. Note that there are possibly n?/L

different a-values.

Take any algorithm A that correctly simu-
lates S on M’. Here, the simulation is carried
out on the MPB model, and thus the simulat-
ing PE’s can use only the local links and the
statically partitioned broadcasting buses. Since
each PE initially holding an a-value is different
from those PE’s which will receive the value,
every a-value must be transmitted through the
local links and/or the broadcasting buses dur-
ing the simulation. With these observations, we
count the necessary steps for A, by considering
the following two cases:

(Case 1): There exists an a-value transmit-

ted only through local links.

(Case 2): There is no a-value transmitted

only through local links.

In Case 1, since the distance between the PE

initially holding the a-value and the most dis-

tant PE which will receive it is L — 1, A must
take at least L — 1 steps. On the other hand,
in Case 2, since the total number of a-value
is n?/L, and the number of data which may
be transmitted on the broadcasting buses is at
most 2n? /¢ in a single time step, .A must take at
least £/(2L) steps. Thus, by letting L = £1/2, in

Simulating a Mesh with Separable Buses 3711

either case, A needs Q(£'/2) steps*. Thus the
conclusion follows. m|
Now, we can state the following theorem.
Theorem 1 When £ = ©(n%3), M’ can
simulate any single step of M in O(n!/3) time.
This time cost is optimal in the worst case.
Proof: From Lemma 4, M’ can simulate
any single step of M in O(n'/®) time when
¢ = ©(n?/3). The optimality is from Lemma
5 and 6, since there exists a single step of M
which cannot be simulated in O(n'/3) time by
any algorithm if £ # ©(n?/3) and there exists a
single step of M which must take Q(n!/3) time
to be simulated when £ = ©(n?/3). O

4. Simulation of MSB by MRSB

In this section, we consider simulating the
n x n MSB by the n x n MRSB. Let M de-
note the n xn MSB, and let M’ the nxn
MRSB. As in Section 3, we write PEq[t, j]
and PEay[i, j] for denoting PE[s, j] of M and
PE[i, j] of M’ respectively, and assume that the
computing power of PE’s, the bandwidth of lo-
cal links, and that of broadcasting buses are
equivalent in both M and M’.

We begin by proving lemmas for simulating
broadcasts of M by M’.

Lemma 7 For any single step of M, the

broadcasts taken on the separable bus in row
i£ (resp. column i) of M can be simulated in
row £ (resp. column if) of M’ in O(£) time
(0 <i<nfe).
Proof: Take any single step S of M and i €
{0,1,...,n/¢ — 1}. Let us consider simulating
the broadcasts taken on the separable bus along
row £ of M only, those on the bus along column
1€ of M can be simulated similarly.

Let P; and P’; denote PE[i4,j] and
PEaq[il, j] respectively (0 < j < n). Cj, s,
75, ® M'p, LP'M'p, RP’M'p, and rf® are de-
fined in the same way as in the proof of Lemma,
1. Then, in Fig. 5, we show an algorithm that
simulates the broadcasts performed along row
i€ of M. Each r{ is stored in variable D, of P’;
when the algorithm terminates.

After the execution of (2-2) of Phase 2, for
each p € {0,...,n/¢ — 1}, rl[; and rf; are
obtained respectively in Dy and D} of LP/Mm’p
where [, is the column index of LP’M’p and 7, is
that of RP’M’p. Then, using these information,

* The lowerbound §2(n!/2) for simulating the MSB by
the MWMB presented in 7) 8) is derived from this,
since the n x n MWMB is the same as the n x n
MPB with £ = n.
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Algorithm SB-by-RSB

imulating the broadcasts taken on the separable bus 1n row £ o , using row £ o . D, Dg,
Simulating the broadcasts tak th ble bus 1 il of M ; il of M’

and D are the local variables in each PE.}
Phase 1: {Local Simulation}
(1-1) Execute the Phase 1 of SB-by-PB.

(1-2) In each M, the content of Dy of RP/ ,, is transferred to LP’y,, . This value is stored in

Df of Ly, .
Phase 2: {Global Simulation}

(2-1) Each LP,  divides the row bus if (p/,L) ¢ Cf 1),
(2-2) Each LP’,,, sends the content of D. and that of D} to the bus through port L and R
respectively. The values received from port L and R are stored in Dy, and D}.

Phase 3: {Local Propagation}

In each M/, PE’s update D; and Dy appropriately using the information of D; and D} of LP/, ,, .
p P

end of SB-by-RSB

Fig.5 Algorithm SB-by-RSB.

Algorithm SBs-by-RSBs

{Simulating the broadcasts taken along rows of M, using M}

Stage 1: {Local Simulation}

Execute the Phase 1 of SB-by-RSB in each row in parallel.

Stage 2: {Global Simulation}
In each B, do the following:

L. Nd (D 1\ A
105 1<—U wu \L_j.} uav

Execute the Phase 2 of SB-by-RSB for the row i of B,

Stage 3: {Local Propagation}

Execute the Phase 3 of SB-by-RSB in each row in parallel.

end of SBs-by-RSBs

Fig.6 Algorithm SBs-by-RSBs.

each PE can update its D, and Dy appropriately
at Phase 3. The correctness is straightforward
and we omit the details. Phases 1 and 3 can be
performed in O(£) time, since each block M'p
consists of £ consecutive PE’s. Phase 2 takes
O(1) time. Hence, the conclusion follows. O

Lemma 8 For any single step of M, the
broadcasts taken on the separable buses along
rows (columns) of M can be simulated on M’
in O(¢) time.
Proof: Take any single step S of M. Let
us consider simulating the row broadcasts only,
the column broadcasts can be simulated simi-
larly.

We divide M’ into n/¢ disjoint bands B'p (0 <
p < n/f). Each B'p consists of PE i, j] (p€ <
1< (p+ 1)}, 0 <j < n),ie., B'p contains row
iof M' (pf <i < (p+1)¢). The row i of B'p
istherowpl+iof M (0<i<{ 0<p<
n/f). Then, in Fig.6, we show an algorithm
that simulates the broadcasts along rows of M.

Stage 1 and Stage 3 can be performed in O(¥)

time from Lemma 7. As for Stage 2, it can
be done in O(£) time in the following way. In
each B’p, only the row 0 of B'p has a broad-
casting bus (restricted separable bus) whereby
Phase 2 of SB-by-RSB is performed. Hence, for
each row i (# 0) of B'p, the data necessary for
the execution of Phase 2 of SB-by-RSB must be
moved to row 0 of B'p, and after the data be-
ing processed, the result must be moved back
to the row. These operations can be done by
just shifting the data synchronously with each
iteration of the for-loop. Thus, Phase 2 can be
completed in O(4 + £) = O(¢) time. Thus, the
conclusion follows. O
Then, we have the following lemma.
Lemma 9 M/’ can simulate any single step
of M in O(¥) time.
Proof: M’ can simulate the broadcast sub-
step of a single step of M, by first simulating
the broadcasts taken along rows, and then sim-
ulating those along columns. This takes O({)
time from Lemma 8. As for the local comm.
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and compute substeps, M’ can simulate them
in a constant time in each PE. Thus, the con-
clusion follows. O

The lower bound for simulating M by M’ is
given in the following lemma.

Lemma 10 There exists a single step of M
that takes Q(£) time to be simulated on M.
Proof: Consider the single step of M in which
PEa[0,0] sends a value to PE[0,£/2]. It is
obvious that this step must take 2(£) time to
be simulated on M’. O

Now, we obtain the following theorem.

Theorem 2 M’ can simulate any single
step of M in O(¢) time. This time cost is opti-
mal in the worst case.

Proof: From Lemmas 9 and 10. O

5. Concluding Remarks

We have shown that the n x n MSB can be
simulated time-optimally in ©(n!/%) time by
the n x n MPB when £ = ©(n*3). Since we
have proved?® that the n x n MSB can be
simulated time-optimally in @(nl/ 2) time by
the n x n MWMB (which is equal to the n x n
MPBRB with £ = n), our result shows that we can
reduce the time cost from O(n'/2?) to ©(nl/3)
without increasing the number of switch ele-
ments.

Also, we have proved that the n x n MSB
can be simulated time-optimally in ©(£) time
by the n x n MRSB. Since the number of the
sectioning switches used in the n x n MRSB is
2n?/£2, our results shows that we can reduce
the number of the switch elements used in the
MSB by the factor of £2 with paying the extra
time cost proportional to £.

Although we assumed that the propagation
delay of the broadcasting buses was a constant
time, we cannot neglect the influence of the de-
lay when the mesh size becomes large. Here,
as in Ref. 12), let us take the following assump-
tions:

e The propagation delay of a bus is propor-
tional to the sum of its signal propagation
delay and device propagation delay.

o The signal propagation delay of an z-length
bus is O(z®) for some a > 0.

e The device propagation delay of a bus is
neglectable (Case 1), or is proportional to
the number of the switch elements inserted
to the bus (Case 2).

Then, in Table 1, we show the necessary time
to perform any single step of the n x n MSB.

As for the Case 1, we can see that the MPB
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Table 1 Time costs to perform a single step of the
n X n MSB when the propagation delay can-
not be neglected. In Case 1 we can neglect
the device propagation delay, and in Case 2
we cannot. Each mesh is of size n X n, and
the broadcasting buses of the MPB are par-

titioned with £ = n2/3,
time costs
models Case 1 Case 2
MSB O(n®) O(n* +n)
MPB (Ti /3 . 204/3) O(n1/3 . n2a/3)
MRSB O(£ - n%) O£ - (n* + n/t))

can perform a single step of the MSB as effi-

qat+tha MQR 3f - 1
\,Lcum.y as i€ Moo L & = 1, and that it is even

superior to the MSB if & > 1. As for the Case
2, the MPB is equal to (when o = 1) or superior
to (when « # 1) the MSB, and the MRSB has
the same efficiency as the MSB if £ < n!~2. But
from a theoretical point of view, in these cases
(except the MPB in Case 2 with a < 1) there is
less advantage of augmenting ordinary meshes
with broadcasting buses, for it takes Q(n) time
to perform a single step of the n x n MSB.

Finally, we note that the MPB and the MRSB
are suitable for VLSI implementation. The
n x n MPB can be constructed from the £ x
{ MWMB’s, by putting them with n/¢ rows
and n/f columns and connecting each adja-
cent MWMB’s with £ local links. Similarly,
the n x n MRSB can be constructed from the
£ x £ ordinary meshes, by putting them with
n/f rows and n/f columns, connecting each ad-
jacent mesh with £ local links (in practice, we
can prove that these local links are not neces-
sary for simulating the MSB in O(¢) time), and
placing 2n/¢ restricted separable buses.
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